Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2 | * Time of Day Clock support for the M48T35, M48T37, M48T59, and MC146818 |
| 3 | * Real Time Clocks/Timekeepers. |
| 4 | * |
| 5 | * Author: Mark A. Greer |
| 6 | * mgreer@mvista.com |
| 7 | * |
| 8 | * 2001-2004 (c) MontaVista, Software, Inc. This file is licensed under |
| 9 | * the terms of the GNU General Public License version 2. This program |
| 10 | * is licensed "as is" without any warranty of any kind, whether express |
| 11 | * or implied. |
| 12 | */ |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/time.h> |
| 17 | #include <linux/timex.h> |
| 18 | #include <linux/bcd.h> |
| 19 | #include <linux/mc146818rtc.h> |
| 20 | |
| 21 | #include <asm/machdep.h> |
| 22 | #include <asm/io.h> |
| 23 | #include <asm/time.h> |
| 24 | #include <asm/todc.h> |
| 25 | |
| 26 | /* |
| 27 | * Depending on the hardware on your board and your board design, the |
| 28 | * RTC/NVRAM may be accessed either directly (like normal memory) or via |
| 29 | * address/data registers. If your board uses the direct method, set |
| 30 | * 'nvram_data' to the base address of your nvram and leave 'nvram_as0' and |
| 31 | * 'nvram_as1' NULL. If your board uses address/data regs to access nvram, |
| 32 | * set 'nvram_as0' to the address of the lower byte, set 'nvram_as1' to the |
| 33 | * address of the upper byte (leave NULL if using mc146818), and set |
| 34 | * 'nvram_data' to the address of the 8-bit data register. |
| 35 | * |
| 36 | * In order to break the assumption that the RTC and NVRAM are accessed by |
| 37 | * the same mechanism, you need to explicitly set 'ppc_md.rtc_read_val' and |
| 38 | * 'ppc_md.rtc_write_val', otherwise the values of 'ppc_md.rtc_read_val' |
| 39 | * and 'ppc_md.rtc_write_val' will be used. |
| 40 | * |
| 41 | * Note: Even though the documentation for the various RTC chips say that it |
| 42 | * take up to a second before it starts updating once the 'R' bit is |
| 43 | * cleared, they always seem to update even though we bang on it many |
| 44 | * times a second. This is true, except for the Dallas Semi 1746/1747 |
| 45 | * (possibly others). Those chips seem to have a real problem whenever |
| 46 | * we set the 'R' bit before reading them, they basically stop counting. |
| 47 | * --MAG |
| 48 | */ |
| 49 | |
| 50 | /* |
| 51 | * 'todc_info' should be initialized in your *_setup.c file to |
| 52 | * point to a fully initialized 'todc_info_t' structure. |
| 53 | * This structure holds all the register offsets for your particular |
| 54 | * TODC/RTC chip. |
| 55 | * TODC_ALLOC()/TODC_INIT() will allocate and initialize this table for you. |
| 56 | */ |
| 57 | |
| 58 | #ifdef RTC_FREQ_SELECT |
| 59 | #undef RTC_FREQ_SELECT |
| 60 | #define RTC_FREQ_SELECT control_b /* Register A */ |
| 61 | #endif |
| 62 | |
| 63 | #ifdef RTC_CONTROL |
| 64 | #undef RTC_CONTROL |
| 65 | #define RTC_CONTROL control_a /* Register B */ |
| 66 | #endif |
| 67 | |
| 68 | #ifdef RTC_INTR_FLAGS |
| 69 | #undef RTC_INTR_FLAGS |
| 70 | #define RTC_INTR_FLAGS watchdog /* Register C */ |
| 71 | #endif |
| 72 | |
| 73 | #ifdef RTC_VALID |
| 74 | #undef RTC_VALID |
| 75 | #define RTC_VALID interrupts /* Register D */ |
| 76 | #endif |
| 77 | |
| 78 | /* Access routines when RTC accessed directly (like normal memory) */ |
| 79 | u_char |
| 80 | todc_direct_read_val(int addr) |
| 81 | { |
| 82 | return readb((void __iomem *)(todc_info->nvram_data + addr)); |
| 83 | } |
| 84 | |
| 85 | void |
| 86 | todc_direct_write_val(int addr, unsigned char val) |
| 87 | { |
| 88 | writeb(val, (void __iomem *)(todc_info->nvram_data + addr)); |
| 89 | return; |
| 90 | } |
| 91 | |
| 92 | /* Access routines for accessing m48txx type chips via addr/data regs */ |
| 93 | u_char |
| 94 | todc_m48txx_read_val(int addr) |
| 95 | { |
| 96 | outb(addr, todc_info->nvram_as0); |
| 97 | outb(addr>>todc_info->as0_bits, todc_info->nvram_as1); |
| 98 | return inb(todc_info->nvram_data); |
| 99 | } |
| 100 | |
| 101 | void |
| 102 | todc_m48txx_write_val(int addr, unsigned char val) |
| 103 | { |
| 104 | outb(addr, todc_info->nvram_as0); |
| 105 | outb(addr>>todc_info->as0_bits, todc_info->nvram_as1); |
| 106 | outb(val, todc_info->nvram_data); |
| 107 | return; |
| 108 | } |
| 109 | |
| 110 | /* Access routines for accessing mc146818 type chips via addr/data regs */ |
| 111 | u_char |
| 112 | todc_mc146818_read_val(int addr) |
| 113 | { |
| 114 | outb_p(addr, todc_info->nvram_as0); |
| 115 | return inb_p(todc_info->nvram_data); |
| 116 | } |
| 117 | |
| 118 | void |
| 119 | todc_mc146818_write_val(int addr, unsigned char val) |
| 120 | { |
| 121 | outb_p(addr, todc_info->nvram_as0); |
| 122 | outb_p(val, todc_info->nvram_data); |
| 123 | } |
| 124 | |
| 125 | |
| 126 | /* |
| 127 | * Routines to make RTC chips with NVRAM buried behind an addr/data pair |
| 128 | * have the NVRAM and clock regs appear at the same level. |
| 129 | * The NVRAM will appear to start at addr 0 and the clock regs will appear |
| 130 | * to start immediately after the NVRAM (actually, start at offset |
| 131 | * todc_info->nvram_size). |
| 132 | */ |
| 133 | static inline u_char |
| 134 | todc_read_val(int addr) |
| 135 | { |
| 136 | u_char val; |
| 137 | |
| 138 | if (todc_info->sw_flags & TODC_FLAG_2_LEVEL_NVRAM) { |
| 139 | if (addr < todc_info->nvram_size) { /* NVRAM */ |
| 140 | ppc_md.rtc_write_val(todc_info->nvram_addr_reg, addr); |
| 141 | val = ppc_md.rtc_read_val(todc_info->nvram_data_reg); |
| 142 | } |
| 143 | else { /* Clock Reg */ |
| 144 | addr -= todc_info->nvram_size; |
| 145 | val = ppc_md.rtc_read_val(addr); |
| 146 | } |
| 147 | } |
| 148 | else { |
| 149 | val = ppc_md.rtc_read_val(addr); |
| 150 | } |
| 151 | |
| 152 | return val; |
| 153 | } |
| 154 | |
| 155 | static inline void |
| 156 | todc_write_val(int addr, u_char val) |
| 157 | { |
| 158 | if (todc_info->sw_flags & TODC_FLAG_2_LEVEL_NVRAM) { |
| 159 | if (addr < todc_info->nvram_size) { /* NVRAM */ |
| 160 | ppc_md.rtc_write_val(todc_info->nvram_addr_reg, addr); |
| 161 | ppc_md.rtc_write_val(todc_info->nvram_data_reg, val); |
| 162 | } |
| 163 | else { /* Clock Reg */ |
| 164 | addr -= todc_info->nvram_size; |
| 165 | ppc_md.rtc_write_val(addr, val); |
| 166 | } |
| 167 | } |
| 168 | else { |
| 169 | ppc_md.rtc_write_val(addr, val); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | /* |
| 174 | * TODC routines |
| 175 | * |
| 176 | * There is some ugly stuff in that there are assumptions for the mc146818. |
| 177 | * |
| 178 | * Assumptions: |
| 179 | * - todc_info->control_a has the offset as mc146818 Register B reg |
| 180 | * - todc_info->control_b has the offset as mc146818 Register A reg |
| 181 | * - m48txx control reg's write enable or 'W' bit is same as |
| 182 | * mc146818 Register B 'SET' bit (i.e., 0x80) |
| 183 | * |
| 184 | * These assumptions were made to make the code simpler. |
| 185 | */ |
| 186 | long __init |
| 187 | todc_time_init(void) |
| 188 | { |
| 189 | u_char cntl_b; |
| 190 | |
| 191 | if (!ppc_md.rtc_read_val) |
| 192 | ppc_md.rtc_read_val = ppc_md.nvram_read_val; |
| 193 | if (!ppc_md.rtc_write_val) |
| 194 | ppc_md.rtc_write_val = ppc_md.nvram_write_val; |
| 195 | |
| 196 | cntl_b = todc_read_val(todc_info->control_b); |
| 197 | |
| 198 | if (todc_info->rtc_type == TODC_TYPE_MC146818) { |
| 199 | if ((cntl_b & 0x70) != 0x20) { |
| 200 | printk(KERN_INFO "TODC %s %s\n", |
| 201 | "real-time-clock was stopped.", |
| 202 | "Now starting..."); |
| 203 | cntl_b &= ~0x70; |
| 204 | cntl_b |= 0x20; |
| 205 | } |
| 206 | |
| 207 | todc_write_val(todc_info->control_b, cntl_b); |
| 208 | } else if (todc_info->rtc_type == TODC_TYPE_DS17285) { |
| 209 | u_char mode; |
| 210 | |
| 211 | mode = todc_read_val(TODC_TYPE_DS17285_CNTL_A); |
| 212 | /* Make sure countdown clear is not set */ |
| 213 | mode &= ~0x40; |
| 214 | /* Enable oscillator, extended register set */ |
| 215 | mode |= 0x30; |
| 216 | todc_write_val(TODC_TYPE_DS17285_CNTL_A, mode); |
| 217 | |
| 218 | } else if (todc_info->rtc_type == TODC_TYPE_DS1501) { |
| 219 | u_char month; |
| 220 | |
| 221 | todc_info->enable_read = TODC_DS1501_CNTL_B_TE; |
| 222 | todc_info->enable_write = TODC_DS1501_CNTL_B_TE; |
| 223 | |
| 224 | month = todc_read_val(todc_info->month); |
| 225 | |
| 226 | if ((month & 0x80) == 0x80) { |
| 227 | printk(KERN_INFO "TODC %s %s\n", |
| 228 | "real-time-clock was stopped.", |
| 229 | "Now starting..."); |
| 230 | month &= ~0x80; |
| 231 | todc_write_val(todc_info->month, month); |
| 232 | } |
| 233 | |
| 234 | cntl_b &= ~TODC_DS1501_CNTL_B_TE; |
| 235 | todc_write_val(todc_info->control_b, cntl_b); |
| 236 | } else { /* must be a m48txx type */ |
| 237 | u_char cntl_a; |
| 238 | |
| 239 | todc_info->enable_read = TODC_MK48TXX_CNTL_A_R; |
| 240 | todc_info->enable_write = TODC_MK48TXX_CNTL_A_W; |
| 241 | |
| 242 | cntl_a = todc_read_val(todc_info->control_a); |
| 243 | |
| 244 | /* Check & clear STOP bit in control B register */ |
| 245 | if (cntl_b & TODC_MK48TXX_DAY_CB) { |
| 246 | printk(KERN_INFO "TODC %s %s\n", |
| 247 | "real-time-clock was stopped.", |
| 248 | "Now starting..."); |
| 249 | |
| 250 | cntl_a |= todc_info->enable_write; |
| 251 | cntl_b &= ~TODC_MK48TXX_DAY_CB;/* Start Oscil */ |
| 252 | |
| 253 | todc_write_val(todc_info->control_a, cntl_a); |
| 254 | todc_write_val(todc_info->control_b, cntl_b); |
| 255 | } |
| 256 | |
| 257 | /* Make sure READ & WRITE bits are cleared. */ |
| 258 | cntl_a &= ~(todc_info->enable_write | |
| 259 | todc_info->enable_read); |
| 260 | todc_write_val(todc_info->control_a, cntl_a); |
| 261 | } |
| 262 | |
| 263 | return 0; |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * There is some ugly stuff in that there are assumptions that for a mc146818, |
| 268 | * the todc_info->control_a has the offset of the mc146818 Register B reg and |
| 269 | * that the register'ss 'SET' bit is the same as the m48txx's write enable |
| 270 | * bit in the control register of the m48txx (i.e., 0x80). |
| 271 | * |
| 272 | * It was done to make the code look simpler. |
| 273 | */ |
| 274 | ulong |
| 275 | todc_get_rtc_time(void) |
| 276 | { |
| 277 | uint year = 0, mon = 0, day = 0, hour = 0, min = 0, sec = 0; |
| 278 | uint limit, i; |
| 279 | u_char save_control, uip = 0; |
| 280 | |
| 281 | spin_lock(&rtc_lock); |
| 282 | save_control = todc_read_val(todc_info->control_a); |
| 283 | |
| 284 | if (todc_info->rtc_type != TODC_TYPE_MC146818) { |
| 285 | limit = 1; |
| 286 | |
| 287 | switch (todc_info->rtc_type) { |
| 288 | case TODC_TYPE_DS1553: |
| 289 | case TODC_TYPE_DS1557: |
| 290 | case TODC_TYPE_DS1743: |
| 291 | case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ |
| 292 | case TODC_TYPE_DS1747: |
| 293 | case TODC_TYPE_DS17285: |
| 294 | break; |
| 295 | default: |
| 296 | todc_write_val(todc_info->control_a, |
| 297 | (save_control | todc_info->enable_read)); |
| 298 | } |
| 299 | } |
| 300 | else { |
| 301 | limit = 100000000; |
| 302 | } |
| 303 | |
| 304 | for (i=0; i<limit; i++) { |
| 305 | if (todc_info->rtc_type == TODC_TYPE_MC146818) { |
| 306 | uip = todc_read_val(todc_info->RTC_FREQ_SELECT); |
| 307 | } |
| 308 | |
| 309 | sec = todc_read_val(todc_info->seconds) & 0x7f; |
| 310 | min = todc_read_val(todc_info->minutes) & 0x7f; |
| 311 | hour = todc_read_val(todc_info->hours) & 0x3f; |
| 312 | day = todc_read_val(todc_info->day_of_month) & 0x3f; |
| 313 | mon = todc_read_val(todc_info->month) & 0x1f; |
| 314 | year = todc_read_val(todc_info->year) & 0xff; |
| 315 | |
| 316 | if (todc_info->rtc_type == TODC_TYPE_MC146818) { |
| 317 | uip |= todc_read_val(todc_info->RTC_FREQ_SELECT); |
| 318 | if ((uip & RTC_UIP) == 0) break; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | if (todc_info->rtc_type != TODC_TYPE_MC146818) { |
| 323 | switch (todc_info->rtc_type) { |
| 324 | case TODC_TYPE_DS1553: |
| 325 | case TODC_TYPE_DS1557: |
| 326 | case TODC_TYPE_DS1743: |
| 327 | case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ |
| 328 | case TODC_TYPE_DS1747: |
| 329 | case TODC_TYPE_DS17285: |
| 330 | break; |
| 331 | default: |
| 332 | save_control &= ~(todc_info->enable_read); |
| 333 | todc_write_val(todc_info->control_a, |
| 334 | save_control); |
| 335 | } |
| 336 | } |
| 337 | spin_unlock(&rtc_lock); |
| 338 | |
| 339 | if ((todc_info->rtc_type != TODC_TYPE_MC146818) || |
| 340 | ((save_control & RTC_DM_BINARY) == 0) || |
| 341 | RTC_ALWAYS_BCD) { |
| 342 | |
| 343 | BCD_TO_BIN(sec); |
| 344 | BCD_TO_BIN(min); |
| 345 | BCD_TO_BIN(hour); |
| 346 | BCD_TO_BIN(day); |
| 347 | BCD_TO_BIN(mon); |
| 348 | BCD_TO_BIN(year); |
| 349 | } |
| 350 | |
| 351 | year = year + 1900; |
| 352 | if (year < 1970) { |
| 353 | year += 100; |
| 354 | } |
| 355 | |
| 356 | return mktime(year, mon, day, hour, min, sec); |
| 357 | } |
| 358 | |
| 359 | int |
| 360 | todc_set_rtc_time(unsigned long nowtime) |
| 361 | { |
| 362 | struct rtc_time tm; |
| 363 | u_char save_control, save_freq_select = 0; |
| 364 | |
| 365 | spin_lock(&rtc_lock); |
| 366 | to_tm(nowtime, &tm); |
| 367 | |
| 368 | save_control = todc_read_val(todc_info->control_a); |
| 369 | |
| 370 | /* Assuming MK48T59_RTC_CA_WRITE & RTC_SET are equal */ |
| 371 | todc_write_val(todc_info->control_a, |
| 372 | (save_control | todc_info->enable_write)); |
| 373 | save_control &= ~(todc_info->enable_write); /* in case it was set */ |
| 374 | |
| 375 | if (todc_info->rtc_type == TODC_TYPE_MC146818) { |
| 376 | save_freq_select = todc_read_val(todc_info->RTC_FREQ_SELECT); |
| 377 | todc_write_val(todc_info->RTC_FREQ_SELECT, |
| 378 | save_freq_select | RTC_DIV_RESET2); |
| 379 | } |
| 380 | |
| 381 | |
| 382 | tm.tm_year = (tm.tm_year - 1900) % 100; |
| 383 | |
| 384 | if ((todc_info->rtc_type != TODC_TYPE_MC146818) || |
| 385 | ((save_control & RTC_DM_BINARY) == 0) || |
| 386 | RTC_ALWAYS_BCD) { |
| 387 | |
| 388 | BIN_TO_BCD(tm.tm_sec); |
| 389 | BIN_TO_BCD(tm.tm_min); |
| 390 | BIN_TO_BCD(tm.tm_hour); |
| 391 | BIN_TO_BCD(tm.tm_mon); |
| 392 | BIN_TO_BCD(tm.tm_mday); |
| 393 | BIN_TO_BCD(tm.tm_year); |
| 394 | } |
| 395 | |
| 396 | todc_write_val(todc_info->seconds, tm.tm_sec); |
| 397 | todc_write_val(todc_info->minutes, tm.tm_min); |
| 398 | todc_write_val(todc_info->hours, tm.tm_hour); |
| 399 | todc_write_val(todc_info->month, tm.tm_mon); |
| 400 | todc_write_val(todc_info->day_of_month, tm.tm_mday); |
| 401 | todc_write_val(todc_info->year, tm.tm_year); |
| 402 | |
| 403 | todc_write_val(todc_info->control_a, save_control); |
| 404 | |
| 405 | if (todc_info->rtc_type == TODC_TYPE_MC146818) { |
| 406 | todc_write_val(todc_info->RTC_FREQ_SELECT, save_freq_select); |
| 407 | } |
| 408 | spin_unlock(&rtc_lock); |
| 409 | |
| 410 | return 0; |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * Manipulates read bit to reliably read seconds at a high rate. |
| 415 | */ |
| 416 | static unsigned char __init todc_read_timereg(int addr) |
| 417 | { |
| 418 | unsigned char save_control = 0, val; |
| 419 | |
| 420 | switch (todc_info->rtc_type) { |
| 421 | case TODC_TYPE_DS1553: |
| 422 | case TODC_TYPE_DS1557: |
| 423 | case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ |
| 424 | case TODC_TYPE_DS1747: |
| 425 | case TODC_TYPE_DS17285: |
| 426 | case TODC_TYPE_MC146818: |
| 427 | break; |
| 428 | default: |
| 429 | save_control = todc_read_val(todc_info->control_a); |
| 430 | todc_write_val(todc_info->control_a, |
| 431 | (save_control | todc_info->enable_read)); |
| 432 | } |
| 433 | val = todc_read_val(addr); |
| 434 | |
| 435 | switch (todc_info->rtc_type) { |
| 436 | case TODC_TYPE_DS1553: |
| 437 | case TODC_TYPE_DS1557: |
| 438 | case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ |
| 439 | case TODC_TYPE_DS1747: |
| 440 | case TODC_TYPE_DS17285: |
| 441 | case TODC_TYPE_MC146818: |
| 442 | break; |
| 443 | default: |
| 444 | save_control &= ~(todc_info->enable_read); |
| 445 | todc_write_val(todc_info->control_a, save_control); |
| 446 | } |
| 447 | |
| 448 | return val; |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * This was taken from prep_setup.c |
| 453 | * Use the NVRAM RTC to time a second to calibrate the decrementer. |
| 454 | */ |
| 455 | void __init |
| 456 | todc_calibrate_decr(void) |
| 457 | { |
| 458 | ulong freq; |
| 459 | ulong tbl, tbu; |
| 460 | long i, loop_count; |
| 461 | u_char sec; |
| 462 | |
| 463 | todc_time_init(); |
| 464 | |
| 465 | /* |
| 466 | * Actually this is bad for precision, we should have a loop in |
| 467 | * which we only read the seconds counter. todc_read_val writes |
| 468 | * the address bytes on every call and this takes a lot of time. |
| 469 | * Perhaps an nvram_wait_change method returning a time |
| 470 | * stamp with a loop count as parameter would be the solution. |
| 471 | */ |
| 472 | /* |
| 473 | * Need to make sure the tbl doesn't roll over so if tbu increments |
| 474 | * during this test, we need to do it again. |
| 475 | */ |
| 476 | loop_count = 0; |
| 477 | |
| 478 | sec = todc_read_timereg(todc_info->seconds) & 0x7f; |
| 479 | |
| 480 | do { |
| 481 | tbu = get_tbu(); |
| 482 | |
| 483 | for (i = 0 ; i < 10000000 ; i++) {/* may take up to 1 second */ |
| 484 | tbl = get_tbl(); |
| 485 | |
| 486 | if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) { |
| 487 | break; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | sec = todc_read_timereg(todc_info->seconds) & 0x7f; |
| 492 | |
| 493 | for (i = 0 ; i < 10000000 ; i++) { /* Should take 1 second */ |
| 494 | freq = get_tbl(); |
| 495 | |
| 496 | if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) { |
| 497 | break; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | freq -= tbl; |
| 502 | } while ((get_tbu() != tbu) && (++loop_count < 2)); |
| 503 | |
| 504 | printk("time_init: decrementer frequency = %lu.%.6lu MHz\n", |
| 505 | freq/1000000, freq%1000000); |
| 506 | |
| 507 | tb_ticks_per_jiffy = freq / HZ; |
| 508 | tb_to_us = mulhwu_scale_factor(freq, 1000000); |
| 509 | |
| 510 | return; |
| 511 | } |