David Daney | c1bf207 | 2010-08-03 11:22:20 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Kernel Probes (KProbes) |
| 3 | * arch/mips/kernel/kprobes.c |
| 4 | * |
| 5 | * Copyright 2006 Sony Corp. |
| 6 | * Copyright 2010 Cavium Networks |
| 7 | * |
| 8 | * Some portions copied from the powerpc version. |
| 9 | * |
| 10 | * Copyright (C) IBM Corporation, 2002, 2004 |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or modify |
| 13 | * it under the terms of the GNU General Public License as published by |
| 14 | * the Free Software Foundation; version 2 of the License. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 24 | */ |
| 25 | |
| 26 | #include <linux/kprobes.h> |
| 27 | #include <linux/preempt.h> |
| 28 | #include <linux/kdebug.h> |
| 29 | #include <linux/slab.h> |
| 30 | |
| 31 | #include <asm/ptrace.h> |
| 32 | #include <asm/break.h> |
| 33 | #include <asm/inst.h> |
| 34 | |
| 35 | static const union mips_instruction breakpoint_insn = { |
| 36 | .b_format = { |
| 37 | .opcode = spec_op, |
| 38 | .code = BRK_KPROBE_BP, |
| 39 | .func = break_op |
| 40 | } |
| 41 | }; |
| 42 | |
| 43 | static const union mips_instruction breakpoint2_insn = { |
| 44 | .b_format = { |
| 45 | .opcode = spec_op, |
| 46 | .code = BRK_KPROBE_SSTEPBP, |
| 47 | .func = break_op |
| 48 | } |
| 49 | }; |
| 50 | |
| 51 | DEFINE_PER_CPU(struct kprobe *, current_kprobe); |
| 52 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| 53 | |
| 54 | static int __kprobes insn_has_delayslot(union mips_instruction insn) |
| 55 | { |
| 56 | switch (insn.i_format.opcode) { |
| 57 | |
| 58 | /* |
| 59 | * This group contains: |
| 60 | * jr and jalr are in r_format format. |
| 61 | */ |
| 62 | case spec_op: |
| 63 | switch (insn.r_format.func) { |
| 64 | case jr_op: |
| 65 | case jalr_op: |
| 66 | break; |
| 67 | default: |
| 68 | goto insn_ok; |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * This group contains: |
| 73 | * bltz_op, bgez_op, bltzl_op, bgezl_op, |
| 74 | * bltzal_op, bgezal_op, bltzall_op, bgezall_op. |
| 75 | */ |
| 76 | case bcond_op: |
| 77 | |
| 78 | /* |
| 79 | * These are unconditional and in j_format. |
| 80 | */ |
| 81 | case jal_op: |
| 82 | case j_op: |
| 83 | |
| 84 | /* |
| 85 | * These are conditional and in i_format. |
| 86 | */ |
| 87 | case beq_op: |
| 88 | case beql_op: |
| 89 | case bne_op: |
| 90 | case bnel_op: |
| 91 | case blez_op: |
| 92 | case blezl_op: |
| 93 | case bgtz_op: |
| 94 | case bgtzl_op: |
| 95 | |
| 96 | /* |
| 97 | * These are the FPA/cp1 branch instructions. |
| 98 | */ |
| 99 | case cop1_op: |
| 100 | |
| 101 | #ifdef CONFIG_CPU_CAVIUM_OCTEON |
| 102 | case lwc2_op: /* This is bbit0 on Octeon */ |
| 103 | case ldc2_op: /* This is bbit032 on Octeon */ |
| 104 | case swc2_op: /* This is bbit1 on Octeon */ |
| 105 | case sdc2_op: /* This is bbit132 on Octeon */ |
| 106 | #endif |
| 107 | return 1; |
| 108 | default: |
| 109 | break; |
| 110 | } |
| 111 | insn_ok: |
| 112 | return 0; |
| 113 | } |
| 114 | |
| 115 | int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| 116 | { |
| 117 | union mips_instruction insn; |
| 118 | union mips_instruction prev_insn; |
| 119 | int ret = 0; |
| 120 | |
| 121 | prev_insn = p->addr[-1]; |
| 122 | insn = p->addr[0]; |
| 123 | |
| 124 | if (insn_has_delayslot(insn) || insn_has_delayslot(prev_insn)) { |
| 125 | pr_notice("Kprobes for branch and jump instructions are not supported\n"); |
| 126 | ret = -EINVAL; |
| 127 | goto out; |
| 128 | } |
| 129 | |
| 130 | /* insn: must be on special executable page on mips. */ |
| 131 | p->ainsn.insn = get_insn_slot(); |
| 132 | if (!p->ainsn.insn) { |
| 133 | ret = -ENOMEM; |
| 134 | goto out; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * In the kprobe->ainsn.insn[] array we store the original |
| 139 | * instruction at index zero and a break trap instruction at |
| 140 | * index one. |
| 141 | */ |
| 142 | |
| 143 | memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); |
| 144 | p->ainsn.insn[1] = breakpoint2_insn; |
| 145 | p->opcode = *p->addr; |
| 146 | |
| 147 | out: |
| 148 | return ret; |
| 149 | } |
| 150 | |
| 151 | void __kprobes arch_arm_kprobe(struct kprobe *p) |
| 152 | { |
| 153 | *p->addr = breakpoint_insn; |
| 154 | flush_insn_slot(p); |
| 155 | } |
| 156 | |
| 157 | void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| 158 | { |
| 159 | *p->addr = p->opcode; |
| 160 | flush_insn_slot(p); |
| 161 | } |
| 162 | |
| 163 | void __kprobes arch_remove_kprobe(struct kprobe *p) |
| 164 | { |
| 165 | free_insn_slot(p->ainsn.insn, 0); |
| 166 | } |
| 167 | |
| 168 | static void save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 169 | { |
| 170 | kcb->prev_kprobe.kp = kprobe_running(); |
| 171 | kcb->prev_kprobe.status = kcb->kprobe_status; |
| 172 | kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; |
| 173 | kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; |
| 174 | kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; |
| 175 | } |
| 176 | |
| 177 | static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 178 | { |
| 179 | __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; |
| 180 | kcb->kprobe_status = kcb->prev_kprobe.status; |
| 181 | kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; |
| 182 | kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; |
| 183 | kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; |
| 184 | } |
| 185 | |
| 186 | static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| 187 | struct kprobe_ctlblk *kcb) |
| 188 | { |
| 189 | __get_cpu_var(current_kprobe) = p; |
| 190 | kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); |
| 191 | kcb->kprobe_saved_epc = regs->cp0_epc; |
| 192 | } |
| 193 | |
| 194 | static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| 195 | { |
| 196 | regs->cp0_status &= ~ST0_IE; |
| 197 | |
| 198 | /* single step inline if the instruction is a break */ |
| 199 | if (p->opcode.word == breakpoint_insn.word || |
| 200 | p->opcode.word == breakpoint2_insn.word) |
| 201 | regs->cp0_epc = (unsigned long)p->addr; |
| 202 | else |
| 203 | regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; |
| 204 | } |
| 205 | |
| 206 | static int __kprobes kprobe_handler(struct pt_regs *regs) |
| 207 | { |
| 208 | struct kprobe *p; |
| 209 | int ret = 0; |
| 210 | kprobe_opcode_t *addr; |
| 211 | struct kprobe_ctlblk *kcb; |
| 212 | |
| 213 | addr = (kprobe_opcode_t *) regs->cp0_epc; |
| 214 | |
| 215 | /* |
| 216 | * We don't want to be preempted for the entire |
| 217 | * duration of kprobe processing |
| 218 | */ |
| 219 | preempt_disable(); |
| 220 | kcb = get_kprobe_ctlblk(); |
| 221 | |
| 222 | /* Check we're not actually recursing */ |
| 223 | if (kprobe_running()) { |
| 224 | p = get_kprobe(addr); |
| 225 | if (p) { |
| 226 | if (kcb->kprobe_status == KPROBE_HIT_SS && |
| 227 | p->ainsn.insn->word == breakpoint_insn.word) { |
| 228 | regs->cp0_status &= ~ST0_IE; |
| 229 | regs->cp0_status |= kcb->kprobe_saved_SR; |
| 230 | goto no_kprobe; |
| 231 | } |
| 232 | /* |
| 233 | * We have reentered the kprobe_handler(), since |
| 234 | * another probe was hit while within the handler. |
| 235 | * We here save the original kprobes variables and |
| 236 | * just single step on the instruction of the new probe |
| 237 | * without calling any user handlers. |
| 238 | */ |
| 239 | save_previous_kprobe(kcb); |
| 240 | set_current_kprobe(p, regs, kcb); |
| 241 | kprobes_inc_nmissed_count(p); |
| 242 | prepare_singlestep(p, regs); |
| 243 | kcb->kprobe_status = KPROBE_REENTER; |
| 244 | return 1; |
| 245 | } else { |
| 246 | if (addr->word != breakpoint_insn.word) { |
| 247 | /* |
| 248 | * The breakpoint instruction was removed by |
| 249 | * another cpu right after we hit, no further |
| 250 | * handling of this interrupt is appropriate |
| 251 | */ |
| 252 | ret = 1; |
| 253 | goto no_kprobe; |
| 254 | } |
| 255 | p = __get_cpu_var(current_kprobe); |
| 256 | if (p->break_handler && p->break_handler(p, regs)) |
| 257 | goto ss_probe; |
| 258 | } |
| 259 | goto no_kprobe; |
| 260 | } |
| 261 | |
| 262 | p = get_kprobe(addr); |
| 263 | if (!p) { |
| 264 | if (addr->word != breakpoint_insn.word) { |
| 265 | /* |
| 266 | * The breakpoint instruction was removed right |
| 267 | * after we hit it. Another cpu has removed |
| 268 | * either a probepoint or a debugger breakpoint |
| 269 | * at this address. In either case, no further |
| 270 | * handling of this interrupt is appropriate. |
| 271 | */ |
| 272 | ret = 1; |
| 273 | } |
| 274 | /* Not one of ours: let kernel handle it */ |
| 275 | goto no_kprobe; |
| 276 | } |
| 277 | |
| 278 | set_current_kprobe(p, regs, kcb); |
| 279 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| 280 | |
| 281 | if (p->pre_handler && p->pre_handler(p, regs)) { |
| 282 | /* handler has already set things up, so skip ss setup */ |
| 283 | return 1; |
| 284 | } |
| 285 | |
| 286 | ss_probe: |
| 287 | prepare_singlestep(p, regs); |
| 288 | kcb->kprobe_status = KPROBE_HIT_SS; |
| 289 | return 1; |
| 290 | |
| 291 | no_kprobe: |
| 292 | preempt_enable_no_resched(); |
| 293 | return ret; |
| 294 | |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * Called after single-stepping. p->addr is the address of the |
| 299 | * instruction whose first byte has been replaced by the "break 0" |
| 300 | * instruction. To avoid the SMP problems that can occur when we |
| 301 | * temporarily put back the original opcode to single-step, we |
| 302 | * single-stepped a copy of the instruction. The address of this |
| 303 | * copy is p->ainsn.insn. |
| 304 | * |
| 305 | * This function prepares to return from the post-single-step |
| 306 | * breakpoint trap. |
| 307 | */ |
| 308 | static void __kprobes resume_execution(struct kprobe *p, |
| 309 | struct pt_regs *regs, |
| 310 | struct kprobe_ctlblk *kcb) |
| 311 | { |
| 312 | unsigned long orig_epc = kcb->kprobe_saved_epc; |
| 313 | regs->cp0_epc = orig_epc + 4; |
| 314 | } |
| 315 | |
| 316 | static inline int post_kprobe_handler(struct pt_regs *regs) |
| 317 | { |
| 318 | struct kprobe *cur = kprobe_running(); |
| 319 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 320 | |
| 321 | if (!cur) |
| 322 | return 0; |
| 323 | |
| 324 | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| 325 | kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| 326 | cur->post_handler(cur, regs, 0); |
| 327 | } |
| 328 | |
| 329 | resume_execution(cur, regs, kcb); |
| 330 | |
| 331 | regs->cp0_status |= kcb->kprobe_saved_SR; |
| 332 | |
| 333 | /* Restore back the original saved kprobes variables and continue. */ |
| 334 | if (kcb->kprobe_status == KPROBE_REENTER) { |
| 335 | restore_previous_kprobe(kcb); |
| 336 | goto out; |
| 337 | } |
| 338 | reset_current_kprobe(); |
| 339 | out: |
| 340 | preempt_enable_no_resched(); |
| 341 | |
| 342 | return 1; |
| 343 | } |
| 344 | |
| 345 | static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| 346 | { |
| 347 | struct kprobe *cur = kprobe_running(); |
| 348 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 349 | |
| 350 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| 351 | return 1; |
| 352 | |
| 353 | if (kcb->kprobe_status & KPROBE_HIT_SS) { |
| 354 | resume_execution(cur, regs, kcb); |
| 355 | regs->cp0_status |= kcb->kprobe_old_SR; |
| 356 | |
| 357 | reset_current_kprobe(); |
| 358 | preempt_enable_no_resched(); |
| 359 | } |
| 360 | return 0; |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * Wrapper routine for handling exceptions. |
| 365 | */ |
| 366 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| 367 | unsigned long val, void *data) |
| 368 | { |
| 369 | |
| 370 | struct die_args *args = (struct die_args *)data; |
| 371 | int ret = NOTIFY_DONE; |
| 372 | |
| 373 | switch (val) { |
| 374 | case DIE_BREAK: |
| 375 | if (kprobe_handler(args->regs)) |
| 376 | ret = NOTIFY_STOP; |
| 377 | break; |
| 378 | case DIE_SSTEPBP: |
| 379 | if (post_kprobe_handler(args->regs)) |
| 380 | ret = NOTIFY_STOP; |
| 381 | break; |
| 382 | |
| 383 | case DIE_PAGE_FAULT: |
| 384 | /* kprobe_running() needs smp_processor_id() */ |
| 385 | preempt_disable(); |
| 386 | |
| 387 | if (kprobe_running() |
| 388 | && kprobe_fault_handler(args->regs, args->trapnr)) |
| 389 | ret = NOTIFY_STOP; |
| 390 | preempt_enable(); |
| 391 | break; |
| 392 | default: |
| 393 | break; |
| 394 | } |
| 395 | return ret; |
| 396 | } |
| 397 | |
| 398 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| 399 | { |
| 400 | struct jprobe *jp = container_of(p, struct jprobe, kp); |
| 401 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 402 | |
| 403 | kcb->jprobe_saved_regs = *regs; |
| 404 | kcb->jprobe_saved_sp = regs->regs[29]; |
| 405 | |
| 406 | memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp, |
| 407 | MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); |
| 408 | |
| 409 | regs->cp0_epc = (unsigned long)(jp->entry); |
| 410 | |
| 411 | return 1; |
| 412 | } |
| 413 | |
| 414 | /* Defined in the inline asm below. */ |
| 415 | void jprobe_return_end(void); |
| 416 | |
| 417 | void __kprobes jprobe_return(void) |
| 418 | { |
| 419 | /* Assembler quirk necessitates this '0,code' business. */ |
| 420 | asm volatile( |
| 421 | "break 0,%0\n\t" |
| 422 | ".globl jprobe_return_end\n" |
| 423 | "jprobe_return_end:\n" |
| 424 | : : "n" (BRK_KPROBE_BP) : "memory"); |
| 425 | } |
| 426 | |
| 427 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| 428 | { |
| 429 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 430 | |
| 431 | if (regs->cp0_epc >= (unsigned long)jprobe_return && |
| 432 | regs->cp0_epc <= (unsigned long)jprobe_return_end) { |
| 433 | *regs = kcb->jprobe_saved_regs; |
| 434 | memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack, |
| 435 | MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); |
| 436 | preempt_enable_no_resched(); |
| 437 | |
| 438 | return 1; |
| 439 | } |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Function return probe trampoline: |
| 445 | * - init_kprobes() establishes a probepoint here |
| 446 | * - When the probed function returns, this probe causes the |
| 447 | * handlers to fire |
| 448 | */ |
| 449 | static void __used kretprobe_trampoline_holder(void) |
| 450 | { |
| 451 | asm volatile( |
| 452 | ".set push\n\t" |
| 453 | /* Keep the assembler from reordering and placing JR here. */ |
| 454 | ".set noreorder\n\t" |
| 455 | "nop\n\t" |
| 456 | ".global kretprobe_trampoline\n" |
| 457 | "kretprobe_trampoline:\n\t" |
| 458 | "nop\n\t" |
| 459 | ".set pop" |
| 460 | : : : "memory"); |
| 461 | } |
| 462 | |
| 463 | void kretprobe_trampoline(void); |
| 464 | |
| 465 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| 466 | struct pt_regs *regs) |
| 467 | { |
| 468 | ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; |
| 469 | |
| 470 | /* Replace the return addr with trampoline addr */ |
| 471 | regs->regs[31] = (unsigned long)kretprobe_trampoline; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Called when the probe at kretprobe trampoline is hit |
| 476 | */ |
| 477 | static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| 478 | struct pt_regs *regs) |
| 479 | { |
| 480 | struct kretprobe_instance *ri = NULL; |
| 481 | struct hlist_head *head, empty_rp; |
| 482 | struct hlist_node *node, *tmp; |
| 483 | unsigned long flags, orig_ret_address = 0; |
| 484 | unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; |
| 485 | |
| 486 | INIT_HLIST_HEAD(&empty_rp); |
| 487 | kretprobe_hash_lock(current, &head, &flags); |
| 488 | |
| 489 | /* |
| 490 | * It is possible to have multiple instances associated with a given |
| 491 | * task either because an multiple functions in the call path |
| 492 | * have a return probe installed on them, and/or more than one return |
| 493 | * return probe was registered for a target function. |
| 494 | * |
| 495 | * We can handle this because: |
| 496 | * - instances are always inserted at the head of the list |
| 497 | * - when multiple return probes are registered for the same |
| 498 | * function, the first instance's ret_addr will point to the |
| 499 | * real return address, and all the rest will point to |
| 500 | * kretprobe_trampoline |
| 501 | */ |
| 502 | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| 503 | if (ri->task != current) |
| 504 | /* another task is sharing our hash bucket */ |
| 505 | continue; |
| 506 | |
| 507 | if (ri->rp && ri->rp->handler) |
| 508 | ri->rp->handler(ri, regs); |
| 509 | |
| 510 | orig_ret_address = (unsigned long)ri->ret_addr; |
| 511 | recycle_rp_inst(ri, &empty_rp); |
| 512 | |
| 513 | if (orig_ret_address != trampoline_address) |
| 514 | /* |
| 515 | * This is the real return address. Any other |
| 516 | * instances associated with this task are for |
| 517 | * other calls deeper on the call stack |
| 518 | */ |
| 519 | break; |
| 520 | } |
| 521 | |
| 522 | kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| 523 | instruction_pointer(regs) = orig_ret_address; |
| 524 | |
| 525 | reset_current_kprobe(); |
| 526 | kretprobe_hash_unlock(current, &flags); |
| 527 | preempt_enable_no_resched(); |
| 528 | |
| 529 | hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { |
| 530 | hlist_del(&ri->hlist); |
| 531 | kfree(ri); |
| 532 | } |
| 533 | /* |
| 534 | * By returning a non-zero value, we are telling |
| 535 | * kprobe_handler() that we don't want the post_handler |
| 536 | * to run (and have re-enabled preemption) |
| 537 | */ |
| 538 | return 1; |
| 539 | } |
| 540 | |
| 541 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| 542 | { |
| 543 | if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) |
| 544 | return 1; |
| 545 | |
| 546 | return 0; |
| 547 | } |
| 548 | |
| 549 | static struct kprobe trampoline_p = { |
| 550 | .addr = (kprobe_opcode_t *)kretprobe_trampoline, |
| 551 | .pre_handler = trampoline_probe_handler |
| 552 | }; |
| 553 | |
| 554 | int __init arch_init_kprobes(void) |
| 555 | { |
| 556 | return register_kprobe(&trampoline_p); |
| 557 | } |