Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef __PARISC_SYSTEM_H |
| 2 | #define __PARISC_SYSTEM_H |
| 3 | |
| 4 | #include <linux/config.h> |
| 5 | #include <asm/psw.h> |
| 6 | |
| 7 | /* The program status word as bitfields. */ |
| 8 | struct pa_psw { |
| 9 | unsigned int y:1; |
| 10 | unsigned int z:1; |
| 11 | unsigned int rv:2; |
| 12 | unsigned int w:1; |
| 13 | unsigned int e:1; |
| 14 | unsigned int s:1; |
| 15 | unsigned int t:1; |
| 16 | |
| 17 | unsigned int h:1; |
| 18 | unsigned int l:1; |
| 19 | unsigned int n:1; |
| 20 | unsigned int x:1; |
| 21 | unsigned int b:1; |
| 22 | unsigned int c:1; |
| 23 | unsigned int v:1; |
| 24 | unsigned int m:1; |
| 25 | |
| 26 | unsigned int cb:8; |
| 27 | |
| 28 | unsigned int o:1; |
| 29 | unsigned int g:1; |
| 30 | unsigned int f:1; |
| 31 | unsigned int r:1; |
| 32 | unsigned int q:1; |
| 33 | unsigned int p:1; |
| 34 | unsigned int d:1; |
| 35 | unsigned int i:1; |
| 36 | }; |
| 37 | |
| 38 | #ifdef __LP64__ |
| 39 | #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW + 4)) |
| 40 | #else |
| 41 | #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW)) |
| 42 | #endif |
| 43 | |
| 44 | struct task_struct; |
| 45 | |
| 46 | extern struct task_struct *_switch_to(struct task_struct *, struct task_struct *); |
| 47 | |
| 48 | #define switch_to(prev, next, last) do { \ |
| 49 | (last) = _switch_to(prev, next); \ |
| 50 | } while(0) |
| 51 | |
| 52 | |
| 53 | |
| 54 | /* interrupt control */ |
| 55 | #define local_save_flags(x) __asm__ __volatile__("ssm 0, %0" : "=r" (x) : : "memory") |
| 56 | #define local_irq_disable() __asm__ __volatile__("rsm %0,%%r0\n" : : "i" (PSW_I) : "memory" ) |
| 57 | #define local_irq_enable() __asm__ __volatile__("ssm %0,%%r0\n" : : "i" (PSW_I) : "memory" ) |
| 58 | |
| 59 | #define local_irq_save(x) \ |
| 60 | __asm__ __volatile__("rsm %1,%0" : "=r" (x) :"i" (PSW_I) : "memory" ) |
| 61 | #define local_irq_restore(x) \ |
| 62 | __asm__ __volatile__("mtsm %0" : : "r" (x) : "memory" ) |
| 63 | |
| 64 | #define irqs_disabled() \ |
| 65 | ({ \ |
| 66 | unsigned long flags; \ |
| 67 | local_save_flags(flags); \ |
| 68 | (flags & PSW_I) == 0; \ |
| 69 | }) |
| 70 | |
| 71 | #define mfctl(reg) ({ \ |
| 72 | unsigned long cr; \ |
| 73 | __asm__ __volatile__( \ |
| 74 | "mfctl " #reg ",%0" : \ |
| 75 | "=r" (cr) \ |
| 76 | ); \ |
| 77 | cr; \ |
| 78 | }) |
| 79 | |
| 80 | #define mtctl(gr, cr) \ |
| 81 | __asm__ __volatile__("mtctl %0,%1" \ |
| 82 | : /* no outputs */ \ |
| 83 | : "r" (gr), "i" (cr) : "memory") |
| 84 | |
| 85 | /* these are here to de-mystefy the calling code, and to provide hooks */ |
| 86 | /* which I needed for debugging EIEM problems -PB */ |
| 87 | #define get_eiem() mfctl(15) |
| 88 | static inline void set_eiem(unsigned long val) |
| 89 | { |
| 90 | mtctl(val, 15); |
| 91 | } |
| 92 | |
| 93 | #define mfsp(reg) ({ \ |
| 94 | unsigned long cr; \ |
| 95 | __asm__ __volatile__( \ |
| 96 | "mfsp " #reg ",%0" : \ |
| 97 | "=r" (cr) \ |
| 98 | ); \ |
| 99 | cr; \ |
| 100 | }) |
| 101 | |
| 102 | #define mtsp(gr, cr) \ |
| 103 | __asm__ __volatile__("mtsp %0,%1" \ |
| 104 | : /* no outputs */ \ |
| 105 | : "r" (gr), "i" (cr) : "memory") |
| 106 | |
| 107 | |
| 108 | /* |
| 109 | ** This is simply the barrier() macro from linux/kernel.h but when serial.c |
| 110 | ** uses tqueue.h uses smp_mb() defined using barrier(), linux/kernel.h |
| 111 | ** hasn't yet been included yet so it fails, thus repeating the macro here. |
| 112 | ** |
| 113 | ** PA-RISC architecture allows for weakly ordered memory accesses although |
| 114 | ** none of the processors use it. There is a strong ordered bit that is |
| 115 | ** set in the O-bit of the page directory entry. Operating systems that |
| 116 | ** can not tolerate out of order accesses should set this bit when mapping |
| 117 | ** pages. The O-bit of the PSW should also be set to 1 (I don't believe any |
| 118 | ** of the processor implemented the PSW O-bit). The PCX-W ERS states that |
| 119 | ** the TLB O-bit is not implemented so the page directory does not need to |
| 120 | ** have the O-bit set when mapping pages (section 3.1). This section also |
| 121 | ** states that the PSW Y, Z, G, and O bits are not implemented. |
| 122 | ** So it looks like nothing needs to be done for parisc-linux (yet). |
| 123 | ** (thanks to chada for the above comment -ggg) |
| 124 | ** |
| 125 | ** The __asm__ op below simple prevents gcc/ld from reordering |
| 126 | ** instructions across the mb() "call". |
| 127 | */ |
| 128 | #define mb() __asm__ __volatile__("":::"memory") /* barrier() */ |
| 129 | #define rmb() mb() |
| 130 | #define wmb() mb() |
| 131 | #define smp_mb() mb() |
| 132 | #define smp_rmb() mb() |
| 133 | #define smp_wmb() mb() |
| 134 | #define smp_read_barrier_depends() do { } while(0) |
| 135 | #define read_barrier_depends() do { } while(0) |
| 136 | |
| 137 | #define set_mb(var, value) do { var = value; mb(); } while (0) |
| 138 | #define set_wmb(var, value) do { var = value; wmb(); } while (0) |
| 139 | |
| 140 | |
| 141 | /* LDCW, the only atomic read-write operation PA-RISC has. *sigh*. */ |
| 142 | #define __ldcw(a) ({ \ |
| 143 | unsigned __ret; \ |
| 144 | __asm__ __volatile__("ldcw 0(%1),%0" : "=r" (__ret) : "r" (a)); \ |
| 145 | __ret; \ |
| 146 | }) |
| 147 | |
| 148 | /* Because kmalloc only guarantees 8-byte alignment for kmalloc'd data, |
| 149 | and GCC only guarantees 8-byte alignment for stack locals, we can't |
| 150 | be assured of 16-byte alignment for atomic lock data even if we |
| 151 | specify "__attribute ((aligned(16)))" in the type declaration. So, |
| 152 | we use a struct containing an array of four ints for the atomic lock |
| 153 | type and dynamically select the 16-byte aligned int from the array |
| 154 | for the semaphore. */ |
| 155 | #define __PA_LDCW_ALIGNMENT 16 |
| 156 | #define __ldcw_align(a) ({ \ |
| 157 | unsigned long __ret = (unsigned long) &(a)->lock[0]; \ |
| 158 | __ret = (__ret + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1); \ |
| 159 | (volatile unsigned int *) __ret; \ |
| 160 | }) |
| 161 | |
| 162 | #ifdef CONFIG_SMP |
| 163 | /* |
| 164 | * Your basic SMP spinlocks, allowing only a single CPU anywhere |
| 165 | */ |
| 166 | |
| 167 | typedef struct { |
| 168 | volatile unsigned int lock[4]; |
| 169 | #ifdef CONFIG_DEBUG_SPINLOCK |
| 170 | unsigned long magic; |
| 171 | volatile unsigned int babble; |
| 172 | const char *module; |
| 173 | char *bfile; |
| 174 | int bline; |
| 175 | int oncpu; |
| 176 | void *previous; |
| 177 | struct task_struct * task; |
| 178 | #endif |
| 179 | #ifdef CONFIG_PREEMPT |
| 180 | unsigned int break_lock; |
| 181 | #endif |
| 182 | } spinlock_t; |
| 183 | |
| 184 | #define __lock_aligned __attribute__((__section__(".data.lock_aligned"))) |
| 185 | |
| 186 | #endif |
| 187 | |
| 188 | #define KERNEL_START (0x10100000 - 0x1000) |
| 189 | |
| 190 | /* This is for the serialisation of PxTLB broadcasts. At least on the |
| 191 | * N class systems, only one PxTLB inter processor broadcast can be |
| 192 | * active at any one time on the Merced bus. This tlb purge |
| 193 | * synchronisation is fairly lightweight and harmless so we activate |
| 194 | * it on all SMP systems not just the N class. */ |
| 195 | #ifdef CONFIG_SMP |
| 196 | extern spinlock_t pa_tlb_lock; |
| 197 | |
| 198 | #define purge_tlb_start(x) spin_lock(&pa_tlb_lock) |
| 199 | #define purge_tlb_end(x) spin_unlock(&pa_tlb_lock) |
| 200 | |
| 201 | #else |
| 202 | |
| 203 | #define purge_tlb_start(x) do { } while(0) |
| 204 | #define purge_tlb_end(x) do { } while (0) |
| 205 | |
| 206 | #endif |
| 207 | |
| 208 | #define arch_align_stack(x) (x) |
| 209 | |
| 210 | #endif |