blob: 0333abdda85e265b0c3fdebcbba2b72684aff85f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Eric Dumazet5517d862007-05-08 00:32:57 -070057#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070058#include <asm/unistd.h>
59
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
Ingo Molnar6aa645e2007-07-09 18:51:58 +020094#define NICE_0_LOAD SCHED_LOAD_SCALE
95#define NICE_0_SHIFT SCHED_LOAD_SHIFT
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097/*
98 * These are the 'tuning knobs' of the scheduler:
99 *
100 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
101 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
102 * Timeslices get refilled after they expire.
103 */
104#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
105#define DEF_TIMESLICE (100 * HZ / 1000)
106#define ON_RUNQUEUE_WEIGHT 30
107#define CHILD_PENALTY 95
108#define PARENT_PENALTY 100
109#define EXIT_WEIGHT 3
110#define PRIO_BONUS_RATIO 25
111#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
112#define INTERACTIVE_DELTA 2
113#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
114#define STARVATION_LIMIT (MAX_SLEEP_AVG)
115#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
116
117/*
118 * If a task is 'interactive' then we reinsert it in the active
119 * array after it has expired its current timeslice. (it will not
120 * continue to run immediately, it will still roundrobin with
121 * other interactive tasks.)
122 *
123 * This part scales the interactivity limit depending on niceness.
124 *
125 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
126 * Here are a few examples of different nice levels:
127 *
128 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
129 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
130 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
131 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
132 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
133 *
134 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
135 * priority range a task can explore, a value of '1' means the
136 * task is rated interactive.)
137 *
138 * Ie. nice +19 tasks can never get 'interactive' enough to be
139 * reinserted into the active array. And only heavily CPU-hog nice -20
140 * tasks will be expired. Default nice 0 tasks are somewhere between,
141 * it takes some effort for them to get interactive, but it's not
142 * too hard.
143 */
144
145#define CURRENT_BONUS(p) \
146 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
147 MAX_SLEEP_AVG)
148
149#define GRANULARITY (10 * HZ / 1000 ? : 1)
150
151#ifdef CONFIG_SMP
152#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
154 num_online_cpus())
155#else
156#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
157 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
158#endif
159
160#define SCALE(v1,v1_max,v2_max) \
161 (v1) * (v2_max) / (v1_max)
162
163#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800164 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
165 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166
167#define TASK_INTERACTIVE(p) \
168 ((p)->prio <= (p)->static_prio - DELTA(p))
169
170#define INTERACTIVE_SLEEP(p) \
171 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
172 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
173
174#define TASK_PREEMPTS_CURR(p, rq) \
Andrew Mortond5f9f942007-05-08 20:27:06 -0700175 ((p)->prio < (rq)->curr->prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700178 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179
Peter Williams2dd73a42006-06-27 02:54:34 -0700180static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181{
Peter Williams2dd73a42006-06-27 02:54:34 -0700182 if (static_prio < NICE_TO_PRIO(0))
183 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700185 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
Peter Williams2dd73a42006-06-27 02:54:34 -0700187
Eric Dumazet5517d862007-05-08 00:32:57 -0700188#ifdef CONFIG_SMP
189/*
190 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
191 * Since cpu_power is a 'constant', we can use a reciprocal divide.
192 */
193static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
194{
195 return reciprocal_divide(load, sg->reciprocal_cpu_power);
196}
197
198/*
199 * Each time a sched group cpu_power is changed,
200 * we must compute its reciprocal value
201 */
202static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
203{
204 sg->__cpu_power += val;
205 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
206}
207#endif
208
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700209/*
210 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
211 * to time slice values: [800ms ... 100ms ... 5ms]
212 *
213 * The higher a thread's priority, the bigger timeslices
214 * it gets during one round of execution. But even the lowest
215 * priority thread gets MIN_TIMESLICE worth of execution time.
216 */
217
Ingo Molnar36c8b582006-07-03 00:25:41 -0700218static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700219{
220 return static_prio_timeslice(p->static_prio);
221}
222
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200224 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700225 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200226struct rt_prio_array {
227 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
228 struct list_head queue[MAX_RT_PRIO];
229};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200231struct load_stat {
232 struct load_weight load;
233 u64 load_update_start, load_update_last;
234 unsigned long delta_fair, delta_exec, delta_stat;
235};
236
237/* CFS-related fields in a runqueue */
238struct cfs_rq {
239 struct load_weight load;
240 unsigned long nr_running;
241
242 s64 fair_clock;
243 u64 exec_clock;
244 s64 wait_runtime;
245 u64 sleeper_bonus;
246 unsigned long wait_runtime_overruns, wait_runtime_underruns;
247
248 struct rb_root tasks_timeline;
249 struct rb_node *rb_leftmost;
250 struct rb_node *rb_load_balance_curr;
251#ifdef CONFIG_FAIR_GROUP_SCHED
252 /* 'curr' points to currently running entity on this cfs_rq.
253 * It is set to NULL otherwise (i.e when none are currently running).
254 */
255 struct sched_entity *curr;
256 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
257
258 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
259 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
260 * (like users, containers etc.)
261 *
262 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
263 * list is used during load balance.
264 */
265 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
266#endif
267};
268
269/* Real-Time classes' related field in a runqueue: */
270struct rt_rq {
271 struct rt_prio_array active;
272 int rt_load_balance_idx;
273 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
274};
275
276/*
277 * The prio-array type of the old scheduler:
278 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279struct prio_array {
280 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700281 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 struct list_head queue[MAX_PRIO];
283};
284
285/*
286 * This is the main, per-CPU runqueue data structure.
287 *
288 * Locking rule: those places that want to lock multiple runqueues
289 * (such as the load balancing or the thread migration code), lock
290 * acquire operations must be ordered by ascending &runqueue.
291 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700292struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200293 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294
295 /*
296 * nr_running and cpu_load should be in the same cacheline because
297 * remote CPUs use both these fields when doing load calculation.
298 */
299 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700300 unsigned long raw_weighted_load;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200301 #define CPU_LOAD_IDX_MAX 5
302 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700303 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700304#ifdef CONFIG_NO_HZ
305 unsigned char in_nohz_recently;
306#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200307 struct load_stat ls; /* capture load from *all* tasks on this cpu */
308 unsigned long nr_load_updates;
309 u64 nr_switches;
310
311 struct cfs_rq cfs;
312#ifdef CONFIG_FAIR_GROUP_SCHED
313 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200315 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700316
317 /*
318 * This is part of a global counter where only the total sum
319 * over all CPUs matters. A task can increase this counter on
320 * one CPU and if it got migrated afterwards it may decrease
321 * it on another CPU. Always updated under the runqueue lock:
322 */
323 unsigned long nr_uninterruptible;
324
325 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800326 unsigned long long most_recent_timestamp;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200327
Ingo Molnar36c8b582006-07-03 00:25:41 -0700328 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800329 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200331
Ingo Molnar70b97a72006-07-03 00:25:42 -0700332 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333 int best_expired_prio;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200334
335 u64 clock, prev_clock_raw;
336 s64 clock_max_delta;
337
338 unsigned int clock_warps, clock_overflows;
339 unsigned int clock_unstable_events;
340
341 struct sched_class *load_balance_class;
342
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343 atomic_t nr_iowait;
344
345#ifdef CONFIG_SMP
346 struct sched_domain *sd;
347
348 /* For active balancing */
349 int active_balance;
350 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700351 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352
Ingo Molnar36c8b582006-07-03 00:25:41 -0700353 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700354 struct list_head migration_queue;
355#endif
356
357#ifdef CONFIG_SCHEDSTATS
358 /* latency stats */
359 struct sched_info rq_sched_info;
360
361 /* sys_sched_yield() stats */
362 unsigned long yld_exp_empty;
363 unsigned long yld_act_empty;
364 unsigned long yld_both_empty;
365 unsigned long yld_cnt;
366
367 /* schedule() stats */
368 unsigned long sched_switch;
369 unsigned long sched_cnt;
370 unsigned long sched_goidle;
371
372 /* try_to_wake_up() stats */
373 unsigned long ttwu_cnt;
374 unsigned long ttwu_local;
375#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700376 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377};
378
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700379static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700380static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700382static inline int cpu_of(struct rq *rq)
383{
384#ifdef CONFIG_SMP
385 return rq->cpu;
386#else
387 return 0;
388#endif
389}
390
Nick Piggin674311d2005-06-25 14:57:27 -0700391/*
Ingo Molnar20d315d2007-07-09 18:51:58 +0200392 * Per-runqueue clock, as finegrained as the platform can give us:
393 */
394static unsigned long long __rq_clock(struct rq *rq)
395{
396 u64 prev_raw = rq->prev_clock_raw;
397 u64 now = sched_clock();
398 s64 delta = now - prev_raw;
399 u64 clock = rq->clock;
400
401 /*
402 * Protect against sched_clock() occasionally going backwards:
403 */
404 if (unlikely(delta < 0)) {
405 clock++;
406 rq->clock_warps++;
407 } else {
408 /*
409 * Catch too large forward jumps too:
410 */
411 if (unlikely(delta > 2*TICK_NSEC)) {
412 clock++;
413 rq->clock_overflows++;
414 } else {
415 if (unlikely(delta > rq->clock_max_delta))
416 rq->clock_max_delta = delta;
417 clock += delta;
418 }
419 }
420
421 rq->prev_clock_raw = now;
422 rq->clock = clock;
423
424 return clock;
425}
426
427static inline unsigned long long rq_clock(struct rq *rq)
428{
429 int this_cpu = smp_processor_id();
430
431 if (this_cpu == cpu_of(rq))
432 return __rq_clock(rq);
433
434 return rq->clock;
435}
436
437/*
Nick Piggin674311d2005-06-25 14:57:27 -0700438 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700439 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700440 *
441 * The domain tree of any CPU may only be accessed from within
442 * preempt-disabled sections.
443 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700444#define for_each_domain(cpu, __sd) \
445 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446
447#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
448#define this_rq() (&__get_cpu_var(runqueues))
449#define task_rq(p) cpu_rq(task_cpu(p))
450#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
451
Linus Torvalds1da177e2005-04-16 15:20:36 -0700452#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700453# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700455#ifndef finish_arch_switch
456# define finish_arch_switch(prev) do { } while (0)
457#endif
458
459#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700460static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700461{
462 return rq->curr == p;
463}
464
Ingo Molnar70b97a72006-07-03 00:25:42 -0700465static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700466{
467}
468
Ingo Molnar70b97a72006-07-03 00:25:42 -0700469static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700470{
Ingo Molnarda04c032005-09-13 11:17:59 +0200471#ifdef CONFIG_DEBUG_SPINLOCK
472 /* this is a valid case when another task releases the spinlock */
473 rq->lock.owner = current;
474#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700475 /*
476 * If we are tracking spinlock dependencies then we have to
477 * fix up the runqueue lock - which gets 'carried over' from
478 * prev into current:
479 */
480 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
481
Nick Piggin4866cde2005-06-25 14:57:23 -0700482 spin_unlock_irq(&rq->lock);
483}
484
485#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700486static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700487{
488#ifdef CONFIG_SMP
489 return p->oncpu;
490#else
491 return rq->curr == p;
492#endif
493}
494
Ingo Molnar70b97a72006-07-03 00:25:42 -0700495static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700496{
497#ifdef CONFIG_SMP
498 /*
499 * We can optimise this out completely for !SMP, because the
500 * SMP rebalancing from interrupt is the only thing that cares
501 * here.
502 */
503 next->oncpu = 1;
504#endif
505#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
506 spin_unlock_irq(&rq->lock);
507#else
508 spin_unlock(&rq->lock);
509#endif
510}
511
Ingo Molnar70b97a72006-07-03 00:25:42 -0700512static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700513{
514#ifdef CONFIG_SMP
515 /*
516 * After ->oncpu is cleared, the task can be moved to a different CPU.
517 * We must ensure this doesn't happen until the switch is completely
518 * finished.
519 */
520 smp_wmb();
521 prev->oncpu = 0;
522#endif
523#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
524 local_irq_enable();
525#endif
526}
527#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528
529/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700530 * __task_rq_lock - lock the runqueue a given task resides on.
531 * Must be called interrupts disabled.
532 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700533static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700534 __acquires(rq->lock)
535{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700536 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700537
538repeat_lock_task:
539 rq = task_rq(p);
540 spin_lock(&rq->lock);
541 if (unlikely(rq != task_rq(p))) {
542 spin_unlock(&rq->lock);
543 goto repeat_lock_task;
544 }
545 return rq;
546}
547
548/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549 * task_rq_lock - lock the runqueue a given task resides on and disable
550 * interrupts. Note the ordering: we can safely lookup the task_rq without
551 * explicitly disabling preemption.
552 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700553static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700554 __acquires(rq->lock)
555{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700556 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557
558repeat_lock_task:
559 local_irq_save(*flags);
560 rq = task_rq(p);
561 spin_lock(&rq->lock);
562 if (unlikely(rq != task_rq(p))) {
563 spin_unlock_irqrestore(&rq->lock, *flags);
564 goto repeat_lock_task;
565 }
566 return rq;
567}
568
Ingo Molnar70b97a72006-07-03 00:25:42 -0700569static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700570 __releases(rq->lock)
571{
572 spin_unlock(&rq->lock);
573}
574
Ingo Molnar70b97a72006-07-03 00:25:42 -0700575static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700576 __releases(rq->lock)
577{
578 spin_unlock_irqrestore(&rq->lock, *flags);
579}
580
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800582 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700583 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700584static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 __acquires(rq->lock)
586{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700587 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700588
589 local_irq_disable();
590 rq = this_rq();
591 spin_lock(&rq->lock);
592
593 return rq;
594}
595
Ingo Molnar425e0962007-07-09 18:51:58 +0200596#include "sched_stats.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597
598/*
599 * Adding/removing a task to/from a priority array:
600 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700601static void dequeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602{
603 array->nr_active--;
604 list_del(&p->run_list);
605 if (list_empty(array->queue + p->prio))
606 __clear_bit(p->prio, array->bitmap);
607}
608
Ingo Molnar70b97a72006-07-03 00:25:42 -0700609static void enqueue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700610{
611 sched_info_queued(p);
612 list_add_tail(&p->run_list, array->queue + p->prio);
613 __set_bit(p->prio, array->bitmap);
614 array->nr_active++;
615 p->array = array;
616}
617
618/*
619 * Put task to the end of the run list without the overhead of dequeue
620 * followed by enqueue.
621 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700622static void requeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623{
624 list_move_tail(&p->run_list, array->queue + p->prio);
625}
626
Ingo Molnar70b97a72006-07-03 00:25:42 -0700627static inline void
628enqueue_task_head(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629{
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
634}
635
636/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700637 * __normal_prio - return the priority that is based on the static
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 * priority but is modified by bonuses/penalties.
639 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
642 *
643 * We use 25% of the full 0...39 priority range so that:
644 *
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
647 *
648 * Both properties are important to certain workloads.
649 */
Ingo Molnarb29739f2006-06-27 02:54:51 -0700650
Ingo Molnar36c8b582006-07-03 00:25:41 -0700651static inline int __normal_prio(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700652{
653 int bonus, prio;
654
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
656
657 prio = p->static_prio - bonus;
658 if (prio < MAX_RT_PRIO)
659 prio = MAX_RT_PRIO;
660 if (prio > MAX_PRIO-1)
661 prio = MAX_PRIO-1;
662 return prio;
663}
664
665/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700666 * To aid in avoiding the subversion of "niceness" due to uneven distribution
667 * of tasks with abnormal "nice" values across CPUs the contribution that
668 * each task makes to its run queue's load is weighted according to its
669 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
670 * scaled version of the new time slice allocation that they receive on time
671 * slice expiry etc.
672 */
673
674/*
675 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
676 * If static_prio_timeslice() is ever changed to break this assumption then
677 * this code will need modification
678 */
679#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
680#define LOAD_WEIGHT(lp) \
681 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
682#define PRIO_TO_LOAD_WEIGHT(prio) \
683 LOAD_WEIGHT(static_prio_timeslice(prio))
684#define RTPRIO_TO_LOAD_WEIGHT(rp) \
685 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
686
Ingo Molnar36c8b582006-07-03 00:25:41 -0700687static void set_load_weight(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700688{
Ingo Molnarb29739f2006-06-27 02:54:51 -0700689 if (has_rt_policy(p)) {
Peter Williams2dd73a42006-06-27 02:54:34 -0700690#ifdef CONFIG_SMP
691 if (p == task_rq(p)->migration_thread)
692 /*
693 * The migration thread does the actual balancing.
694 * Giving its load any weight will skew balancing
695 * adversely.
696 */
697 p->load_weight = 0;
698 else
699#endif
700 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
701 } else
702 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
703}
704
Ingo Molnar36c8b582006-07-03 00:25:41 -0700705static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700706inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700707{
708 rq->raw_weighted_load += p->load_weight;
709}
710
Ingo Molnar36c8b582006-07-03 00:25:41 -0700711static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700712dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700713{
714 rq->raw_weighted_load -= p->load_weight;
715}
716
Ingo Molnar70b97a72006-07-03 00:25:42 -0700717static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700718{
719 rq->nr_running++;
720 inc_raw_weighted_load(rq, p);
721}
722
Ingo Molnar70b97a72006-07-03 00:25:42 -0700723static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700724{
725 rq->nr_running--;
726 dec_raw_weighted_load(rq, p);
727}
728
729/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700730 * Calculate the expected normal priority: i.e. priority
731 * without taking RT-inheritance into account. Might be
732 * boosted by interactivity modifiers. Changes upon fork,
733 * setprio syscalls, and whenever the interactivity
734 * estimator recalculates.
735 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700736static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700737{
738 int prio;
739
740 if (has_rt_policy(p))
741 prio = MAX_RT_PRIO-1 - p->rt_priority;
742 else
743 prio = __normal_prio(p);
744 return prio;
745}
746
747/*
748 * Calculate the current priority, i.e. the priority
749 * taken into account by the scheduler. This value might
750 * be boosted by RT tasks, or might be boosted by
751 * interactivity modifiers. Will be RT if the task got
752 * RT-boosted. If not then it returns p->normal_prio.
753 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700754static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700755{
756 p->normal_prio = normal_prio(p);
757 /*
758 * If we are RT tasks or we were boosted to RT priority,
759 * keep the priority unchanged. Otherwise, update priority
760 * to the normal priority:
761 */
762 if (!rt_prio(p->prio))
763 return p->normal_prio;
764 return p->prio;
765}
766
767/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700768 * __activate_task - move a task to the runqueue.
769 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700770static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700771{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700772 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800773
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700774 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800775 target = rq->expired;
776 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700777 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778}
779
780/*
781 * __activate_idle_task - move idle task to the _front_ of runqueue.
782 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700783static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784{
785 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700786 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787}
788
Ingo Molnarb29739f2006-06-27 02:54:51 -0700789/*
790 * Recalculate p->normal_prio and p->prio after having slept,
791 * updating the sleep-average too:
792 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700793static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700794{
795 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700796 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797
Con Kolivasd425b272006-03-31 02:31:29 -0800798 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800799 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800
801 if (likely(sleep_time > 0)) {
802 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700803 * This ceiling is set to the lowest priority that would allow
804 * a task to be reinserted into the active array on timeslice
805 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806 */
Con Kolivas72d28542006-06-27 02:54:30 -0700807 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800808
Con Kolivas72d28542006-06-27 02:54:30 -0700809 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
810 /*
811 * Prevents user tasks from achieving best priority
812 * with one single large enough sleep.
813 */
814 p->sleep_avg = ceiling;
815 /*
816 * Using INTERACTIVE_SLEEP() as a ceiling places a
817 * nice(0) task 1ms sleep away from promotion, and
818 * gives it 700ms to round-robin with no chance of
819 * being demoted. This is more than generous, so
820 * mark this sleep as non-interactive to prevent the
821 * on-runqueue bonus logic from intervening should
822 * this task not receive cpu immediately.
823 */
824 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700825 } else {
826 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827 * Tasks waking from uninterruptible sleep are
828 * limited in their sleep_avg rise as they
829 * are likely to be waiting on I/O
830 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800831 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -0700832 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700833 sleep_time = 0;
834 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -0700835 ceiling) {
836 p->sleep_avg = ceiling;
837 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700838 }
839 }
840
841 /*
842 * This code gives a bonus to interactive tasks.
843 *
844 * The boost works by updating the 'average sleep time'
845 * value here, based on ->timestamp. The more time a
846 * task spends sleeping, the higher the average gets -
847 * and the higher the priority boost gets as well.
848 */
849 p->sleep_avg += sleep_time;
850
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851 }
Con Kolivas72d28542006-06-27 02:54:30 -0700852 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
853 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854 }
855
Chen Shanga3464a12005-06-25 14:57:31 -0700856 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857}
858
859/*
860 * activate_task - move a task to the runqueue and do priority recalculation
861 *
862 * Update all the scheduling statistics stuff. (sleep average
863 * calculation, priority modifiers, etc.)
864 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700865static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866{
867 unsigned long long now;
868
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800869 if (rt_task(p))
870 goto out;
871
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872 now = sched_clock();
873#ifdef CONFIG_SMP
874 if (!local) {
875 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700876 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -0800877 now = (now - this_rq->most_recent_timestamp)
878 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879 }
880#endif
881
Ingo Molnarece8a682006-12-06 20:37:24 -0800882 /*
883 * Sleep time is in units of nanosecs, so shift by 20 to get a
884 * milliseconds-range estimation of the amount of time that the task
885 * spent sleeping:
886 */
887 if (unlikely(prof_on == SLEEP_PROFILING)) {
888 if (p->state == TASK_UNINTERRUPTIBLE)
889 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
890 (now - p->timestamp) >> 20);
891 }
892
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800893 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894
895 /*
896 * This checks to make sure it's not an uninterruptible task
897 * that is now waking up.
898 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800899 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700900 /*
901 * Tasks which were woken up by interrupts (ie. hw events)
902 * are most likely of interactive nature. So we give them
903 * the credit of extending their sleep time to the period
904 * of time they spend on the runqueue, waiting for execution
905 * on a CPU, first time around:
906 */
907 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -0800908 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700909 else {
910 /*
911 * Normal first-time wakeups get a credit too for
912 * on-runqueue time, but it will be weighted down:
913 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800914 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700915 }
916 }
917 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800918out:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919 __activate_task(p, rq);
920}
921
922/*
923 * deactivate_task - remove a task from the runqueue.
924 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700925static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926{
Peter Williams2dd73a42006-06-27 02:54:34 -0700927 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928 dequeue_task(p, p->array);
929 p->array = NULL;
930}
931
932/*
933 * resched_task - mark a task 'to be rescheduled now'.
934 *
935 * On UP this means the setting of the need_resched flag, on SMP it
936 * might also involve a cross-CPU call to trigger the scheduler on
937 * the target CPU.
938 */
939#ifdef CONFIG_SMP
Andi Kleen495ab9c2006-06-26 13:59:11 +0200940
941#ifndef tsk_is_polling
942#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
943#endif
944
Ingo Molnar36c8b582006-07-03 00:25:41 -0700945static void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800947 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948
949 assert_spin_locked(&task_rq(p)->lock);
950
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800951 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
952 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800954 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
955
956 cpu = task_cpu(p);
957 if (cpu == smp_processor_id())
958 return;
959
Andi Kleen495ab9c2006-06-26 13:59:11 +0200960 /* NEED_RESCHED must be visible before we test polling */
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800961 smp_mb();
Andi Kleen495ab9c2006-06-26 13:59:11 +0200962 if (!tsk_is_polling(p))
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800963 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964}
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700965
966static void resched_cpu(int cpu)
967{
968 struct rq *rq = cpu_rq(cpu);
969 unsigned long flags;
970
971 if (!spin_trylock_irqsave(&rq->lock, flags))
972 return;
973 resched_task(cpu_curr(cpu));
974 spin_unlock_irqrestore(&rq->lock, flags);
975}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976#else
Ingo Molnar36c8b582006-07-03 00:25:41 -0700977static inline void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800979 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980 set_tsk_need_resched(p);
981}
982#endif
983
984/**
985 * task_curr - is this task currently executing on a CPU?
986 * @p: the task in question.
987 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700988inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989{
990 return cpu_curr(task_cpu(p)) == p;
991}
992
Peter Williams2dd73a42006-06-27 02:54:34 -0700993/* Used instead of source_load when we know the type == 0 */
994unsigned long weighted_cpuload(const int cpu)
995{
996 return cpu_rq(cpu)->raw_weighted_load;
997}
998
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +02001000
1001void set_task_cpu(struct task_struct *p, unsigned int cpu)
1002{
1003 task_thread_info(p)->cpu = cpu;
1004}
1005
Ingo Molnar70b97a72006-07-03 00:25:42 -07001006struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001008
Ingo Molnar36c8b582006-07-03 00:25:41 -07001009 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001010 int dest_cpu;
1011
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001013};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014
1015/*
1016 * The task's runqueue lock must be held.
1017 * Returns true if you have to wait for migration thread.
1018 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001019static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001020migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001021{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001022 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023
1024 /*
1025 * If the task is not on a runqueue (and not running), then
1026 * it is sufficient to simply update the task's cpu field.
1027 */
1028 if (!p->array && !task_running(rq, p)) {
1029 set_task_cpu(p, dest_cpu);
1030 return 0;
1031 }
1032
1033 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 req->task = p;
1035 req->dest_cpu = dest_cpu;
1036 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001037
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038 return 1;
1039}
1040
1041/*
1042 * wait_task_inactive - wait for a thread to unschedule.
1043 *
1044 * The caller must ensure that the task *will* unschedule sometime soon,
1045 * else this function might spin for a *long* time. This function can't
1046 * be called with interrupts off, or it may introduce deadlock with
1047 * smp_call_function() if an IPI is sent by the same process we are
1048 * waiting to become inactive.
1049 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001050void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001051{
1052 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001053 struct rq *rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001054 struct prio_array *array;
1055 int running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056
1057repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001058 /*
1059 * We do the initial early heuristics without holding
1060 * any task-queue locks at all. We'll only try to get
1061 * the runqueue lock when things look like they will
1062 * work out!
1063 */
1064 rq = task_rq(p);
1065
1066 /*
1067 * If the task is actively running on another CPU
1068 * still, just relax and busy-wait without holding
1069 * any locks.
1070 *
1071 * NOTE! Since we don't hold any locks, it's not
1072 * even sure that "rq" stays as the right runqueue!
1073 * But we don't care, since "task_running()" will
1074 * return false if the runqueue has changed and p
1075 * is actually now running somewhere else!
1076 */
1077 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001079
1080 /*
1081 * Ok, time to look more closely! We need the rq
1082 * lock now, to be *sure*. If we're wrong, we'll
1083 * just go back and repeat.
1084 */
1085 rq = task_rq_lock(p, &flags);
1086 running = task_running(rq, p);
1087 array = p->array;
1088 task_rq_unlock(rq, &flags);
1089
1090 /*
1091 * Was it really running after all now that we
1092 * checked with the proper locks actually held?
1093 *
1094 * Oops. Go back and try again..
1095 */
1096 if (unlikely(running)) {
1097 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098 goto repeat;
1099 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001100
1101 /*
1102 * It's not enough that it's not actively running,
1103 * it must be off the runqueue _entirely_, and not
1104 * preempted!
1105 *
1106 * So if it wa still runnable (but just not actively
1107 * running right now), it's preempted, and we should
1108 * yield - it could be a while.
1109 */
1110 if (unlikely(array)) {
1111 yield();
1112 goto repeat;
1113 }
1114
1115 /*
1116 * Ahh, all good. It wasn't running, and it wasn't
1117 * runnable, which means that it will never become
1118 * running in the future either. We're all done!
1119 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120}
1121
1122/***
1123 * kick_process - kick a running thread to enter/exit the kernel
1124 * @p: the to-be-kicked thread
1125 *
1126 * Cause a process which is running on another CPU to enter
1127 * kernel-mode, without any delay. (to get signals handled.)
1128 *
1129 * NOTE: this function doesnt have to take the runqueue lock,
1130 * because all it wants to ensure is that the remote task enters
1131 * the kernel. If the IPI races and the task has been migrated
1132 * to another CPU then no harm is done and the purpose has been
1133 * achieved as well.
1134 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001135void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001136{
1137 int cpu;
1138
1139 preempt_disable();
1140 cpu = task_cpu(p);
1141 if ((cpu != smp_processor_id()) && task_curr(p))
1142 smp_send_reschedule(cpu);
1143 preempt_enable();
1144}
1145
1146/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001147 * Return a low guess at the load of a migration-source cpu weighted
1148 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001149 *
1150 * We want to under-estimate the load of migration sources, to
1151 * balance conservatively.
1152 */
Con Kolivasb9104722005-11-08 21:38:55 -08001153static inline unsigned long source_load(int cpu, int type)
1154{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001155 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001156
Peter Williams2dd73a42006-06-27 02:54:34 -07001157 if (type == 0)
1158 return rq->raw_weighted_load;
1159
1160 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001161}
1162
1163/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001164 * Return a high guess at the load of a migration-target cpu weighted
1165 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 */
Con Kolivasb9104722005-11-08 21:38:55 -08001167static inline unsigned long target_load(int cpu, int type)
1168{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001169 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001170
Peter Williams2dd73a42006-06-27 02:54:34 -07001171 if (type == 0)
1172 return rq->raw_weighted_load;
1173
1174 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1175}
1176
1177/*
1178 * Return the average load per task on the cpu's run queue
1179 */
1180static inline unsigned long cpu_avg_load_per_task(int cpu)
1181{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001182 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001183 unsigned long n = rq->nr_running;
1184
Ingo Molnar48f24c42006-07-03 00:25:40 -07001185 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001186}
1187
Nick Piggin147cbb42005-06-25 14:57:19 -07001188/*
1189 * find_idlest_group finds and returns the least busy CPU group within the
1190 * domain.
1191 */
1192static struct sched_group *
1193find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1194{
1195 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1196 unsigned long min_load = ULONG_MAX, this_load = 0;
1197 int load_idx = sd->forkexec_idx;
1198 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1199
1200 do {
1201 unsigned long load, avg_load;
1202 int local_group;
1203 int i;
1204
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001205 /* Skip over this group if it has no CPUs allowed */
1206 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1207 goto nextgroup;
1208
Nick Piggin147cbb42005-06-25 14:57:19 -07001209 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001210
1211 /* Tally up the load of all CPUs in the group */
1212 avg_load = 0;
1213
1214 for_each_cpu_mask(i, group->cpumask) {
1215 /* Bias balancing toward cpus of our domain */
1216 if (local_group)
1217 load = source_load(i, load_idx);
1218 else
1219 load = target_load(i, load_idx);
1220
1221 avg_load += load;
1222 }
1223
1224 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001225 avg_load = sg_div_cpu_power(group,
1226 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001227
1228 if (local_group) {
1229 this_load = avg_load;
1230 this = group;
1231 } else if (avg_load < min_load) {
1232 min_load = avg_load;
1233 idlest = group;
1234 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001235nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001236 group = group->next;
1237 } while (group != sd->groups);
1238
1239 if (!idlest || 100*this_load < imbalance*min_load)
1240 return NULL;
1241 return idlest;
1242}
1243
1244/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001245 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001246 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001247static int
1248find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001249{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001250 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001251 unsigned long load, min_load = ULONG_MAX;
1252 int idlest = -1;
1253 int i;
1254
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001255 /* Traverse only the allowed CPUs */
1256 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1257
1258 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001259 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001260
1261 if (load < min_load || (load == min_load && i == this_cpu)) {
1262 min_load = load;
1263 idlest = i;
1264 }
1265 }
1266
1267 return idlest;
1268}
1269
Nick Piggin476d1392005-06-25 14:57:29 -07001270/*
1271 * sched_balance_self: balance the current task (running on cpu) in domains
1272 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1273 * SD_BALANCE_EXEC.
1274 *
1275 * Balance, ie. select the least loaded group.
1276 *
1277 * Returns the target CPU number, or the same CPU if no balancing is needed.
1278 *
1279 * preempt must be disabled.
1280 */
1281static int sched_balance_self(int cpu, int flag)
1282{
1283 struct task_struct *t = current;
1284 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001285
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001286 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001287 /*
1288 * If power savings logic is enabled for a domain, stop there.
1289 */
1290 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1291 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001292 if (tmp->flags & flag)
1293 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001294 }
Nick Piggin476d1392005-06-25 14:57:29 -07001295
1296 while (sd) {
1297 cpumask_t span;
1298 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001299 int new_cpu, weight;
1300
1301 if (!(sd->flags & flag)) {
1302 sd = sd->child;
1303 continue;
1304 }
Nick Piggin476d1392005-06-25 14:57:29 -07001305
1306 span = sd->span;
1307 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001308 if (!group) {
1309 sd = sd->child;
1310 continue;
1311 }
Nick Piggin476d1392005-06-25 14:57:29 -07001312
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001313 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001314 if (new_cpu == -1 || new_cpu == cpu) {
1315 /* Now try balancing at a lower domain level of cpu */
1316 sd = sd->child;
1317 continue;
1318 }
Nick Piggin476d1392005-06-25 14:57:29 -07001319
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001320 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001321 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001322 sd = NULL;
1323 weight = cpus_weight(span);
1324 for_each_domain(cpu, tmp) {
1325 if (weight <= cpus_weight(tmp->span))
1326 break;
1327 if (tmp->flags & flag)
1328 sd = tmp;
1329 }
1330 /* while loop will break here if sd == NULL */
1331 }
1332
1333 return cpu;
1334}
1335
1336#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001337
1338/*
1339 * wake_idle() will wake a task on an idle cpu if task->cpu is
1340 * not idle and an idle cpu is available. The span of cpus to
1341 * search starts with cpus closest then further out as needed,
1342 * so we always favor a closer, idle cpu.
1343 *
1344 * Returns the CPU we should wake onto.
1345 */
1346#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001347static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348{
1349 cpumask_t tmp;
1350 struct sched_domain *sd;
1351 int i;
1352
Siddha, Suresh B49531982007-05-08 00:33:01 -07001353 /*
1354 * If it is idle, then it is the best cpu to run this task.
1355 *
1356 * This cpu is also the best, if it has more than one task already.
1357 * Siblings must be also busy(in most cases) as they didn't already
1358 * pickup the extra load from this cpu and hence we need not check
1359 * sibling runqueue info. This will avoid the checks and cache miss
1360 * penalities associated with that.
1361 */
1362 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001363 return cpu;
1364
1365 for_each_domain(cpu, sd) {
1366 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001367 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001368 for_each_cpu_mask(i, tmp) {
1369 if (idle_cpu(i))
1370 return i;
1371 }
1372 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001373 else
1374 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 }
1376 return cpu;
1377}
1378#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001379static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380{
1381 return cpu;
1382}
1383#endif
1384
1385/***
1386 * try_to_wake_up - wake up a thread
1387 * @p: the to-be-woken-up thread
1388 * @state: the mask of task states that can be woken
1389 * @sync: do a synchronous wakeup?
1390 *
1391 * Put it on the run-queue if it's not already there. The "current"
1392 * thread is always on the run-queue (except when the actual
1393 * re-schedule is in progress), and as such you're allowed to do
1394 * the simpler "current->state = TASK_RUNNING" to mark yourself
1395 * runnable without the overhead of this.
1396 *
1397 * returns failure only if the task is already active.
1398 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001399static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400{
1401 int cpu, this_cpu, success = 0;
1402 unsigned long flags;
1403 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001404 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001406 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001407 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001408 int new_cpu;
1409#endif
1410
1411 rq = task_rq_lock(p, &flags);
1412 old_state = p->state;
1413 if (!(old_state & state))
1414 goto out;
1415
1416 if (p->array)
1417 goto out_running;
1418
1419 cpu = task_cpu(p);
1420 this_cpu = smp_processor_id();
1421
1422#ifdef CONFIG_SMP
1423 if (unlikely(task_running(rq, p)))
1424 goto out_activate;
1425
Nick Piggin78979862005-06-25 14:57:13 -07001426 new_cpu = cpu;
1427
Linus Torvalds1da177e2005-04-16 15:20:36 -07001428 schedstat_inc(rq, ttwu_cnt);
1429 if (cpu == this_cpu) {
1430 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001431 goto out_set_cpu;
1432 }
1433
1434 for_each_domain(this_cpu, sd) {
1435 if (cpu_isset(cpu, sd->span)) {
1436 schedstat_inc(sd, ttwu_wake_remote);
1437 this_sd = sd;
1438 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439 }
1440 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441
Nick Piggin78979862005-06-25 14:57:13 -07001442 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443 goto out_set_cpu;
1444
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445 /*
Nick Piggin78979862005-06-25 14:57:13 -07001446 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447 */
Nick Piggin78979862005-06-25 14:57:13 -07001448 if (this_sd) {
1449 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451
Nick Piggina3f21bc2005-06-25 14:57:15 -07001452 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1453
Nick Piggin78979862005-06-25 14:57:13 -07001454 load = source_load(cpu, idx);
1455 this_load = target_load(this_cpu, idx);
1456
Nick Piggin78979862005-06-25 14:57:13 -07001457 new_cpu = this_cpu; /* Wake to this CPU if we can */
1458
Nick Piggina3f21bc2005-06-25 14:57:15 -07001459 if (this_sd->flags & SD_WAKE_AFFINE) {
1460 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001461 unsigned long tl_per_task;
1462
1463 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001464
Linus Torvalds1da177e2005-04-16 15:20:36 -07001465 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001466 * If sync wakeup then subtract the (maximum possible)
1467 * effect of the currently running task from the load
1468 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001470 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001471 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001472
1473 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001474 tl + target_load(cpu, idx) <= tl_per_task) ||
1475 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001476 /*
1477 * This domain has SD_WAKE_AFFINE and
1478 * p is cache cold in this domain, and
1479 * there is no bad imbalance.
1480 */
1481 schedstat_inc(this_sd, ttwu_move_affine);
1482 goto out_set_cpu;
1483 }
1484 }
1485
1486 /*
1487 * Start passive balancing when half the imbalance_pct
1488 * limit is reached.
1489 */
1490 if (this_sd->flags & SD_WAKE_BALANCE) {
1491 if (imbalance*this_load <= 100*load) {
1492 schedstat_inc(this_sd, ttwu_move_balance);
1493 goto out_set_cpu;
1494 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001495 }
1496 }
1497
1498 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1499out_set_cpu:
1500 new_cpu = wake_idle(new_cpu, p);
1501 if (new_cpu != cpu) {
1502 set_task_cpu(p, new_cpu);
1503 task_rq_unlock(rq, &flags);
1504 /* might preempt at this point */
1505 rq = task_rq_lock(p, &flags);
1506 old_state = p->state;
1507 if (!(old_state & state))
1508 goto out;
1509 if (p->array)
1510 goto out_running;
1511
1512 this_cpu = smp_processor_id();
1513 cpu = task_cpu(p);
1514 }
1515
1516out_activate:
1517#endif /* CONFIG_SMP */
1518 if (old_state == TASK_UNINTERRUPTIBLE) {
1519 rq->nr_uninterruptible--;
1520 /*
1521 * Tasks on involuntary sleep don't earn
1522 * sleep_avg beyond just interactive state.
1523 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001524 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001525 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001526
1527 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001528 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001529 * woken up with their sleep average not weighted in an
1530 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001531 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001532 if (old_state & TASK_NONINTERACTIVE)
1533 p->sleep_type = SLEEP_NONINTERACTIVE;
1534
1535
1536 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001537 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538 * Sync wakeups (i.e. those types of wakeups where the waker
1539 * has indicated that it will leave the CPU in short order)
1540 * don't trigger a preemption, if the woken up task will run on
1541 * this cpu. (in this case the 'I will reschedule' promise of
1542 * the waker guarantees that the freshly woken up task is going
1543 * to be considered on this CPU.)
1544 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545 if (!sync || cpu != this_cpu) {
1546 if (TASK_PREEMPTS_CURR(p, rq))
1547 resched_task(rq->curr);
1548 }
1549 success = 1;
1550
1551out_running:
1552 p->state = TASK_RUNNING;
1553out:
1554 task_rq_unlock(rq, &flags);
1555
1556 return success;
1557}
1558
Ingo Molnar36c8b582006-07-03 00:25:41 -07001559int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560{
1561 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1562 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1563}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564EXPORT_SYMBOL(wake_up_process);
1565
Ingo Molnar36c8b582006-07-03 00:25:41 -07001566int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567{
1568 return try_to_wake_up(p, state, 0);
1569}
1570
Peter Williamsbc947632006-12-19 12:48:50 +10001571static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572/*
1573 * Perform scheduler related setup for a newly forked process p.
1574 * p is forked by current.
1575 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001576void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001577{
Nick Piggin476d1392005-06-25 14:57:29 -07001578 int cpu = get_cpu();
1579
1580#ifdef CONFIG_SMP
1581 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1582#endif
1583 set_task_cpu(p, cpu);
1584
Linus Torvalds1da177e2005-04-16 15:20:36 -07001585 /*
1586 * We mark the process as running here, but have not actually
1587 * inserted it onto the runqueue yet. This guarantees that
1588 * nobody will actually run it, and a signal or other external
1589 * event cannot wake it up and insert it on the runqueue either.
1590 */
1591 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001592
1593 /*
1594 * Make sure we do not leak PI boosting priority to the child:
1595 */
1596 p->prio = current->normal_prio;
1597
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598 INIT_LIST_HEAD(&p->run_list);
1599 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001600#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1601 if (unlikely(sched_info_on()))
1602 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001603#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001604#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001605 p->oncpu = 0;
1606#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001608 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001609 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001610#endif
1611 /*
1612 * Share the timeslice between parent and child, thus the
1613 * total amount of pending timeslices in the system doesn't change,
1614 * resulting in more scheduling fairness.
1615 */
1616 local_irq_disable();
1617 p->time_slice = (current->time_slice + 1) >> 1;
1618 /*
1619 * The remainder of the first timeslice might be recovered by
1620 * the parent if the child exits early enough.
1621 */
1622 p->first_time_slice = 1;
1623 current->time_slice >>= 1;
1624 p->timestamp = sched_clock();
1625 if (unlikely(!current->time_slice)) {
1626 /*
1627 * This case is rare, it happens when the parent has only
1628 * a single jiffy left from its timeslice. Taking the
1629 * runqueue lock is not a problem.
1630 */
1631 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001632 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001633 }
1634 local_irq_enable();
1635 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001636}
1637
1638/*
1639 * wake_up_new_task - wake up a newly created task for the first time.
1640 *
1641 * This function will do some initial scheduler statistics housekeeping
1642 * that must be done for every newly created context, then puts the task
1643 * on the runqueue and wakes it.
1644 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001645void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001647 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648 unsigned long flags;
1649 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650
1651 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001653 this_cpu = smp_processor_id();
1654 cpu = task_cpu(p);
1655
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656 /*
1657 * We decrease the sleep average of forking parents
1658 * and children as well, to keep max-interactive tasks
1659 * from forking tasks that are max-interactive. The parent
1660 * (current) is done further down, under its lock.
1661 */
1662 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1663 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1664
1665 p->prio = effective_prio(p);
1666
1667 if (likely(cpu == this_cpu)) {
1668 if (!(clone_flags & CLONE_VM)) {
1669 /*
1670 * The VM isn't cloned, so we're in a good position to
1671 * do child-runs-first in anticipation of an exec. This
1672 * usually avoids a lot of COW overhead.
1673 */
1674 if (unlikely(!current->array))
1675 __activate_task(p, rq);
1676 else {
1677 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001678 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679 list_add_tail(&p->run_list, &current->run_list);
1680 p->array = current->array;
1681 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001682 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683 }
1684 set_need_resched();
1685 } else
1686 /* Run child last */
1687 __activate_task(p, rq);
1688 /*
1689 * We skip the following code due to cpu == this_cpu
1690 *
1691 * task_rq_unlock(rq, &flags);
1692 * this_rq = task_rq_lock(current, &flags);
1693 */
1694 this_rq = rq;
1695 } else {
1696 this_rq = cpu_rq(this_cpu);
1697
1698 /*
1699 * Not the local CPU - must adjust timestamp. This should
1700 * get optimised away in the !CONFIG_SMP case.
1701 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001702 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1703 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001704 __activate_task(p, rq);
1705 if (TASK_PREEMPTS_CURR(p, rq))
1706 resched_task(rq->curr);
1707
1708 /*
1709 * Parent and child are on different CPUs, now get the
1710 * parent runqueue to update the parent's ->sleep_avg:
1711 */
1712 task_rq_unlock(rq, &flags);
1713 this_rq = task_rq_lock(current, &flags);
1714 }
1715 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1716 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1717 task_rq_unlock(this_rq, &flags);
1718}
1719
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001721 * prepare_task_switch - prepare to switch tasks
1722 * @rq: the runqueue preparing to switch
1723 * @next: the task we are going to switch to.
1724 *
1725 * This is called with the rq lock held and interrupts off. It must
1726 * be paired with a subsequent finish_task_switch after the context
1727 * switch.
1728 *
1729 * prepare_task_switch sets up locking and calls architecture specific
1730 * hooks.
1731 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001732static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001733{
1734 prepare_lock_switch(rq, next);
1735 prepare_arch_switch(next);
1736}
1737
1738/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001739 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001740 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001741 * @prev: the thread we just switched away from.
1742 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001743 * finish_task_switch must be called after the context switch, paired
1744 * with a prepare_task_switch call before the context switch.
1745 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1746 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747 *
1748 * Note that we may have delayed dropping an mm in context_switch(). If
1749 * so, we finish that here outside of the runqueue lock. (Doing it
1750 * with the lock held can cause deadlocks; see schedule() for
1751 * details.)
1752 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001753static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001754 __releases(rq->lock)
1755{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001756 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001757 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758
1759 rq->prev_mm = NULL;
1760
1761 /*
1762 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001763 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001764 * schedule one last time. The schedule call will never return, and
1765 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001766 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 * still held, otherwise prev could be scheduled on another cpu, die
1768 * there before we look at prev->state, and then the reference would
1769 * be dropped twice.
1770 * Manfred Spraul <manfred@colorfullife.com>
1771 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001772 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001773 finish_arch_switch(prev);
1774 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775 if (mm)
1776 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001777 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001778 /*
1779 * Remove function-return probe instances associated with this
1780 * task and put them back on the free list.
1781 */
1782 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001784 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785}
1786
1787/**
1788 * schedule_tail - first thing a freshly forked thread must call.
1789 * @prev: the thread we just switched away from.
1790 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001791asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001792 __releases(rq->lock)
1793{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001794 struct rq *rq = this_rq();
1795
Nick Piggin4866cde2005-06-25 14:57:23 -07001796 finish_task_switch(rq, prev);
1797#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1798 /* In this case, finish_task_switch does not reenable preemption */
1799 preempt_enable();
1800#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801 if (current->set_child_tid)
1802 put_user(current->pid, current->set_child_tid);
1803}
1804
1805/*
1806 * context_switch - switch to the new MM and the new
1807 * thread's register state.
1808 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001809static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001810context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001811 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812{
1813 struct mm_struct *mm = next->mm;
1814 struct mm_struct *oldmm = prev->active_mm;
1815
Zachary Amsden9226d122007-02-13 13:26:21 +01001816 /*
1817 * For paravirt, this is coupled with an exit in switch_to to
1818 * combine the page table reload and the switch backend into
1819 * one hypercall.
1820 */
1821 arch_enter_lazy_cpu_mode();
1822
Nick Pigginbeed33a2006-10-11 01:21:52 -07001823 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001824 next->active_mm = oldmm;
1825 atomic_inc(&oldmm->mm_count);
1826 enter_lazy_tlb(oldmm, next);
1827 } else
1828 switch_mm(oldmm, mm, next);
1829
Nick Pigginbeed33a2006-10-11 01:21:52 -07001830 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001831 prev->active_mm = NULL;
1832 WARN_ON(rq->prev_mm);
1833 rq->prev_mm = oldmm;
1834 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001835 /*
1836 * Since the runqueue lock will be released by the next
1837 * task (which is an invalid locking op but in the case
1838 * of the scheduler it's an obvious special-case), so we
1839 * do an early lockdep release here:
1840 */
1841#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001842 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001843#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844
1845 /* Here we just switch the register state and the stack. */
1846 switch_to(prev, next, prev);
1847
1848 return prev;
1849}
1850
1851/*
1852 * nr_running, nr_uninterruptible and nr_context_switches:
1853 *
1854 * externally visible scheduler statistics: current number of runnable
1855 * threads, current number of uninterruptible-sleeping threads, total
1856 * number of context switches performed since bootup.
1857 */
1858unsigned long nr_running(void)
1859{
1860 unsigned long i, sum = 0;
1861
1862 for_each_online_cpu(i)
1863 sum += cpu_rq(i)->nr_running;
1864
1865 return sum;
1866}
1867
1868unsigned long nr_uninterruptible(void)
1869{
1870 unsigned long i, sum = 0;
1871
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001872 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873 sum += cpu_rq(i)->nr_uninterruptible;
1874
1875 /*
1876 * Since we read the counters lockless, it might be slightly
1877 * inaccurate. Do not allow it to go below zero though:
1878 */
1879 if (unlikely((long)sum < 0))
1880 sum = 0;
1881
1882 return sum;
1883}
1884
1885unsigned long long nr_context_switches(void)
1886{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001887 int i;
1888 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001890 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001891 sum += cpu_rq(i)->nr_switches;
1892
1893 return sum;
1894}
1895
1896unsigned long nr_iowait(void)
1897{
1898 unsigned long i, sum = 0;
1899
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001900 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1902
1903 return sum;
1904}
1905
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001906unsigned long nr_active(void)
1907{
1908 unsigned long i, running = 0, uninterruptible = 0;
1909
1910 for_each_online_cpu(i) {
1911 running += cpu_rq(i)->nr_running;
1912 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1913 }
1914
1915 if (unlikely((long)uninterruptible < 0))
1916 uninterruptible = 0;
1917
1918 return running + uninterruptible;
1919}
1920
Linus Torvalds1da177e2005-04-16 15:20:36 -07001921#ifdef CONFIG_SMP
1922
1923/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07001924 * Is this task likely cache-hot:
1925 */
1926static inline int
1927task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1928{
1929 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1930}
1931
1932/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933 * double_rq_lock - safely lock two runqueues
1934 *
1935 * Note this does not disable interrupts like task_rq_lock,
1936 * you need to do so manually before calling.
1937 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001938static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939 __acquires(rq1->lock)
1940 __acquires(rq2->lock)
1941{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001942 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943 if (rq1 == rq2) {
1944 spin_lock(&rq1->lock);
1945 __acquire(rq2->lock); /* Fake it out ;) */
1946 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001947 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948 spin_lock(&rq1->lock);
1949 spin_lock(&rq2->lock);
1950 } else {
1951 spin_lock(&rq2->lock);
1952 spin_lock(&rq1->lock);
1953 }
1954 }
1955}
1956
1957/*
1958 * double_rq_unlock - safely unlock two runqueues
1959 *
1960 * Note this does not restore interrupts like task_rq_unlock,
1961 * you need to do so manually after calling.
1962 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001963static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001964 __releases(rq1->lock)
1965 __releases(rq2->lock)
1966{
1967 spin_unlock(&rq1->lock);
1968 if (rq1 != rq2)
1969 spin_unlock(&rq2->lock);
1970 else
1971 __release(rq2->lock);
1972}
1973
1974/*
1975 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1976 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001977static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978 __releases(this_rq->lock)
1979 __acquires(busiest->lock)
1980 __acquires(this_rq->lock)
1981{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001982 if (unlikely(!irqs_disabled())) {
1983 /* printk() doesn't work good under rq->lock */
1984 spin_unlock(&this_rq->lock);
1985 BUG_ON(1);
1986 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001987 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001988 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 spin_unlock(&this_rq->lock);
1990 spin_lock(&busiest->lock);
1991 spin_lock(&this_rq->lock);
1992 } else
1993 spin_lock(&busiest->lock);
1994 }
1995}
1996
1997/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001998 * If dest_cpu is allowed for this process, migrate the task to it.
1999 * This is accomplished by forcing the cpu_allowed mask to only
2000 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2001 * the cpu_allowed mask is restored.
2002 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002003static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002004{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002005 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002006 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002007 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002008
2009 rq = task_rq_lock(p, &flags);
2010 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2011 || unlikely(cpu_is_offline(dest_cpu)))
2012 goto out;
2013
2014 /* force the process onto the specified CPU */
2015 if (migrate_task(p, dest_cpu, &req)) {
2016 /* Need to wait for migration thread (might exit: take ref). */
2017 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002018
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019 get_task_struct(mt);
2020 task_rq_unlock(rq, &flags);
2021 wake_up_process(mt);
2022 put_task_struct(mt);
2023 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002024
Linus Torvalds1da177e2005-04-16 15:20:36 -07002025 return;
2026 }
2027out:
2028 task_rq_unlock(rq, &flags);
2029}
2030
2031/*
Nick Piggin476d1392005-06-25 14:57:29 -07002032 * sched_exec - execve() is a valuable balancing opportunity, because at
2033 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002034 */
2035void sched_exec(void)
2036{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002037 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002038 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002040 if (new_cpu != this_cpu)
2041 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002042}
2043
2044/*
2045 * pull_task - move a task from a remote runqueue to the local runqueue.
2046 * Both runqueues must be locked.
2047 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002048static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2049 struct task_struct *p, struct rq *this_rq,
2050 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002051{
2052 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002053 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002055 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002056 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002057 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2058 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002059 /*
2060 * Note that idle threads have a prio of MAX_PRIO, for this test
2061 * to be always true for them.
2062 */
2063 if (TASK_PREEMPTS_CURR(p, this_rq))
2064 resched_task(this_rq->curr);
2065}
2066
2067/*
2068 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2069 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002070static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002071int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002072 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002073 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074{
2075 /*
2076 * We do not migrate tasks that are:
2077 * 1) running (obviously), or
2078 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2079 * 3) are cache-hot on their current CPU.
2080 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081 if (!cpu_isset(this_cpu, p->cpus_allowed))
2082 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002083 *all_pinned = 0;
2084
2085 if (task_running(rq, p))
2086 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002087
2088 /*
2089 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002090 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002091 * 2) too many balance attempts have failed.
2092 */
2093
Mike Galbraithb18ec802006-12-10 02:20:31 -08002094 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2095#ifdef CONFIG_SCHEDSTATS
2096 if (task_hot(p, rq->most_recent_timestamp, sd))
2097 schedstat_inc(sd, lb_hot_gained[idle]);
2098#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002100 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101
Mike Galbraithb18ec802006-12-10 02:20:31 -08002102 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002103 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104 return 1;
2105}
2106
Peter Williams615052d2006-06-27 02:54:37 -07002107#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002108
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002110 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2111 * load from busiest to this_rq, as part of a balancing operation within
2112 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002113 *
2114 * Called with both runqueues locked.
2115 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002116static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002117 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002118 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002119 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002120{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002121 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2122 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002123 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002125 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002126 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127
Peter Williams2dd73a42006-06-27 02:54:34 -07002128 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002129 goto out;
2130
Peter Williams2dd73a42006-06-27 02:54:34 -07002131 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002132 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002133 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002134 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002135 /*
2136 * Enable handling of the case where there is more than one task
2137 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002138 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002139 * and therefore it's safe to override the skip (based on load) of
2140 * any task we find with that prio.
2141 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002142 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002143
Linus Torvalds1da177e2005-04-16 15:20:36 -07002144 /*
2145 * We first consider expired tasks. Those will likely not be
2146 * executed in the near future, and they are most likely to
2147 * be cache-cold, thus switching CPUs has the least effect
2148 * on them.
2149 */
2150 if (busiest->expired->nr_active) {
2151 array = busiest->expired;
2152 dst_array = this_rq->expired;
2153 } else {
2154 array = busiest->active;
2155 dst_array = this_rq->active;
2156 }
2157
2158new_array:
2159 /* Start searching at priority 0: */
2160 idx = 0;
2161skip_bitmap:
2162 if (!idx)
2163 idx = sched_find_first_bit(array->bitmap);
2164 else
2165 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2166 if (idx >= MAX_PRIO) {
2167 if (array == busiest->expired && busiest->active->nr_active) {
2168 array = busiest->active;
2169 dst_array = this_rq->active;
2170 goto new_array;
2171 }
2172 goto out;
2173 }
2174
2175 head = array->queue + idx;
2176 curr = head->prev;
2177skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002178 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179
2180 curr = curr->prev;
2181
Peter Williams50ddd962006-06-27 02:54:36 -07002182 /*
2183 * To help distribute high priority tasks accross CPUs we don't
2184 * skip a task if it will be the highest priority task (i.e. smallest
2185 * prio value) on its new queue regardless of its load weight
2186 */
Peter Williams615052d2006-06-27 02:54:37 -07002187 skip_for_load = tmp->load_weight > rem_load_move;
2188 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002189 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002190 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002191 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002192
2193 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194 if (curr != head)
2195 goto skip_queue;
2196 idx++;
2197 goto skip_bitmap;
2198 }
2199
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2201 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002202 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203
Peter Williams2dd73a42006-06-27 02:54:34 -07002204 /*
2205 * We only want to steal up to the prescribed number of tasks
2206 * and the prescribed amount of weighted load.
2207 */
2208 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002209 if (idx < this_best_prio)
2210 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211 if (curr != head)
2212 goto skip_queue;
2213 idx++;
2214 goto skip_bitmap;
2215 }
2216out:
2217 /*
2218 * Right now, this is the only place pull_task() is called,
2219 * so we can safely collect pull_task() stats here rather than
2220 * inside pull_task().
2221 */
2222 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002223
2224 if (all_pinned)
2225 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002226 return pulled;
2227}
2228
2229/*
2230 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002231 * domain. It calculates and returns the amount of weighted load which
2232 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233 */
2234static struct sched_group *
2235find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002236 unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002237 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002238{
2239 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2240 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002241 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002242 unsigned long busiest_load_per_task, busiest_nr_running;
2243 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002244 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002245#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2246 int power_savings_balance = 1;
2247 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2248 unsigned long min_nr_running = ULONG_MAX;
2249 struct sched_group *group_min = NULL, *group_leader = NULL;
2250#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002251
2252 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002253 busiest_load_per_task = busiest_nr_running = 0;
2254 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002255 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002256 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002257 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002258 load_idx = sd->newidle_idx;
2259 else
2260 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261
2262 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002263 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264 int local_group;
2265 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002266 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002267 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268
2269 local_group = cpu_isset(this_cpu, group->cpumask);
2270
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002271 if (local_group)
2272 balance_cpu = first_cpu(group->cpumask);
2273
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002275 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002276
2277 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002278 struct rq *rq;
2279
2280 if (!cpu_isset(i, *cpus))
2281 continue;
2282
2283 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002284
Nick Piggin5969fe02005-09-10 00:26:19 -07002285 if (*sd_idle && !idle_cpu(i))
2286 *sd_idle = 0;
2287
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002289 if (local_group) {
2290 if (idle_cpu(i) && !first_idle_cpu) {
2291 first_idle_cpu = 1;
2292 balance_cpu = i;
2293 }
2294
Nick Piggina2000572006-02-10 01:51:02 -08002295 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002296 } else
Nick Piggina2000572006-02-10 01:51:02 -08002297 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002298
2299 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002300 sum_nr_running += rq->nr_running;
2301 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002302 }
2303
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002304 /*
2305 * First idle cpu or the first cpu(busiest) in this sched group
2306 * is eligible for doing load balancing at this and above
2307 * domains.
2308 */
2309 if (local_group && balance_cpu != this_cpu && balance) {
2310 *balance = 0;
2311 goto ret;
2312 }
2313
Linus Torvalds1da177e2005-04-16 15:20:36 -07002314 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002315 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002316
2317 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002318 avg_load = sg_div_cpu_power(group,
2319 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002320
Eric Dumazet5517d862007-05-08 00:32:57 -07002321 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002322
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323 if (local_group) {
2324 this_load = avg_load;
2325 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002326 this_nr_running = sum_nr_running;
2327 this_load_per_task = sum_weighted_load;
2328 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002329 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002330 max_load = avg_load;
2331 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002332 busiest_nr_running = sum_nr_running;
2333 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002335
2336#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2337 /*
2338 * Busy processors will not participate in power savings
2339 * balance.
2340 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002341 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002342 goto group_next;
2343
2344 /*
2345 * If the local group is idle or completely loaded
2346 * no need to do power savings balance at this domain
2347 */
2348 if (local_group && (this_nr_running >= group_capacity ||
2349 !this_nr_running))
2350 power_savings_balance = 0;
2351
2352 /*
2353 * If a group is already running at full capacity or idle,
2354 * don't include that group in power savings calculations
2355 */
2356 if (!power_savings_balance || sum_nr_running >= group_capacity
2357 || !sum_nr_running)
2358 goto group_next;
2359
2360 /*
2361 * Calculate the group which has the least non-idle load.
2362 * This is the group from where we need to pick up the load
2363 * for saving power
2364 */
2365 if ((sum_nr_running < min_nr_running) ||
2366 (sum_nr_running == min_nr_running &&
2367 first_cpu(group->cpumask) <
2368 first_cpu(group_min->cpumask))) {
2369 group_min = group;
2370 min_nr_running = sum_nr_running;
2371 min_load_per_task = sum_weighted_load /
2372 sum_nr_running;
2373 }
2374
2375 /*
2376 * Calculate the group which is almost near its
2377 * capacity but still has some space to pick up some load
2378 * from other group and save more power
2379 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002380 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002381 if (sum_nr_running > leader_nr_running ||
2382 (sum_nr_running == leader_nr_running &&
2383 first_cpu(group->cpumask) >
2384 first_cpu(group_leader->cpumask))) {
2385 group_leader = group;
2386 leader_nr_running = sum_nr_running;
2387 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002388 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002389group_next:
2390#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391 group = group->next;
2392 } while (group != sd->groups);
2393
Peter Williams2dd73a42006-06-27 02:54:34 -07002394 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395 goto out_balanced;
2396
2397 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2398
2399 if (this_load >= avg_load ||
2400 100*max_load <= sd->imbalance_pct*this_load)
2401 goto out_balanced;
2402
Peter Williams2dd73a42006-06-27 02:54:34 -07002403 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002404 /*
2405 * We're trying to get all the cpus to the average_load, so we don't
2406 * want to push ourselves above the average load, nor do we wish to
2407 * reduce the max loaded cpu below the average load, as either of these
2408 * actions would just result in more rebalancing later, and ping-pong
2409 * tasks around. Thus we look for the minimum possible imbalance.
2410 * Negative imbalances (*we* are more loaded than anyone else) will
2411 * be counted as no imbalance for these purposes -- we can't fix that
2412 * by pulling tasks to us. Be careful of negative numbers as they'll
2413 * appear as very large values with unsigned longs.
2414 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002415 if (max_load <= busiest_load_per_task)
2416 goto out_balanced;
2417
2418 /*
2419 * In the presence of smp nice balancing, certain scenarios can have
2420 * max load less than avg load(as we skip the groups at or below
2421 * its cpu_power, while calculating max_load..)
2422 */
2423 if (max_load < avg_load) {
2424 *imbalance = 0;
2425 goto small_imbalance;
2426 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002427
2428 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002429 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002430
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002432 *imbalance = min(max_pull * busiest->__cpu_power,
2433 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002434 / SCHED_LOAD_SCALE;
2435
Peter Williams2dd73a42006-06-27 02:54:34 -07002436 /*
2437 * if *imbalance is less than the average load per runnable task
2438 * there is no gaurantee that any tasks will be moved so we'll have
2439 * a think about bumping its value to force at least one task to be
2440 * moved
2441 */
2442 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002443 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002444 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002445
Peter Williams2dd73a42006-06-27 02:54:34 -07002446small_imbalance:
2447 pwr_move = pwr_now = 0;
2448 imbn = 2;
2449 if (this_nr_running) {
2450 this_load_per_task /= this_nr_running;
2451 if (busiest_load_per_task > this_load_per_task)
2452 imbn = 1;
2453 } else
2454 this_load_per_task = SCHED_LOAD_SCALE;
2455
2456 if (max_load - this_load >= busiest_load_per_task * imbn) {
2457 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 return busiest;
2459 }
2460
2461 /*
2462 * OK, we don't have enough imbalance to justify moving tasks,
2463 * however we may be able to increase total CPU power used by
2464 * moving them.
2465 */
2466
Eric Dumazet5517d862007-05-08 00:32:57 -07002467 pwr_now += busiest->__cpu_power *
2468 min(busiest_load_per_task, max_load);
2469 pwr_now += this->__cpu_power *
2470 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002471 pwr_now /= SCHED_LOAD_SCALE;
2472
2473 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002474 tmp = sg_div_cpu_power(busiest,
2475 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002476 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002477 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002478 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479
2480 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002481 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002482 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002483 tmp = sg_div_cpu_power(this,
2484 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002485 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002486 tmp = sg_div_cpu_power(this,
2487 busiest_load_per_task * SCHED_LOAD_SCALE);
2488 pwr_move += this->__cpu_power *
2489 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002490 pwr_move /= SCHED_LOAD_SCALE;
2491
2492 /* Move if we gain throughput */
2493 if (pwr_move <= pwr_now)
2494 goto out_balanced;
2495
Peter Williams2dd73a42006-06-27 02:54:34 -07002496 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497 }
2498
Linus Torvalds1da177e2005-04-16 15:20:36 -07002499 return busiest;
2500
2501out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002502#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002503 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002504 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002506 if (this == group_leader && group_leader != group_min) {
2507 *imbalance = min_load_per_task;
2508 return group_min;
2509 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002510#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002511ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002512 *imbalance = 0;
2513 return NULL;
2514}
2515
2516/*
2517 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2518 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002519static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002520find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002521 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002522{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002523 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002524 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002525 int i;
2526
2527 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002528
2529 if (!cpu_isset(i, *cpus))
2530 continue;
2531
Ingo Molnar48f24c42006-07-03 00:25:40 -07002532 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533
Ingo Molnar48f24c42006-07-03 00:25:40 -07002534 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002535 continue;
2536
Ingo Molnar48f24c42006-07-03 00:25:40 -07002537 if (rq->raw_weighted_load > max_load) {
2538 max_load = rq->raw_weighted_load;
2539 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540 }
2541 }
2542
2543 return busiest;
2544}
2545
2546/*
Nick Piggin77391d72005-06-25 14:57:30 -07002547 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2548 * so long as it is large enough.
2549 */
2550#define MAX_PINNED_INTERVAL 512
2551
Ingo Molnar48f24c42006-07-03 00:25:40 -07002552static inline unsigned long minus_1_or_zero(unsigned long n)
2553{
2554 return n > 0 ? n - 1 : 0;
2555}
2556
Nick Piggin77391d72005-06-25 14:57:30 -07002557/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2559 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002561static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002562 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002563 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002565 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002566 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002568 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002569 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002570 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002571
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002572 /*
2573 * When power savings policy is enabled for the parent domain, idle
2574 * sibling can pick up load irrespective of busy siblings. In this case,
2575 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002576 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002577 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002578 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002579 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002580 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581
Linus Torvalds1da177e2005-04-16 15:20:36 -07002582 schedstat_inc(sd, lb_cnt[idle]);
2583
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002584redo:
2585 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002586 &cpus, balance);
2587
Chen, Kenneth W06066712006-12-10 02:20:35 -08002588 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002589 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002590
Linus Torvalds1da177e2005-04-16 15:20:36 -07002591 if (!group) {
2592 schedstat_inc(sd, lb_nobusyg[idle]);
2593 goto out_balanced;
2594 }
2595
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002596 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002597 if (!busiest) {
2598 schedstat_inc(sd, lb_nobusyq[idle]);
2599 goto out_balanced;
2600 }
2601
Nick Piggindb935db2005-06-25 14:57:11 -07002602 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603
2604 schedstat_add(sd, lb_imbalance[idle], imbalance);
2605
2606 nr_moved = 0;
2607 if (busiest->nr_running > 1) {
2608 /*
2609 * Attempt to move tasks. If find_busiest_group has found
2610 * an imbalance but busiest->nr_running <= 1, the group is
2611 * still unbalanced. nr_moved simply stays zero, so it is
2612 * correctly treated as an imbalance.
2613 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002614 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002615 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002617 minus_1_or_zero(busiest->nr_running),
2618 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002619 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002620 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002621
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002622 /*
2623 * some other cpu did the load balance for us.
2624 */
2625 if (nr_moved && this_cpu != smp_processor_id())
2626 resched_cpu(this_cpu);
2627
Nick Piggin81026792005-06-25 14:57:07 -07002628 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002629 if (unlikely(all_pinned)) {
2630 cpu_clear(cpu_of(busiest), cpus);
2631 if (!cpus_empty(cpus))
2632 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002633 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002634 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 }
Nick Piggin81026792005-06-25 14:57:07 -07002636
Linus Torvalds1da177e2005-04-16 15:20:36 -07002637 if (!nr_moved) {
2638 schedstat_inc(sd, lb_failed[idle]);
2639 sd->nr_balance_failed++;
2640
2641 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002643 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002644
2645 /* don't kick the migration_thread, if the curr
2646 * task on busiest cpu can't be moved to this_cpu
2647 */
2648 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002649 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002650 all_pinned = 1;
2651 goto out_one_pinned;
2652 }
2653
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654 if (!busiest->active_balance) {
2655 busiest->active_balance = 1;
2656 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002657 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002658 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002659 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002660 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002661 wake_up_process(busiest->migration_thread);
2662
2663 /*
2664 * We've kicked active balancing, reset the failure
2665 * counter.
2666 */
Nick Piggin39507452005-06-25 14:57:09 -07002667 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668 }
Nick Piggin81026792005-06-25 14:57:07 -07002669 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670 sd->nr_balance_failed = 0;
2671
Nick Piggin81026792005-06-25 14:57:07 -07002672 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002673 /* We were unbalanced, so reset the balancing interval */
2674 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002675 } else {
2676 /*
2677 * If we've begun active balancing, start to back off. This
2678 * case may not be covered by the all_pinned logic if there
2679 * is only 1 task on the busy runqueue (because we don't call
2680 * move_tasks).
2681 */
2682 if (sd->balance_interval < sd->max_interval)
2683 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002684 }
2685
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002686 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002687 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002688 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002689 return nr_moved;
2690
2691out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692 schedstat_inc(sd, lb_balanced[idle]);
2693
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002694 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002695
2696out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002697 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002698 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2699 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002700 sd->balance_interval *= 2;
2701
Ingo Molnar48f24c42006-07-03 00:25:40 -07002702 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002703 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002704 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705 return 0;
2706}
2707
2708/*
2709 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2710 * tasks if there is an imbalance.
2711 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002712 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002713 * this_rq is locked.
2714 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002715static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002716load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717{
2718 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002719 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720 unsigned long imbalance;
2721 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002722 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002723 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002724
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002725 /*
2726 * When power savings policy is enabled for the parent domain, idle
2727 * sibling can pick up load irrespective of busy siblings. In this case,
2728 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002729 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002730 */
2731 if (sd->flags & SD_SHARE_CPUPOWER &&
2732 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002733 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002735 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002736redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002737 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002738 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002739 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002740 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002741 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 }
2743
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002744 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002745 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002746 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002747 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002748 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749 }
2750
Nick Piggindb935db2005-06-25 14:57:11 -07002751 BUG_ON(busiest == this_rq);
2752
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002753 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002754
2755 nr_moved = 0;
2756 if (busiest->nr_running > 1) {
2757 /* Attempt to move tasks */
2758 double_lock_balance(this_rq, busiest);
2759 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002760 minus_1_or_zero(busiest->nr_running),
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002761 imbalance, sd, CPU_NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002762 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002763
2764 if (!nr_moved) {
2765 cpu_clear(cpu_of(busiest), cpus);
2766 if (!cpus_empty(cpus))
2767 goto redo;
2768 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002769 }
2770
Nick Piggin5969fe02005-09-10 00:26:19 -07002771 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002772 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002773 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002775 return -1;
2776 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002777 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002778
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002780
2781out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002782 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002783 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002784 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002785 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002786 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002787
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002788 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789}
2790
2791/*
2792 * idle_balance is called by schedule() if this_cpu is about to become
2793 * idle. Attempts to pull tasks from other CPUs.
2794 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002795static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002796{
2797 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002798 int pulled_task = 0;
2799 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800
2801 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002802 unsigned long interval;
2803
2804 if (!(sd->flags & SD_LOAD_BALANCE))
2805 continue;
2806
2807 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002808 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002809 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002810 this_rq, sd);
2811
2812 interval = msecs_to_jiffies(sd->balance_interval);
2813 if (time_after(next_balance, sd->last_balance + interval))
2814 next_balance = sd->last_balance + interval;
2815 if (pulled_task)
2816 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002817 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002818 if (!pulled_task)
2819 /*
2820 * We are going idle. next_balance may be set based on
2821 * a busy processor. So reset next_balance.
2822 */
2823 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002824}
2825
2826/*
2827 * active_load_balance is run by migration threads. It pushes running tasks
2828 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2829 * running on each physical CPU where possible, and avoids physical /
2830 * logical imbalances.
2831 *
2832 * Called with busiest_rq locked.
2833 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002834static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835{
Nick Piggin39507452005-06-25 14:57:09 -07002836 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002837 struct sched_domain *sd;
2838 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002839
Ingo Molnar48f24c42006-07-03 00:25:40 -07002840 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002841 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002842 return;
2843
2844 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845
2846 /*
Nick Piggin39507452005-06-25 14:57:09 -07002847 * This condition is "impossible", if it occurs
2848 * we need to fix it. Originally reported by
2849 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850 */
Nick Piggin39507452005-06-25 14:57:09 -07002851 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002852
Nick Piggin39507452005-06-25 14:57:09 -07002853 /* move a task from busiest_rq to target_rq */
2854 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002855
Nick Piggin39507452005-06-25 14:57:09 -07002856 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002857 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002858 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002859 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002860 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002861 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002862
Ingo Molnar48f24c42006-07-03 00:25:40 -07002863 if (likely(sd)) {
2864 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865
Ingo Molnar48f24c42006-07-03 00:25:40 -07002866 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002867 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002868 NULL))
2869 schedstat_inc(sd, alb_pushed);
2870 else
2871 schedstat_inc(sd, alb_failed);
2872 }
Nick Piggin39507452005-06-25 14:57:09 -07002873 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002874}
2875
Christoph Lameter7835b982006-12-10 02:20:22 -08002876static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002877{
Christoph Lameter7835b982006-12-10 02:20:22 -08002878 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08002879 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880
Peter Williams2dd73a42006-06-27 02:54:34 -07002881 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002882
2883 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08002884 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002885 unsigned long old_load, new_load;
2886
Nick Pigginff916912007-02-12 00:53:51 -08002887 /* scale is effectively 1 << i now, and >> i divides by scale */
2888
Nick Piggin78979862005-06-25 14:57:13 -07002889 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07002890 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07002891 /*
2892 * Round up the averaging division if load is increasing. This
2893 * prevents us from getting stuck on 9 if the load is 10, for
2894 * example.
2895 */
2896 if (new_load > old_load)
2897 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08002898 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07002899 }
Christoph Lameter7835b982006-12-10 02:20:22 -08002900}
2901
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002902#ifdef CONFIG_NO_HZ
2903static struct {
2904 atomic_t load_balancer;
2905 cpumask_t cpu_mask;
2906} nohz ____cacheline_aligned = {
2907 .load_balancer = ATOMIC_INIT(-1),
2908 .cpu_mask = CPU_MASK_NONE,
2909};
2910
Christoph Lameter7835b982006-12-10 02:20:22 -08002911/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002912 * This routine will try to nominate the ilb (idle load balancing)
2913 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2914 * load balancing on behalf of all those cpus. If all the cpus in the system
2915 * go into this tickless mode, then there will be no ilb owner (as there is
2916 * no need for one) and all the cpus will sleep till the next wakeup event
2917 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002918 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002919 * For the ilb owner, tick is not stopped. And this tick will be used
2920 * for idle load balancing. ilb owner will still be part of
2921 * nohz.cpu_mask..
2922 *
2923 * While stopping the tick, this cpu will become the ilb owner if there
2924 * is no other owner. And will be the owner till that cpu becomes busy
2925 * or if all cpus in the system stop their ticks at which point
2926 * there is no need for ilb owner.
2927 *
2928 * When the ilb owner becomes busy, it nominates another owner, during the
2929 * next busy scheduler_tick()
2930 */
2931int select_nohz_load_balancer(int stop_tick)
2932{
2933 int cpu = smp_processor_id();
2934
2935 if (stop_tick) {
2936 cpu_set(cpu, nohz.cpu_mask);
2937 cpu_rq(cpu)->in_nohz_recently = 1;
2938
2939 /*
2940 * If we are going offline and still the leader, give up!
2941 */
2942 if (cpu_is_offline(cpu) &&
2943 atomic_read(&nohz.load_balancer) == cpu) {
2944 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2945 BUG();
2946 return 0;
2947 }
2948
2949 /* time for ilb owner also to sleep */
2950 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2951 if (atomic_read(&nohz.load_balancer) == cpu)
2952 atomic_set(&nohz.load_balancer, -1);
2953 return 0;
2954 }
2955
2956 if (atomic_read(&nohz.load_balancer) == -1) {
2957 /* make me the ilb owner */
2958 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2959 return 1;
2960 } else if (atomic_read(&nohz.load_balancer) == cpu)
2961 return 1;
2962 } else {
2963 if (!cpu_isset(cpu, nohz.cpu_mask))
2964 return 0;
2965
2966 cpu_clear(cpu, nohz.cpu_mask);
2967
2968 if (atomic_read(&nohz.load_balancer) == cpu)
2969 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2970 BUG();
2971 }
2972 return 0;
2973}
2974#endif
2975
2976static DEFINE_SPINLOCK(balancing);
2977
2978/*
Christoph Lameter7835b982006-12-10 02:20:22 -08002979 * It checks each scheduling domain to see if it is due to be balanced,
2980 * and initiates a balancing operation if so.
2981 *
2982 * Balancing parameters are set up in arch_init_sched_domains.
2983 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002984static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08002985{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002986 int balance = 1;
2987 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08002988 unsigned long interval;
2989 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002990 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08002991 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002992
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002993 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002994 if (!(sd->flags & SD_LOAD_BALANCE))
2995 continue;
2996
2997 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002998 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002999 interval *= sd->busy_factor;
3000
3001 /* scale ms to jiffies */
3002 interval = msecs_to_jiffies(interval);
3003 if (unlikely(!interval))
3004 interval = 1;
3005
Christoph Lameter08c183f2006-12-10 02:20:29 -08003006 if (sd->flags & SD_SERIALIZE) {
3007 if (!spin_trylock(&balancing))
3008 goto out;
3009 }
3010
Christoph Lameterc9819f42006-12-10 02:20:25 -08003011 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003012 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003013 /*
3014 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003015 * longer idle, or one of our SMT siblings is
3016 * not idle.
3017 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003018 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003020 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003021 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003022 if (sd->flags & SD_SERIALIZE)
3023 spin_unlock(&balancing);
3024out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003025 if (time_after(next_balance, sd->last_balance + interval))
3026 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003027
3028 /*
3029 * Stop the load balance at this level. There is another
3030 * CPU in our sched group which is doing load balancing more
3031 * actively.
3032 */
3033 if (!balance)
3034 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003035 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003036 rq->next_balance = next_balance;
3037}
3038
3039/*
3040 * run_rebalance_domains is triggered when needed from the scheduler tick.
3041 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3042 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3043 */
3044static void run_rebalance_domains(struct softirq_action *h)
3045{
3046 int local_cpu = smp_processor_id();
3047 struct rq *local_rq = cpu_rq(local_cpu);
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003048 enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003049
3050 rebalance_domains(local_cpu, idle);
3051
3052#ifdef CONFIG_NO_HZ
3053 /*
3054 * If this cpu is the owner for idle load balancing, then do the
3055 * balancing on behalf of the other idle cpus whose ticks are
3056 * stopped.
3057 */
3058 if (local_rq->idle_at_tick &&
3059 atomic_read(&nohz.load_balancer) == local_cpu) {
3060 cpumask_t cpus = nohz.cpu_mask;
3061 struct rq *rq;
3062 int balance_cpu;
3063
3064 cpu_clear(local_cpu, cpus);
3065 for_each_cpu_mask(balance_cpu, cpus) {
3066 /*
3067 * If this cpu gets work to do, stop the load balancing
3068 * work being done for other cpus. Next load
3069 * balancing owner will pick it up.
3070 */
3071 if (need_resched())
3072 break;
3073
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003074 rebalance_domains(balance_cpu, CPU_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003075
3076 rq = cpu_rq(balance_cpu);
3077 if (time_after(local_rq->next_balance, rq->next_balance))
3078 local_rq->next_balance = rq->next_balance;
3079 }
3080 }
3081#endif
3082}
3083
3084/*
3085 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3086 *
3087 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3088 * idle load balancing owner or decide to stop the periodic load balancing,
3089 * if the whole system is idle.
3090 */
3091static inline void trigger_load_balance(int cpu)
3092{
3093 struct rq *rq = cpu_rq(cpu);
3094#ifdef CONFIG_NO_HZ
3095 /*
3096 * If we were in the nohz mode recently and busy at the current
3097 * scheduler tick, then check if we need to nominate new idle
3098 * load balancer.
3099 */
3100 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3101 rq->in_nohz_recently = 0;
3102
3103 if (atomic_read(&nohz.load_balancer) == cpu) {
3104 cpu_clear(cpu, nohz.cpu_mask);
3105 atomic_set(&nohz.load_balancer, -1);
3106 }
3107
3108 if (atomic_read(&nohz.load_balancer) == -1) {
3109 /*
3110 * simple selection for now: Nominate the
3111 * first cpu in the nohz list to be the next
3112 * ilb owner.
3113 *
3114 * TBD: Traverse the sched domains and nominate
3115 * the nearest cpu in the nohz.cpu_mask.
3116 */
3117 int ilb = first_cpu(nohz.cpu_mask);
3118
3119 if (ilb != NR_CPUS)
3120 resched_cpu(ilb);
3121 }
3122 }
3123
3124 /*
3125 * If this cpu is idle and doing idle load balancing for all the
3126 * cpus with ticks stopped, is it time for that to stop?
3127 */
3128 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3129 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3130 resched_cpu(cpu);
3131 return;
3132 }
3133
3134 /*
3135 * If this cpu is idle and the idle load balancing is done by
3136 * someone else, then no need raise the SCHED_SOFTIRQ
3137 */
3138 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3139 cpu_isset(cpu, nohz.cpu_mask))
3140 return;
3141#endif
3142 if (time_after_eq(jiffies, rq->next_balance))
3143 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003144}
3145#else
3146/*
3147 * on UP we do not need to balance between CPUs:
3148 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003149static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003150{
3151}
3152#endif
3153
Linus Torvalds1da177e2005-04-16 15:20:36 -07003154DEFINE_PER_CPU(struct kernel_stat, kstat);
3155
3156EXPORT_PER_CPU_SYMBOL(kstat);
3157
3158/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003159 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3160 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003161 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003162unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003163{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003164 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003165 u64 ns, delta_exec;
3166 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003167
Ingo Molnar41b86e92007-07-09 18:51:58 +02003168 rq = task_rq_lock(p, &flags);
3169 ns = p->se.sum_exec_runtime;
3170 if (rq->curr == p) {
3171 delta_exec = rq_clock(rq) - p->se.exec_start;
3172 if ((s64)delta_exec > 0)
3173 ns += delta_exec;
3174 }
3175 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003176
Linus Torvalds1da177e2005-04-16 15:20:36 -07003177 return ns;
3178}
3179
3180/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003181 * We place interactive tasks back into the active array, if possible.
3182 *
3183 * To guarantee that this does not starve expired tasks we ignore the
3184 * interactivity of a task if the first expired task had to wait more
3185 * than a 'reasonable' amount of time. This deadline timeout is
3186 * load-dependent, as the frequency of array switched decreases with
3187 * increasing number of running tasks. We also ignore the interactivity
3188 * if a better static_prio task has expired:
3189 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003190static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003191{
3192 if (rq->curr->static_prio > rq->best_expired_prio)
3193 return 1;
3194 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3195 return 0;
3196 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3197 return 1;
3198 return 0;
3199}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003200
3201/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202 * Account user cpu time to a process.
3203 * @p: the process that the cpu time gets accounted to
3204 * @hardirq_offset: the offset to subtract from hardirq_count()
3205 * @cputime: the cpu time spent in user space since the last update
3206 */
3207void account_user_time(struct task_struct *p, cputime_t cputime)
3208{
3209 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3210 cputime64_t tmp;
3211
3212 p->utime = cputime_add(p->utime, cputime);
3213
3214 /* Add user time to cpustat. */
3215 tmp = cputime_to_cputime64(cputime);
3216 if (TASK_NICE(p) > 0)
3217 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3218 else
3219 cpustat->user = cputime64_add(cpustat->user, tmp);
3220}
3221
3222/*
3223 * Account system cpu time to a process.
3224 * @p: the process that the cpu time gets accounted to
3225 * @hardirq_offset: the offset to subtract from hardirq_count()
3226 * @cputime: the cpu time spent in kernel space since the last update
3227 */
3228void account_system_time(struct task_struct *p, int hardirq_offset,
3229 cputime_t cputime)
3230{
3231 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003232 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233 cputime64_t tmp;
3234
3235 p->stime = cputime_add(p->stime, cputime);
3236
3237 /* Add system time to cpustat. */
3238 tmp = cputime_to_cputime64(cputime);
3239 if (hardirq_count() - hardirq_offset)
3240 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3241 else if (softirq_count())
3242 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3243 else if (p != rq->idle)
3244 cpustat->system = cputime64_add(cpustat->system, tmp);
3245 else if (atomic_read(&rq->nr_iowait) > 0)
3246 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3247 else
3248 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3249 /* Account for system time used */
3250 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003251}
3252
3253/*
3254 * Account for involuntary wait time.
3255 * @p: the process from which the cpu time has been stolen
3256 * @steal: the cpu time spent in involuntary wait
3257 */
3258void account_steal_time(struct task_struct *p, cputime_t steal)
3259{
3260 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3261 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003262 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003263
3264 if (p == rq->idle) {
3265 p->stime = cputime_add(p->stime, steal);
3266 if (atomic_read(&rq->nr_iowait) > 0)
3267 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3268 else
3269 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3270 } else
3271 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3272}
3273
Christoph Lameter7835b982006-12-10 02:20:22 -08003274static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003275{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003276 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003277 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003278 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003279 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003280 }
3281 spin_lock(&rq->lock);
3282 /*
3283 * The task was running during this tick - update the
3284 * time slice counter. Note: we do not update a thread's
3285 * priority until it either goes to sleep or uses up its
3286 * timeslice. This makes it possible for interactive tasks
3287 * to use up their timeslices at their highest priority levels.
3288 */
3289 if (rt_task(p)) {
3290 /*
3291 * RR tasks need a special form of timeslice management.
3292 * FIFO tasks have no timeslices.
3293 */
3294 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3295 p->time_slice = task_timeslice(p);
3296 p->first_time_slice = 0;
3297 set_tsk_need_resched(p);
3298
3299 /* put it at the end of the queue: */
3300 requeue_task(p, rq->active);
3301 }
3302 goto out_unlock;
3303 }
3304 if (!--p->time_slice) {
3305 dequeue_task(p, rq->active);
3306 set_tsk_need_resched(p);
3307 p->prio = effective_prio(p);
3308 p->time_slice = task_timeslice(p);
3309 p->first_time_slice = 0;
3310
3311 if (!rq->expired_timestamp)
3312 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003313 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003314 enqueue_task(p, rq->expired);
3315 if (p->static_prio < rq->best_expired_prio)
3316 rq->best_expired_prio = p->static_prio;
3317 } else
3318 enqueue_task(p, rq->active);
3319 } else {
3320 /*
3321 * Prevent a too long timeslice allowing a task to monopolize
3322 * the CPU. We do this by splitting up the timeslice into
3323 * smaller pieces.
3324 *
3325 * Note: this does not mean the task's timeslices expire or
3326 * get lost in any way, they just might be preempted by
3327 * another task of equal priority. (one with higher
3328 * priority would have preempted this task already.) We
3329 * requeue this task to the end of the list on this priority
3330 * level, which is in essence a round-robin of tasks with
3331 * equal priority.
3332 *
3333 * This only applies to tasks in the interactive
3334 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3335 */
3336 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3337 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3338 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3339 (p->array == rq->active)) {
3340
3341 requeue_task(p, rq->active);
3342 set_tsk_need_resched(p);
3343 }
3344 }
3345out_unlock:
3346 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003347}
3348
3349/*
3350 * This function gets called by the timer code, with HZ frequency.
3351 * We call it with interrupts disabled.
3352 *
3353 * It also gets called by the fork code, when changing the parent's
3354 * timeslices.
3355 */
3356void scheduler_tick(void)
3357{
Christoph Lameter7835b982006-12-10 02:20:22 -08003358 struct task_struct *p = current;
3359 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003360 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003361 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003362
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003363 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003364 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003365#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003366 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003367 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003368 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003369#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003370}
3371
Linus Torvalds1da177e2005-04-16 15:20:36 -07003372#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3373
3374void fastcall add_preempt_count(int val)
3375{
3376 /*
3377 * Underflow?
3378 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003379 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3380 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003381 preempt_count() += val;
3382 /*
3383 * Spinlock count overflowing soon?
3384 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003385 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3386 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387}
3388EXPORT_SYMBOL(add_preempt_count);
3389
3390void fastcall sub_preempt_count(int val)
3391{
3392 /*
3393 * Underflow?
3394 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003395 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3396 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003397 /*
3398 * Is the spinlock portion underflowing?
3399 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003400 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3401 !(preempt_count() & PREEMPT_MASK)))
3402 return;
3403
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404 preempt_count() -= val;
3405}
3406EXPORT_SYMBOL(sub_preempt_count);
3407
3408#endif
3409
Con Kolivas3dee3862006-03-31 02:31:23 -08003410static inline int interactive_sleep(enum sleep_type sleep_type)
3411{
3412 return (sleep_type == SLEEP_INTERACTIVE ||
3413 sleep_type == SLEEP_INTERRUPTED);
3414}
3415
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416/*
3417 * schedule() is the main scheduler function.
3418 */
3419asmlinkage void __sched schedule(void)
3420{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003421 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003422 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003423 struct list_head *queue;
3424 unsigned long long now;
3425 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003426 int cpu, idx, new_prio;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003427 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003428 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003429
3430 /*
3431 * Test if we are atomic. Since do_exit() needs to call into
3432 * schedule() atomically, we ignore that path for now.
3433 * Otherwise, whine if we are scheduling when we should not be.
3434 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003435 if (unlikely(in_atomic() && !current->exit_state)) {
3436 printk(KERN_ERR "BUG: scheduling while atomic: "
3437 "%s/0x%08x/%d\n",
3438 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003439 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003440 if (irqs_disabled())
3441 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003442 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443 }
3444 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3445
3446need_resched:
3447 preempt_disable();
3448 prev = current;
3449 release_kernel_lock(prev);
3450need_resched_nonpreemptible:
3451 rq = this_rq();
3452
3453 /*
3454 * The idle thread is not allowed to schedule!
3455 * Remove this check after it has been exercised a bit.
3456 */
3457 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3458 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3459 dump_stack();
3460 }
3461
3462 schedstat_inc(rq, sched_cnt);
3463 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003464 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003465 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003466 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003467 run_time = 0;
3468 } else
3469 run_time = NS_MAX_SLEEP_AVG;
3470
3471 /*
3472 * Tasks charged proportionately less run_time at high sleep_avg to
3473 * delay them losing their interactive status
3474 */
3475 run_time /= (CURRENT_BONUS(prev) ? : 1);
3476
3477 spin_lock_irq(&rq->lock);
3478
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 switch_count = &prev->nivcsw;
3480 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3481 switch_count = &prev->nvcsw;
3482 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3483 unlikely(signal_pending(prev))))
3484 prev->state = TASK_RUNNING;
3485 else {
3486 if (prev->state == TASK_UNINTERRUPTIBLE)
3487 rq->nr_uninterruptible++;
3488 deactivate_task(prev, rq);
3489 }
3490 }
3491
3492 cpu = smp_processor_id();
3493 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003494 idle_balance(cpu, rq);
3495 if (!rq->nr_running) {
3496 next = rq->idle;
3497 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498 goto switch_tasks;
3499 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 }
3501
3502 array = rq->active;
3503 if (unlikely(!array->nr_active)) {
3504 /*
3505 * Switch the active and expired arrays.
3506 */
3507 schedstat_inc(rq, sched_switch);
3508 rq->active = rq->expired;
3509 rq->expired = array;
3510 array = rq->active;
3511 rq->expired_timestamp = 0;
3512 rq->best_expired_prio = MAX_PRIO;
3513 }
3514
3515 idx = sched_find_first_bit(array->bitmap);
3516 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003517 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518
Con Kolivas3dee3862006-03-31 02:31:23 -08003519 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003520 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003521 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522 delta = 0;
3523
Con Kolivas3dee3862006-03-31 02:31:23 -08003524 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3526
3527 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003528 new_prio = recalc_task_prio(next, next->timestamp + delta);
3529
3530 if (unlikely(next->prio != new_prio)) {
3531 dequeue_task(next, array);
3532 next->prio = new_prio;
3533 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003534 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003536 next->sleep_type = SLEEP_NORMAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537switch_tasks:
3538 if (next == rq->idle)
3539 schedstat_inc(rq, sched_goidle);
3540 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003541 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003542 clear_tsk_need_resched(prev);
3543 rcu_qsctr_inc(task_cpu(prev));
3544
Linus Torvalds1da177e2005-04-16 15:20:36 -07003545 prev->sleep_avg -= run_time;
3546 if ((long)prev->sleep_avg <= 0)
3547 prev->sleep_avg = 0;
3548 prev->timestamp = prev->last_ran = now;
3549
3550 sched_info_switch(prev, next);
3551 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003552 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 rq->nr_switches++;
3554 rq->curr = next;
3555 ++*switch_count;
3556
Nick Piggin4866cde2005-06-25 14:57:23 -07003557 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003558 prev = context_switch(rq, prev, next);
3559 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003560 /*
3561 * this_rq must be evaluated again because prev may have moved
3562 * CPUs since it called schedule(), thus the 'rq' on its stack
3563 * frame will be invalid.
3564 */
3565 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003566 } else
3567 spin_unlock_irq(&rq->lock);
3568
3569 prev = current;
3570 if (unlikely(reacquire_kernel_lock(prev) < 0))
3571 goto need_resched_nonpreemptible;
3572 preempt_enable_no_resched();
3573 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3574 goto need_resched;
3575}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576EXPORT_SYMBOL(schedule);
3577
3578#ifdef CONFIG_PREEMPT
3579/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003580 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003581 * off of preempt_enable. Kernel preemptions off return from interrupt
3582 * occur there and call schedule directly.
3583 */
3584asmlinkage void __sched preempt_schedule(void)
3585{
3586 struct thread_info *ti = current_thread_info();
3587#ifdef CONFIG_PREEMPT_BKL
3588 struct task_struct *task = current;
3589 int saved_lock_depth;
3590#endif
3591 /*
3592 * If there is a non-zero preempt_count or interrupts are disabled,
3593 * we do not want to preempt the current task. Just return..
3594 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003595 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003596 return;
3597
3598need_resched:
3599 add_preempt_count(PREEMPT_ACTIVE);
3600 /*
3601 * We keep the big kernel semaphore locked, but we
3602 * clear ->lock_depth so that schedule() doesnt
3603 * auto-release the semaphore:
3604 */
3605#ifdef CONFIG_PREEMPT_BKL
3606 saved_lock_depth = task->lock_depth;
3607 task->lock_depth = -1;
3608#endif
3609 schedule();
3610#ifdef CONFIG_PREEMPT_BKL
3611 task->lock_depth = saved_lock_depth;
3612#endif
3613 sub_preempt_count(PREEMPT_ACTIVE);
3614
3615 /* we could miss a preemption opportunity between schedule and now */
3616 barrier();
3617 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3618 goto need_resched;
3619}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003620EXPORT_SYMBOL(preempt_schedule);
3621
3622/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003623 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003624 * off of irq context.
3625 * Note, that this is called and return with irqs disabled. This will
3626 * protect us against recursive calling from irq.
3627 */
3628asmlinkage void __sched preempt_schedule_irq(void)
3629{
3630 struct thread_info *ti = current_thread_info();
3631#ifdef CONFIG_PREEMPT_BKL
3632 struct task_struct *task = current;
3633 int saved_lock_depth;
3634#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003635 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003636 BUG_ON(ti->preempt_count || !irqs_disabled());
3637
3638need_resched:
3639 add_preempt_count(PREEMPT_ACTIVE);
3640 /*
3641 * We keep the big kernel semaphore locked, but we
3642 * clear ->lock_depth so that schedule() doesnt
3643 * auto-release the semaphore:
3644 */
3645#ifdef CONFIG_PREEMPT_BKL
3646 saved_lock_depth = task->lock_depth;
3647 task->lock_depth = -1;
3648#endif
3649 local_irq_enable();
3650 schedule();
3651 local_irq_disable();
3652#ifdef CONFIG_PREEMPT_BKL
3653 task->lock_depth = saved_lock_depth;
3654#endif
3655 sub_preempt_count(PREEMPT_ACTIVE);
3656
3657 /* we could miss a preemption opportunity between schedule and now */
3658 barrier();
3659 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3660 goto need_resched;
3661}
3662
3663#endif /* CONFIG_PREEMPT */
3664
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003665int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3666 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003667{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003668 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003669}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670EXPORT_SYMBOL(default_wake_function);
3671
3672/*
3673 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3674 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3675 * number) then we wake all the non-exclusive tasks and one exclusive task.
3676 *
3677 * There are circumstances in which we can try to wake a task which has already
3678 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3679 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3680 */
3681static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3682 int nr_exclusive, int sync, void *key)
3683{
3684 struct list_head *tmp, *next;
3685
3686 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003687 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3688 unsigned flags = curr->flags;
3689
Linus Torvalds1da177e2005-04-16 15:20:36 -07003690 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003691 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003692 break;
3693 }
3694}
3695
3696/**
3697 * __wake_up - wake up threads blocked on a waitqueue.
3698 * @q: the waitqueue
3699 * @mode: which threads
3700 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003701 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003702 */
3703void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003704 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003705{
3706 unsigned long flags;
3707
3708 spin_lock_irqsave(&q->lock, flags);
3709 __wake_up_common(q, mode, nr_exclusive, 0, key);
3710 spin_unlock_irqrestore(&q->lock, flags);
3711}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003712EXPORT_SYMBOL(__wake_up);
3713
3714/*
3715 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3716 */
3717void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3718{
3719 __wake_up_common(q, mode, 1, 0, NULL);
3720}
3721
3722/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003723 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003724 * @q: the waitqueue
3725 * @mode: which threads
3726 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3727 *
3728 * The sync wakeup differs that the waker knows that it will schedule
3729 * away soon, so while the target thread will be woken up, it will not
3730 * be migrated to another CPU - ie. the two threads are 'synchronized'
3731 * with each other. This can prevent needless bouncing between CPUs.
3732 *
3733 * On UP it can prevent extra preemption.
3734 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003735void fastcall
3736__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003737{
3738 unsigned long flags;
3739 int sync = 1;
3740
3741 if (unlikely(!q))
3742 return;
3743
3744 if (unlikely(!nr_exclusive))
3745 sync = 0;
3746
3747 spin_lock_irqsave(&q->lock, flags);
3748 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3749 spin_unlock_irqrestore(&q->lock, flags);
3750}
3751EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3752
3753void fastcall complete(struct completion *x)
3754{
3755 unsigned long flags;
3756
3757 spin_lock_irqsave(&x->wait.lock, flags);
3758 x->done++;
3759 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3760 1, 0, NULL);
3761 spin_unlock_irqrestore(&x->wait.lock, flags);
3762}
3763EXPORT_SYMBOL(complete);
3764
3765void fastcall complete_all(struct completion *x)
3766{
3767 unsigned long flags;
3768
3769 spin_lock_irqsave(&x->wait.lock, flags);
3770 x->done += UINT_MAX/2;
3771 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3772 0, 0, NULL);
3773 spin_unlock_irqrestore(&x->wait.lock, flags);
3774}
3775EXPORT_SYMBOL(complete_all);
3776
3777void fastcall __sched wait_for_completion(struct completion *x)
3778{
3779 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003780
Linus Torvalds1da177e2005-04-16 15:20:36 -07003781 spin_lock_irq(&x->wait.lock);
3782 if (!x->done) {
3783 DECLARE_WAITQUEUE(wait, current);
3784
3785 wait.flags |= WQ_FLAG_EXCLUSIVE;
3786 __add_wait_queue_tail(&x->wait, &wait);
3787 do {
3788 __set_current_state(TASK_UNINTERRUPTIBLE);
3789 spin_unlock_irq(&x->wait.lock);
3790 schedule();
3791 spin_lock_irq(&x->wait.lock);
3792 } while (!x->done);
3793 __remove_wait_queue(&x->wait, &wait);
3794 }
3795 x->done--;
3796 spin_unlock_irq(&x->wait.lock);
3797}
3798EXPORT_SYMBOL(wait_for_completion);
3799
3800unsigned long fastcall __sched
3801wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3802{
3803 might_sleep();
3804
3805 spin_lock_irq(&x->wait.lock);
3806 if (!x->done) {
3807 DECLARE_WAITQUEUE(wait, current);
3808
3809 wait.flags |= WQ_FLAG_EXCLUSIVE;
3810 __add_wait_queue_tail(&x->wait, &wait);
3811 do {
3812 __set_current_state(TASK_UNINTERRUPTIBLE);
3813 spin_unlock_irq(&x->wait.lock);
3814 timeout = schedule_timeout(timeout);
3815 spin_lock_irq(&x->wait.lock);
3816 if (!timeout) {
3817 __remove_wait_queue(&x->wait, &wait);
3818 goto out;
3819 }
3820 } while (!x->done);
3821 __remove_wait_queue(&x->wait, &wait);
3822 }
3823 x->done--;
3824out:
3825 spin_unlock_irq(&x->wait.lock);
3826 return timeout;
3827}
3828EXPORT_SYMBOL(wait_for_completion_timeout);
3829
3830int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3831{
3832 int ret = 0;
3833
3834 might_sleep();
3835
3836 spin_lock_irq(&x->wait.lock);
3837 if (!x->done) {
3838 DECLARE_WAITQUEUE(wait, current);
3839
3840 wait.flags |= WQ_FLAG_EXCLUSIVE;
3841 __add_wait_queue_tail(&x->wait, &wait);
3842 do {
3843 if (signal_pending(current)) {
3844 ret = -ERESTARTSYS;
3845 __remove_wait_queue(&x->wait, &wait);
3846 goto out;
3847 }
3848 __set_current_state(TASK_INTERRUPTIBLE);
3849 spin_unlock_irq(&x->wait.lock);
3850 schedule();
3851 spin_lock_irq(&x->wait.lock);
3852 } while (!x->done);
3853 __remove_wait_queue(&x->wait, &wait);
3854 }
3855 x->done--;
3856out:
3857 spin_unlock_irq(&x->wait.lock);
3858
3859 return ret;
3860}
3861EXPORT_SYMBOL(wait_for_completion_interruptible);
3862
3863unsigned long fastcall __sched
3864wait_for_completion_interruptible_timeout(struct completion *x,
3865 unsigned long timeout)
3866{
3867 might_sleep();
3868
3869 spin_lock_irq(&x->wait.lock);
3870 if (!x->done) {
3871 DECLARE_WAITQUEUE(wait, current);
3872
3873 wait.flags |= WQ_FLAG_EXCLUSIVE;
3874 __add_wait_queue_tail(&x->wait, &wait);
3875 do {
3876 if (signal_pending(current)) {
3877 timeout = -ERESTARTSYS;
3878 __remove_wait_queue(&x->wait, &wait);
3879 goto out;
3880 }
3881 __set_current_state(TASK_INTERRUPTIBLE);
3882 spin_unlock_irq(&x->wait.lock);
3883 timeout = schedule_timeout(timeout);
3884 spin_lock_irq(&x->wait.lock);
3885 if (!timeout) {
3886 __remove_wait_queue(&x->wait, &wait);
3887 goto out;
3888 }
3889 } while (!x->done);
3890 __remove_wait_queue(&x->wait, &wait);
3891 }
3892 x->done--;
3893out:
3894 spin_unlock_irq(&x->wait.lock);
3895 return timeout;
3896}
3897EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3898
3899
3900#define SLEEP_ON_VAR \
3901 unsigned long flags; \
3902 wait_queue_t wait; \
3903 init_waitqueue_entry(&wait, current);
3904
3905#define SLEEP_ON_HEAD \
3906 spin_lock_irqsave(&q->lock,flags); \
3907 __add_wait_queue(q, &wait); \
3908 spin_unlock(&q->lock);
3909
3910#define SLEEP_ON_TAIL \
3911 spin_lock_irq(&q->lock); \
3912 __remove_wait_queue(q, &wait); \
3913 spin_unlock_irqrestore(&q->lock, flags);
3914
3915void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3916{
3917 SLEEP_ON_VAR
3918
3919 current->state = TASK_INTERRUPTIBLE;
3920
3921 SLEEP_ON_HEAD
3922 schedule();
3923 SLEEP_ON_TAIL
3924}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003925EXPORT_SYMBOL(interruptible_sleep_on);
3926
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003927long fastcall __sched
3928interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003929{
3930 SLEEP_ON_VAR
3931
3932 current->state = TASK_INTERRUPTIBLE;
3933
3934 SLEEP_ON_HEAD
3935 timeout = schedule_timeout(timeout);
3936 SLEEP_ON_TAIL
3937
3938 return timeout;
3939}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003940EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3941
3942void fastcall __sched sleep_on(wait_queue_head_t *q)
3943{
3944 SLEEP_ON_VAR
3945
3946 current->state = TASK_UNINTERRUPTIBLE;
3947
3948 SLEEP_ON_HEAD
3949 schedule();
3950 SLEEP_ON_TAIL
3951}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003952EXPORT_SYMBOL(sleep_on);
3953
3954long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3955{
3956 SLEEP_ON_VAR
3957
3958 current->state = TASK_UNINTERRUPTIBLE;
3959
3960 SLEEP_ON_HEAD
3961 timeout = schedule_timeout(timeout);
3962 SLEEP_ON_TAIL
3963
3964 return timeout;
3965}
3966
3967EXPORT_SYMBOL(sleep_on_timeout);
3968
Ingo Molnarb29739f2006-06-27 02:54:51 -07003969#ifdef CONFIG_RT_MUTEXES
3970
3971/*
3972 * rt_mutex_setprio - set the current priority of a task
3973 * @p: task
3974 * @prio: prio value (kernel-internal form)
3975 *
3976 * This function changes the 'effective' priority of a task. It does
3977 * not touch ->normal_prio like __setscheduler().
3978 *
3979 * Used by the rt_mutex code to implement priority inheritance logic.
3980 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003981void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003982{
Ingo Molnar70b97a72006-07-03 00:25:42 -07003983 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003984 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003985 struct rq *rq;
Andrew Mortond5f9f942007-05-08 20:27:06 -07003986 int oldprio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003987
3988 BUG_ON(prio < 0 || prio > MAX_PRIO);
3989
3990 rq = task_rq_lock(p, &flags);
3991
Andrew Mortond5f9f942007-05-08 20:27:06 -07003992 oldprio = p->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003993 array = p->array;
3994 if (array)
3995 dequeue_task(p, array);
3996 p->prio = prio;
3997
3998 if (array) {
3999 /*
4000 * If changing to an RT priority then queue it
4001 * in the active array!
4002 */
4003 if (rt_task(p))
4004 array = rq->active;
4005 enqueue_task(p, array);
4006 /*
4007 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004008 * our priority decreased, or if we are not currently running on
4009 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07004010 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004011 if (task_running(rq, p)) {
4012 if (p->prio > oldprio)
4013 resched_task(rq->curr);
4014 } else if (TASK_PREEMPTS_CURR(p, rq))
Ingo Molnarb29739f2006-06-27 02:54:51 -07004015 resched_task(rq->curr);
4016 }
4017 task_rq_unlock(rq, &flags);
4018}
4019
4020#endif
4021
Ingo Molnar36c8b582006-07-03 00:25:41 -07004022void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004023{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004024 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004025 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004026 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004027 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028
4029 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4030 return;
4031 /*
4032 * We have to be careful, if called from sys_setpriority(),
4033 * the task might be in the middle of scheduling on another CPU.
4034 */
4035 rq = task_rq_lock(p, &flags);
4036 /*
4037 * The RT priorities are set via sched_setscheduler(), but we still
4038 * allow the 'normal' nice value to be set - but as expected
4039 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004040 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004041 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004042 if (has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004043 p->static_prio = NICE_TO_PRIO(nice);
4044 goto out_unlock;
4045 }
4046 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004047 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004048 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004049 dec_raw_weighted_load(rq, p);
4050 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004051
Linus Torvalds1da177e2005-04-16 15:20:36 -07004052 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004053 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004054 old_prio = p->prio;
4055 p->prio = effective_prio(p);
4056 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004057
4058 if (array) {
4059 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004060 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004061 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004062 * If the task increased its priority or is running and
4063 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004064 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004065 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004066 resched_task(rq->curr);
4067 }
4068out_unlock:
4069 task_rq_unlock(rq, &flags);
4070}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004071EXPORT_SYMBOL(set_user_nice);
4072
Matt Mackalle43379f2005-05-01 08:59:00 -07004073/*
4074 * can_nice - check if a task can reduce its nice value
4075 * @p: task
4076 * @nice: nice value
4077 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004078int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004079{
Matt Mackall024f4742005-08-18 11:24:19 -07004080 /* convert nice value [19,-20] to rlimit style value [1,40] */
4081 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004082
Matt Mackalle43379f2005-05-01 08:59:00 -07004083 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4084 capable(CAP_SYS_NICE));
4085}
4086
Linus Torvalds1da177e2005-04-16 15:20:36 -07004087#ifdef __ARCH_WANT_SYS_NICE
4088
4089/*
4090 * sys_nice - change the priority of the current process.
4091 * @increment: priority increment
4092 *
4093 * sys_setpriority is a more generic, but much slower function that
4094 * does similar things.
4095 */
4096asmlinkage long sys_nice(int increment)
4097{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004098 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004099
4100 /*
4101 * Setpriority might change our priority at the same moment.
4102 * We don't have to worry. Conceptually one call occurs first
4103 * and we have a single winner.
4104 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004105 if (increment < -40)
4106 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004107 if (increment > 40)
4108 increment = 40;
4109
4110 nice = PRIO_TO_NICE(current->static_prio) + increment;
4111 if (nice < -20)
4112 nice = -20;
4113 if (nice > 19)
4114 nice = 19;
4115
Matt Mackalle43379f2005-05-01 08:59:00 -07004116 if (increment < 0 && !can_nice(current, nice))
4117 return -EPERM;
4118
Linus Torvalds1da177e2005-04-16 15:20:36 -07004119 retval = security_task_setnice(current, nice);
4120 if (retval)
4121 return retval;
4122
4123 set_user_nice(current, nice);
4124 return 0;
4125}
4126
4127#endif
4128
4129/**
4130 * task_prio - return the priority value of a given task.
4131 * @p: the task in question.
4132 *
4133 * This is the priority value as seen by users in /proc.
4134 * RT tasks are offset by -200. Normal tasks are centered
4135 * around 0, value goes from -16 to +15.
4136 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004137int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004138{
4139 return p->prio - MAX_RT_PRIO;
4140}
4141
4142/**
4143 * task_nice - return the nice value of a given task.
4144 * @p: the task in question.
4145 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004146int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004147{
4148 return TASK_NICE(p);
4149}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004150EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004151
4152/**
4153 * idle_cpu - is a given cpu idle currently?
4154 * @cpu: the processor in question.
4155 */
4156int idle_cpu(int cpu)
4157{
4158 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4159}
4160
Linus Torvalds1da177e2005-04-16 15:20:36 -07004161/**
4162 * idle_task - return the idle task for a given cpu.
4163 * @cpu: the processor in question.
4164 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004165struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004166{
4167 return cpu_rq(cpu)->idle;
4168}
4169
4170/**
4171 * find_process_by_pid - find a process with a matching PID value.
4172 * @pid: the pid in question.
4173 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004174static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004175{
4176 return pid ? find_task_by_pid(pid) : current;
4177}
4178
4179/* Actually do priority change: must hold rq lock. */
4180static void __setscheduler(struct task_struct *p, int policy, int prio)
4181{
4182 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004183
Linus Torvalds1da177e2005-04-16 15:20:36 -07004184 p->policy = policy;
4185 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004186 p->normal_prio = normal_prio(p);
4187 /* we are holding p->pi_lock already */
4188 p->prio = rt_mutex_getprio(p);
4189 /*
4190 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4191 */
4192 if (policy == SCHED_BATCH)
4193 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004194 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004195}
4196
4197/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004198 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004199 * @p: the task in question.
4200 * @policy: new policy.
4201 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004202 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004203 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004204 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004205int sched_setscheduler(struct task_struct *p, int policy,
4206 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004208 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004209 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004210 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004211 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004212
Steven Rostedt66e53932006-06-27 02:54:44 -07004213 /* may grab non-irq protected spin_locks */
4214 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004215recheck:
4216 /* double check policy once rq lock held */
4217 if (policy < 0)
4218 policy = oldpolicy = p->policy;
4219 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004220 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4221 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004222 /*
4223 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004224 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4225 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004226 */
4227 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004228 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004229 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004230 return -EINVAL;
Oleg Nesterov57a6f512006-09-29 02:00:49 -07004231 if (is_rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004232 return -EINVAL;
4233
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004234 /*
4235 * Allow unprivileged RT tasks to decrease priority:
4236 */
4237 if (!capable(CAP_SYS_NICE)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004238 if (is_rt_policy(policy)) {
4239 unsigned long rlim_rtprio;
4240 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004241
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004242 if (!lock_task_sighand(p, &flags))
4243 return -ESRCH;
4244 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4245 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004246
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004247 /* can't set/change the rt policy */
4248 if (policy != p->policy && !rlim_rtprio)
4249 return -EPERM;
4250
4251 /* can't increase priority */
4252 if (param->sched_priority > p->rt_priority &&
4253 param->sched_priority > rlim_rtprio)
4254 return -EPERM;
4255 }
4256
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004257 /* can't change other user's priorities */
4258 if ((current->euid != p->euid) &&
4259 (current->euid != p->uid))
4260 return -EPERM;
4261 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004262
4263 retval = security_task_setscheduler(p, policy, param);
4264 if (retval)
4265 return retval;
4266 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004267 * make sure no PI-waiters arrive (or leave) while we are
4268 * changing the priority of the task:
4269 */
4270 spin_lock_irqsave(&p->pi_lock, flags);
4271 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004272 * To be able to change p->policy safely, the apropriate
4273 * runqueue lock must be held.
4274 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004275 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004276 /* recheck policy now with rq lock held */
4277 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4278 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004279 __task_rq_unlock(rq);
4280 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004281 goto recheck;
4282 }
4283 array = p->array;
4284 if (array)
4285 deactivate_task(p, rq);
4286 oldprio = p->prio;
4287 __setscheduler(p, policy, param->sched_priority);
4288 if (array) {
4289 __activate_task(p, rq);
4290 /*
4291 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004292 * our priority decreased, or if we are not currently running on
4293 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004294 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004295 if (task_running(rq, p)) {
4296 if (p->prio > oldprio)
4297 resched_task(rq->curr);
4298 } else if (TASK_PREEMPTS_CURR(p, rq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004299 resched_task(rq->curr);
4300 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004301 __task_rq_unlock(rq);
4302 spin_unlock_irqrestore(&p->pi_lock, flags);
4303
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004304 rt_mutex_adjust_pi(p);
4305
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306 return 0;
4307}
4308EXPORT_SYMBOL_GPL(sched_setscheduler);
4309
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004310static int
4311do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004312{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004313 struct sched_param lparam;
4314 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004315 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004316
4317 if (!param || pid < 0)
4318 return -EINVAL;
4319 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4320 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004321
4322 rcu_read_lock();
4323 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004324 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004325 if (p != NULL)
4326 retval = sched_setscheduler(p, policy, &lparam);
4327 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004328
Linus Torvalds1da177e2005-04-16 15:20:36 -07004329 return retval;
4330}
4331
4332/**
4333 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4334 * @pid: the pid in question.
4335 * @policy: new policy.
4336 * @param: structure containing the new RT priority.
4337 */
4338asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4339 struct sched_param __user *param)
4340{
Jason Baronc21761f2006-01-18 17:43:03 -08004341 /* negative values for policy are not valid */
4342 if (policy < 0)
4343 return -EINVAL;
4344
Linus Torvalds1da177e2005-04-16 15:20:36 -07004345 return do_sched_setscheduler(pid, policy, param);
4346}
4347
4348/**
4349 * sys_sched_setparam - set/change the RT priority of a thread
4350 * @pid: the pid in question.
4351 * @param: structure containing the new RT priority.
4352 */
4353asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4354{
4355 return do_sched_setscheduler(pid, -1, param);
4356}
4357
4358/**
4359 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4360 * @pid: the pid in question.
4361 */
4362asmlinkage long sys_sched_getscheduler(pid_t pid)
4363{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004364 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004365 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004366
4367 if (pid < 0)
4368 goto out_nounlock;
4369
4370 retval = -ESRCH;
4371 read_lock(&tasklist_lock);
4372 p = find_process_by_pid(pid);
4373 if (p) {
4374 retval = security_task_getscheduler(p);
4375 if (!retval)
4376 retval = p->policy;
4377 }
4378 read_unlock(&tasklist_lock);
4379
4380out_nounlock:
4381 return retval;
4382}
4383
4384/**
4385 * sys_sched_getscheduler - get the RT priority of a thread
4386 * @pid: the pid in question.
4387 * @param: structure containing the RT priority.
4388 */
4389asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4390{
4391 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004392 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004393 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004394
4395 if (!param || pid < 0)
4396 goto out_nounlock;
4397
4398 read_lock(&tasklist_lock);
4399 p = find_process_by_pid(pid);
4400 retval = -ESRCH;
4401 if (!p)
4402 goto out_unlock;
4403
4404 retval = security_task_getscheduler(p);
4405 if (retval)
4406 goto out_unlock;
4407
4408 lp.sched_priority = p->rt_priority;
4409 read_unlock(&tasklist_lock);
4410
4411 /*
4412 * This one might sleep, we cannot do it with a spinlock held ...
4413 */
4414 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4415
4416out_nounlock:
4417 return retval;
4418
4419out_unlock:
4420 read_unlock(&tasklist_lock);
4421 return retval;
4422}
4423
4424long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4425{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004426 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004427 struct task_struct *p;
4428 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004429
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004430 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004431 read_lock(&tasklist_lock);
4432
4433 p = find_process_by_pid(pid);
4434 if (!p) {
4435 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004436 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004437 return -ESRCH;
4438 }
4439
4440 /*
4441 * It is not safe to call set_cpus_allowed with the
4442 * tasklist_lock held. We will bump the task_struct's
4443 * usage count and then drop tasklist_lock.
4444 */
4445 get_task_struct(p);
4446 read_unlock(&tasklist_lock);
4447
4448 retval = -EPERM;
4449 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4450 !capable(CAP_SYS_NICE))
4451 goto out_unlock;
4452
David Quigleye7834f82006-06-23 02:03:59 -07004453 retval = security_task_setscheduler(p, 0, NULL);
4454 if (retval)
4455 goto out_unlock;
4456
Linus Torvalds1da177e2005-04-16 15:20:36 -07004457 cpus_allowed = cpuset_cpus_allowed(p);
4458 cpus_and(new_mask, new_mask, cpus_allowed);
4459 retval = set_cpus_allowed(p, new_mask);
4460
4461out_unlock:
4462 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004463 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004464 return retval;
4465}
4466
4467static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4468 cpumask_t *new_mask)
4469{
4470 if (len < sizeof(cpumask_t)) {
4471 memset(new_mask, 0, sizeof(cpumask_t));
4472 } else if (len > sizeof(cpumask_t)) {
4473 len = sizeof(cpumask_t);
4474 }
4475 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4476}
4477
4478/**
4479 * sys_sched_setaffinity - set the cpu affinity of a process
4480 * @pid: pid of the process
4481 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4482 * @user_mask_ptr: user-space pointer to the new cpu mask
4483 */
4484asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4485 unsigned long __user *user_mask_ptr)
4486{
4487 cpumask_t new_mask;
4488 int retval;
4489
4490 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4491 if (retval)
4492 return retval;
4493
4494 return sched_setaffinity(pid, new_mask);
4495}
4496
4497/*
4498 * Represents all cpu's present in the system
4499 * In systems capable of hotplug, this map could dynamically grow
4500 * as new cpu's are detected in the system via any platform specific
4501 * method, such as ACPI for e.g.
4502 */
4503
Andi Kleen4cef0c62006-01-11 22:44:57 +01004504cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004505EXPORT_SYMBOL(cpu_present_map);
4506
4507#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004508cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004509EXPORT_SYMBOL(cpu_online_map);
4510
Andi Kleen4cef0c62006-01-11 22:44:57 +01004511cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004512EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004513#endif
4514
4515long sched_getaffinity(pid_t pid, cpumask_t *mask)
4516{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004517 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004518 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004519
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004520 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004521 read_lock(&tasklist_lock);
4522
4523 retval = -ESRCH;
4524 p = find_process_by_pid(pid);
4525 if (!p)
4526 goto out_unlock;
4527
David Quigleye7834f82006-06-23 02:03:59 -07004528 retval = security_task_getscheduler(p);
4529 if (retval)
4530 goto out_unlock;
4531
Jack Steiner2f7016d2006-02-01 03:05:18 -08004532 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004533
4534out_unlock:
4535 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004536 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004537 if (retval)
4538 return retval;
4539
4540 return 0;
4541}
4542
4543/**
4544 * sys_sched_getaffinity - get the cpu affinity of a process
4545 * @pid: pid of the process
4546 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4547 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4548 */
4549asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4550 unsigned long __user *user_mask_ptr)
4551{
4552 int ret;
4553 cpumask_t mask;
4554
4555 if (len < sizeof(cpumask_t))
4556 return -EINVAL;
4557
4558 ret = sched_getaffinity(pid, &mask);
4559 if (ret < 0)
4560 return ret;
4561
4562 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4563 return -EFAULT;
4564
4565 return sizeof(cpumask_t);
4566}
4567
4568/**
4569 * sys_sched_yield - yield the current processor to other threads.
4570 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004571 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004572 * to the expired array. If there are no other threads running on this
4573 * CPU then this function will return.
4574 */
4575asmlinkage long sys_sched_yield(void)
4576{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004577 struct rq *rq = this_rq_lock();
4578 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004579
4580 schedstat_inc(rq, yld_cnt);
4581 /*
4582 * We implement yielding by moving the task into the expired
4583 * queue.
4584 *
4585 * (special rule: RT tasks will just roundrobin in the active
4586 * array.)
4587 */
4588 if (rt_task(current))
4589 target = rq->active;
4590
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004591 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004592 schedstat_inc(rq, yld_act_empty);
4593 if (!rq->expired->nr_active)
4594 schedstat_inc(rq, yld_both_empty);
4595 } else if (!rq->expired->nr_active)
4596 schedstat_inc(rq, yld_exp_empty);
4597
4598 if (array != target) {
4599 dequeue_task(current, array);
4600 enqueue_task(current, target);
4601 } else
4602 /*
4603 * requeue_task is cheaper so perform that if possible.
4604 */
4605 requeue_task(current, array);
4606
4607 /*
4608 * Since we are going to call schedule() anyway, there's
4609 * no need to preempt or enable interrupts:
4610 */
4611 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004612 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004613 _raw_spin_unlock(&rq->lock);
4614 preempt_enable_no_resched();
4615
4616 schedule();
4617
4618 return 0;
4619}
4620
Andrew Mortone7b38402006-06-30 01:56:00 -07004621static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004622{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004623#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4624 __might_sleep(__FILE__, __LINE__);
4625#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004626 /*
4627 * The BKS might be reacquired before we have dropped
4628 * PREEMPT_ACTIVE, which could trigger a second
4629 * cond_resched() call.
4630 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631 do {
4632 add_preempt_count(PREEMPT_ACTIVE);
4633 schedule();
4634 sub_preempt_count(PREEMPT_ACTIVE);
4635 } while (need_resched());
4636}
4637
4638int __sched cond_resched(void)
4639{
Ingo Molnar94142322006-12-29 16:48:13 -08004640 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4641 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004642 __cond_resched();
4643 return 1;
4644 }
4645 return 0;
4646}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004647EXPORT_SYMBOL(cond_resched);
4648
4649/*
4650 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4651 * call schedule, and on return reacquire the lock.
4652 *
4653 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4654 * operations here to prevent schedule() from being called twice (once via
4655 * spin_unlock(), once by hand).
4656 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004657int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004658{
Jan Kara6df3cec2005-06-13 15:52:32 -07004659 int ret = 0;
4660
Linus Torvalds1da177e2005-04-16 15:20:36 -07004661 if (need_lockbreak(lock)) {
4662 spin_unlock(lock);
4663 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004664 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004665 spin_lock(lock);
4666 }
Ingo Molnar94142322006-12-29 16:48:13 -08004667 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004668 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004669 _raw_spin_unlock(lock);
4670 preempt_enable_no_resched();
4671 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004672 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004673 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004674 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004675 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004676}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004677EXPORT_SYMBOL(cond_resched_lock);
4678
4679int __sched cond_resched_softirq(void)
4680{
4681 BUG_ON(!in_softirq());
4682
Ingo Molnar94142322006-12-29 16:48:13 -08004683 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d825672007-05-23 13:58:18 -07004684 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004685 __cond_resched();
4686 local_bh_disable();
4687 return 1;
4688 }
4689 return 0;
4690}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004691EXPORT_SYMBOL(cond_resched_softirq);
4692
Linus Torvalds1da177e2005-04-16 15:20:36 -07004693/**
4694 * yield - yield the current processor to other threads.
4695 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004696 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004697 * thread runnable and calls sys_sched_yield().
4698 */
4699void __sched yield(void)
4700{
4701 set_current_state(TASK_RUNNING);
4702 sys_sched_yield();
4703}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004704EXPORT_SYMBOL(yield);
4705
4706/*
4707 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4708 * that process accounting knows that this is a task in IO wait state.
4709 *
4710 * But don't do that if it is a deliberate, throttling IO wait (this task
4711 * has set its backing_dev_info: the queue against which it should throttle)
4712 */
4713void __sched io_schedule(void)
4714{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004715 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004716
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004717 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004718 atomic_inc(&rq->nr_iowait);
4719 schedule();
4720 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004721 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004722}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004723EXPORT_SYMBOL(io_schedule);
4724
4725long __sched io_schedule_timeout(long timeout)
4726{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004727 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004728 long ret;
4729
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004730 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004731 atomic_inc(&rq->nr_iowait);
4732 ret = schedule_timeout(timeout);
4733 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004734 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004735 return ret;
4736}
4737
4738/**
4739 * sys_sched_get_priority_max - return maximum RT priority.
4740 * @policy: scheduling class.
4741 *
4742 * this syscall returns the maximum rt_priority that can be used
4743 * by a given scheduling class.
4744 */
4745asmlinkage long sys_sched_get_priority_max(int policy)
4746{
4747 int ret = -EINVAL;
4748
4749 switch (policy) {
4750 case SCHED_FIFO:
4751 case SCHED_RR:
4752 ret = MAX_USER_RT_PRIO-1;
4753 break;
4754 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004755 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004756 ret = 0;
4757 break;
4758 }
4759 return ret;
4760}
4761
4762/**
4763 * sys_sched_get_priority_min - return minimum RT priority.
4764 * @policy: scheduling class.
4765 *
4766 * this syscall returns the minimum rt_priority that can be used
4767 * by a given scheduling class.
4768 */
4769asmlinkage long sys_sched_get_priority_min(int policy)
4770{
4771 int ret = -EINVAL;
4772
4773 switch (policy) {
4774 case SCHED_FIFO:
4775 case SCHED_RR:
4776 ret = 1;
4777 break;
4778 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004779 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004780 ret = 0;
4781 }
4782 return ret;
4783}
4784
4785/**
4786 * sys_sched_rr_get_interval - return the default timeslice of a process.
4787 * @pid: pid of the process.
4788 * @interval: userspace pointer to the timeslice value.
4789 *
4790 * this syscall writes the default timeslice value of a given process
4791 * into the user-space timespec buffer. A value of '0' means infinity.
4792 */
4793asmlinkage
4794long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4795{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004796 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004797 int retval = -EINVAL;
4798 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004799
4800 if (pid < 0)
4801 goto out_nounlock;
4802
4803 retval = -ESRCH;
4804 read_lock(&tasklist_lock);
4805 p = find_process_by_pid(pid);
4806 if (!p)
4807 goto out_unlock;
4808
4809 retval = security_task_getscheduler(p);
4810 if (retval)
4811 goto out_unlock;
4812
Peter Williamsb78709c2006-06-26 16:58:00 +10004813 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004814 0 : task_timeslice(p), &t);
4815 read_unlock(&tasklist_lock);
4816 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4817out_nounlock:
4818 return retval;
4819out_unlock:
4820 read_unlock(&tasklist_lock);
4821 return retval;
4822}
4823
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004824static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004825
4826static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004827{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004828 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004829 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004830
Linus Torvalds1da177e2005-04-16 15:20:36 -07004831 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004832 printk("%-13.13s %c", p->comm,
4833 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004834#if (BITS_PER_LONG == 32)
4835 if (state == TASK_RUNNING)
4836 printk(" running ");
4837 else
4838 printk(" %08lX ", thread_saved_pc(p));
4839#else
4840 if (state == TASK_RUNNING)
4841 printk(" running task ");
4842 else
4843 printk(" %016lx ", thread_saved_pc(p));
4844#endif
4845#ifdef CONFIG_DEBUG_STACK_USAGE
4846 {
Al Viro10ebffd2005-11-13 16:06:56 -08004847 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004848 while (!*n)
4849 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004850 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004851 }
4852#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004853 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004854 if (!p->mm)
4855 printk(" (L-TLB)\n");
4856 else
4857 printk(" (NOTLB)\n");
4858
4859 if (state != TASK_RUNNING)
4860 show_stack(p, NULL);
4861}
4862
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004863void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004864{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004865 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004866
4867#if (BITS_PER_LONG == 32)
4868 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004869 " free sibling\n");
4870 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004871#else
4872 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004873 " free sibling\n");
4874 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004875#endif
4876 read_lock(&tasklist_lock);
4877 do_each_thread(g, p) {
4878 /*
4879 * reset the NMI-timeout, listing all files on a slow
4880 * console might take alot of time:
4881 */
4882 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004883 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004884 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004885 } while_each_thread(g, p);
4886
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004887 touch_all_softlockup_watchdogs();
4888
Linus Torvalds1da177e2005-04-16 15:20:36 -07004889 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004890 /*
4891 * Only show locks if all tasks are dumped:
4892 */
4893 if (state_filter == -1)
4894 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004895}
4896
Ingo Molnar1df21052007-07-09 18:51:58 +02004897void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4898{
4899 /* nothing yet */
4900}
4901
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004902/**
4903 * init_idle - set up an idle thread for a given CPU
4904 * @idle: task in question
4905 * @cpu: cpu the idle task belongs to
4906 *
4907 * NOTE: this function does not set the idle thread's NEED_RESCHED
4908 * flag, to make booting more robust.
4909 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004910void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004911{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004912 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004913 unsigned long flags;
4914
Ingo Molnar81c29a82006-03-07 21:55:27 -08004915 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004916 idle->sleep_avg = 0;
4917 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004918 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004919 idle->state = TASK_RUNNING;
4920 idle->cpus_allowed = cpumask_of_cpu(cpu);
4921 set_task_cpu(idle, cpu);
4922
4923 spin_lock_irqsave(&rq->lock, flags);
4924 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004925#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4926 idle->oncpu = 1;
4927#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004928 spin_unlock_irqrestore(&rq->lock, flags);
4929
4930 /* Set the preempt count _outside_ the spinlocks! */
4931#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004932 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004933#else
Al Viroa1261f52005-11-13 16:06:55 -08004934 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004935#endif
4936}
4937
4938/*
4939 * In a system that switches off the HZ timer nohz_cpu_mask
4940 * indicates which cpus entered this state. This is used
4941 * in the rcu update to wait only for active cpus. For system
4942 * which do not switch off the HZ timer nohz_cpu_mask should
4943 * always be CPU_MASK_NONE.
4944 */
4945cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4946
4947#ifdef CONFIG_SMP
4948/*
4949 * This is how migration works:
4950 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004951 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004952 * runqueue and wake up that CPU's migration thread.
4953 * 2) we down() the locked semaphore => thread blocks.
4954 * 3) migration thread wakes up (implicitly it forces the migrated
4955 * thread off the CPU)
4956 * 4) it gets the migration request and checks whether the migrated
4957 * task is still in the wrong runqueue.
4958 * 5) if it's in the wrong runqueue then the migration thread removes
4959 * it and puts it into the right queue.
4960 * 6) migration thread up()s the semaphore.
4961 * 7) we wake up and the migration is done.
4962 */
4963
4964/*
4965 * Change a given task's CPU affinity. Migrate the thread to a
4966 * proper CPU and schedule it away if the CPU it's executing on
4967 * is removed from the allowed bitmask.
4968 *
4969 * NOTE: the caller must have a valid reference to the task, the
4970 * task must not exit() & deallocate itself prematurely. The
4971 * call is not atomic; no spinlocks may be held.
4972 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004973int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004974{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004975 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004976 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004977 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004978 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004979
4980 rq = task_rq_lock(p, &flags);
4981 if (!cpus_intersects(new_mask, cpu_online_map)) {
4982 ret = -EINVAL;
4983 goto out;
4984 }
4985
4986 p->cpus_allowed = new_mask;
4987 /* Can the task run on the task's current CPU? If so, we're done */
4988 if (cpu_isset(task_cpu(p), new_mask))
4989 goto out;
4990
4991 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4992 /* Need help from migration thread: drop lock and wait. */
4993 task_rq_unlock(rq, &flags);
4994 wake_up_process(rq->migration_thread);
4995 wait_for_completion(&req.done);
4996 tlb_migrate_finish(p->mm);
4997 return 0;
4998 }
4999out:
5000 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005001
Linus Torvalds1da177e2005-04-16 15:20:36 -07005002 return ret;
5003}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005004EXPORT_SYMBOL_GPL(set_cpus_allowed);
5005
5006/*
5007 * Move (not current) task off this cpu, onto dest cpu. We're doing
5008 * this because either it can't run here any more (set_cpus_allowed()
5009 * away from this CPU, or CPU going down), or because we're
5010 * attempting to rebalance this task on exec (sched_exec).
5011 *
5012 * So we race with normal scheduler movements, but that's OK, as long
5013 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07005014 *
5015 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005016 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07005017static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005018{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005019 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07005020 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005021
5022 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005023 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005024
5025 rq_src = cpu_rq(src_cpu);
5026 rq_dest = cpu_rq(dest_cpu);
5027
5028 double_rq_lock(rq_src, rq_dest);
5029 /* Already moved. */
5030 if (task_cpu(p) != src_cpu)
5031 goto out;
5032 /* Affinity changed (again). */
5033 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5034 goto out;
5035
5036 set_task_cpu(p, dest_cpu);
5037 if (p->array) {
5038 /*
5039 * Sync timestamp with rq_dest's before activating.
5040 * The same thing could be achieved by doing this step
5041 * afterwards, and pretending it was a local activate.
5042 * This way is cleaner and logically correct.
5043 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005044 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5045 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005046 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005047 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005048 if (TASK_PREEMPTS_CURR(p, rq_dest))
5049 resched_task(rq_dest->curr);
5050 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005051 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005052out:
5053 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005054 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005055}
5056
5057/*
5058 * migration_thread - this is a highprio system thread that performs
5059 * thread migration by bumping thread off CPU then 'pushing' onto
5060 * another runqueue.
5061 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005062static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005063{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005064 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005065 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005066
5067 rq = cpu_rq(cpu);
5068 BUG_ON(rq->migration_thread != current);
5069
5070 set_current_state(TASK_INTERRUPTIBLE);
5071 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005072 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005073 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005074
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005075 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005076
5077 spin_lock_irq(&rq->lock);
5078
5079 if (cpu_is_offline(cpu)) {
5080 spin_unlock_irq(&rq->lock);
5081 goto wait_to_die;
5082 }
5083
5084 if (rq->active_balance) {
5085 active_load_balance(rq, cpu);
5086 rq->active_balance = 0;
5087 }
5088
5089 head = &rq->migration_queue;
5090
5091 if (list_empty(head)) {
5092 spin_unlock_irq(&rq->lock);
5093 schedule();
5094 set_current_state(TASK_INTERRUPTIBLE);
5095 continue;
5096 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005097 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005098 list_del_init(head->next);
5099
Nick Piggin674311d2005-06-25 14:57:27 -07005100 spin_unlock(&rq->lock);
5101 __migrate_task(req->task, cpu, req->dest_cpu);
5102 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005103
5104 complete(&req->done);
5105 }
5106 __set_current_state(TASK_RUNNING);
5107 return 0;
5108
5109wait_to_die:
5110 /* Wait for kthread_stop */
5111 set_current_state(TASK_INTERRUPTIBLE);
5112 while (!kthread_should_stop()) {
5113 schedule();
5114 set_current_state(TASK_INTERRUPTIBLE);
5115 }
5116 __set_current_state(TASK_RUNNING);
5117 return 0;
5118}
5119
5120#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005121/*
5122 * Figure out where task on dead CPU should go, use force if neccessary.
5123 * NOTE: interrupts should be disabled by the caller
5124 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005125static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005126{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005127 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005128 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005129 struct rq *rq;
5130 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005131
Kirill Korotaevefc30812006-06-27 02:54:32 -07005132restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005133 /* On same node? */
5134 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005135 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005136 dest_cpu = any_online_cpu(mask);
5137
5138 /* On any allowed CPU? */
5139 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005140 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005141
5142 /* No more Mr. Nice Guy. */
5143 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005144 rq = task_rq_lock(p, &flags);
5145 cpus_setall(p->cpus_allowed);
5146 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005147 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005148
5149 /*
5150 * Don't tell them about moving exiting tasks or
5151 * kernel threads (both mm NULL), since they never
5152 * leave kernel.
5153 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005154 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005155 printk(KERN_INFO "process %d (%s) no "
5156 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005157 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005158 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005159 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005160 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005161}
5162
5163/*
5164 * While a dead CPU has no uninterruptible tasks queued at this point,
5165 * it might still have a nonzero ->nr_uninterruptible counter, because
5166 * for performance reasons the counter is not stricly tracking tasks to
5167 * their home CPUs. So we just add the counter to another CPU's counter,
5168 * to keep the global sum constant after CPU-down:
5169 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005170static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005171{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005172 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005173 unsigned long flags;
5174
5175 local_irq_save(flags);
5176 double_rq_lock(rq_src, rq_dest);
5177 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5178 rq_src->nr_uninterruptible = 0;
5179 double_rq_unlock(rq_src, rq_dest);
5180 local_irq_restore(flags);
5181}
5182
5183/* Run through task list and migrate tasks from the dead cpu. */
5184static void migrate_live_tasks(int src_cpu)
5185{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005186 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187
5188 write_lock_irq(&tasklist_lock);
5189
Ingo Molnar48f24c42006-07-03 00:25:40 -07005190 do_each_thread(t, p) {
5191 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005192 continue;
5193
Ingo Molnar48f24c42006-07-03 00:25:40 -07005194 if (task_cpu(p) == src_cpu)
5195 move_task_off_dead_cpu(src_cpu, p);
5196 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005197
5198 write_unlock_irq(&tasklist_lock);
5199}
5200
5201/* Schedules idle task to be the next runnable task on current CPU.
5202 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005203 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005204 */
5205void sched_idle_next(void)
5206{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005207 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005208 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005209 struct task_struct *p = rq->idle;
5210 unsigned long flags;
5211
5212 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005213 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005214
Ingo Molnar48f24c42006-07-03 00:25:40 -07005215 /*
5216 * Strictly not necessary since rest of the CPUs are stopped by now
5217 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005218 */
5219 spin_lock_irqsave(&rq->lock, flags);
5220
5221 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005222
5223 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005224 __activate_idle_task(p, rq);
5225
5226 spin_unlock_irqrestore(&rq->lock, flags);
5227}
5228
Ingo Molnar48f24c42006-07-03 00:25:40 -07005229/*
5230 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005231 * offline.
5232 */
5233void idle_task_exit(void)
5234{
5235 struct mm_struct *mm = current->active_mm;
5236
5237 BUG_ON(cpu_online(smp_processor_id()));
5238
5239 if (mm != &init_mm)
5240 switch_mm(mm, &init_mm, current);
5241 mmdrop(mm);
5242}
5243
Kirill Korotaev054b9102006-12-10 02:20:11 -08005244/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005245static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005246{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005247 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005248
5249 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005250 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005251
5252 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005253 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005254
Ingo Molnar48f24c42006-07-03 00:25:40 -07005255 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005256
5257 /*
5258 * Drop lock around migration; if someone else moves it,
5259 * that's OK. No task can be added to this CPU, so iteration is
5260 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005261 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005262 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005263 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005264 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005265 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005266
Ingo Molnar48f24c42006-07-03 00:25:40 -07005267 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005268}
5269
5270/* release_task() removes task from tasklist, so we won't find dead tasks. */
5271static void migrate_dead_tasks(unsigned int dead_cpu)
5272{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005273 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005274 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005275
5276 for (arr = 0; arr < 2; arr++) {
5277 for (i = 0; i < MAX_PRIO; i++) {
5278 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005279
Linus Torvalds1da177e2005-04-16 15:20:36 -07005280 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005281 migrate_dead(dead_cpu, list_entry(list->next,
5282 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005283 }
5284 }
5285}
5286#endif /* CONFIG_HOTPLUG_CPU */
5287
5288/*
5289 * migration_call - callback that gets triggered when a CPU is added.
5290 * Here we can start up the necessary migration thread for the new CPU.
5291 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005292static int __cpuinit
5293migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005294{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005295 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005296 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005297 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005298 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005299
5300 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005301 case CPU_LOCK_ACQUIRE:
5302 mutex_lock(&sched_hotcpu_mutex);
5303 break;
5304
Linus Torvalds1da177e2005-04-16 15:20:36 -07005305 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005306 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005307 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5308 if (IS_ERR(p))
5309 return NOTIFY_BAD;
5310 p->flags |= PF_NOFREEZE;
5311 kthread_bind(p, cpu);
5312 /* Must be high prio: stop_machine expects to yield to it. */
5313 rq = task_rq_lock(p, &flags);
5314 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5315 task_rq_unlock(rq, &flags);
5316 cpu_rq(cpu)->migration_thread = p;
5317 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005318
Linus Torvalds1da177e2005-04-16 15:20:36 -07005319 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005320 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005321 /* Strictly unneccessary, as first user will wake it. */
5322 wake_up_process(cpu_rq(cpu)->migration_thread);
5323 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005324
Linus Torvalds1da177e2005-04-16 15:20:36 -07005325#ifdef CONFIG_HOTPLUG_CPU
5326 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005327 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005328 if (!cpu_rq(cpu)->migration_thread)
5329 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005330 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005331 kthread_bind(cpu_rq(cpu)->migration_thread,
5332 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005333 kthread_stop(cpu_rq(cpu)->migration_thread);
5334 cpu_rq(cpu)->migration_thread = NULL;
5335 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005336
Linus Torvalds1da177e2005-04-16 15:20:36 -07005337 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005338 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005339 migrate_live_tasks(cpu);
5340 rq = cpu_rq(cpu);
5341 kthread_stop(rq->migration_thread);
5342 rq->migration_thread = NULL;
5343 /* Idle task back to normal (off runqueue, low prio) */
5344 rq = task_rq_lock(rq->idle, &flags);
5345 deactivate_task(rq->idle, rq);
5346 rq->idle->static_prio = MAX_PRIO;
5347 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5348 migrate_dead_tasks(cpu);
5349 task_rq_unlock(rq, &flags);
5350 migrate_nr_uninterruptible(rq);
5351 BUG_ON(rq->nr_running != 0);
5352
5353 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005354 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005355 * the requestors. */
5356 spin_lock_irq(&rq->lock);
5357 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005358 struct migration_req *req;
5359
Linus Torvalds1da177e2005-04-16 15:20:36 -07005360 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005361 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005362 list_del_init(&req->list);
5363 complete(&req->done);
5364 }
5365 spin_unlock_irq(&rq->lock);
5366 break;
5367#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005368 case CPU_LOCK_RELEASE:
5369 mutex_unlock(&sched_hotcpu_mutex);
5370 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005371 }
5372 return NOTIFY_OK;
5373}
5374
5375/* Register at highest priority so that task migration (migrate_all_tasks)
5376 * happens before everything else.
5377 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005378static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005379 .notifier_call = migration_call,
5380 .priority = 10
5381};
5382
5383int __init migration_init(void)
5384{
5385 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005386 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005387
5388 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005389 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5390 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005391 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5392 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005393
Linus Torvalds1da177e2005-04-16 15:20:36 -07005394 return 0;
5395}
5396#endif
5397
5398#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005399
5400/* Number of possible processor ids */
5401int nr_cpu_ids __read_mostly = NR_CPUS;
5402EXPORT_SYMBOL(nr_cpu_ids);
5403
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005404#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005405#ifdef SCHED_DOMAIN_DEBUG
5406static void sched_domain_debug(struct sched_domain *sd, int cpu)
5407{
5408 int level = 0;
5409
Nick Piggin41c7ce92005-06-25 14:57:24 -07005410 if (!sd) {
5411 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5412 return;
5413 }
5414
Linus Torvalds1da177e2005-04-16 15:20:36 -07005415 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5416
5417 do {
5418 int i;
5419 char str[NR_CPUS];
5420 struct sched_group *group = sd->groups;
5421 cpumask_t groupmask;
5422
5423 cpumask_scnprintf(str, NR_CPUS, sd->span);
5424 cpus_clear(groupmask);
5425
5426 printk(KERN_DEBUG);
5427 for (i = 0; i < level + 1; i++)
5428 printk(" ");
5429 printk("domain %d: ", level);
5430
5431 if (!(sd->flags & SD_LOAD_BALANCE)) {
5432 printk("does not load-balance\n");
5433 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005434 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5435 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005436 break;
5437 }
5438
5439 printk("span %s\n", str);
5440
5441 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005442 printk(KERN_ERR "ERROR: domain->span does not contain "
5443 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005444 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005445 printk(KERN_ERR "ERROR: domain->groups does not contain"
5446 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005447
5448 printk(KERN_DEBUG);
5449 for (i = 0; i < level + 2; i++)
5450 printk(" ");
5451 printk("groups:");
5452 do {
5453 if (!group) {
5454 printk("\n");
5455 printk(KERN_ERR "ERROR: group is NULL\n");
5456 break;
5457 }
5458
Eric Dumazet5517d862007-05-08 00:32:57 -07005459 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005460 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005461 printk(KERN_ERR "ERROR: domain->cpu_power not "
5462 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005463 }
5464
5465 if (!cpus_weight(group->cpumask)) {
5466 printk("\n");
5467 printk(KERN_ERR "ERROR: empty group\n");
5468 }
5469
5470 if (cpus_intersects(groupmask, group->cpumask)) {
5471 printk("\n");
5472 printk(KERN_ERR "ERROR: repeated CPUs\n");
5473 }
5474
5475 cpus_or(groupmask, groupmask, group->cpumask);
5476
5477 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5478 printk(" %s", str);
5479
5480 group = group->next;
5481 } while (group != sd->groups);
5482 printk("\n");
5483
5484 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005485 printk(KERN_ERR "ERROR: groups don't span "
5486 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005487
5488 level++;
5489 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005490 if (!sd)
5491 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005492
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005493 if (!cpus_subset(groupmask, sd->span))
5494 printk(KERN_ERR "ERROR: parent span is not a superset "
5495 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005496
5497 } while (sd);
5498}
5499#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005500# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005501#endif
5502
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005503static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005504{
5505 if (cpus_weight(sd->span) == 1)
5506 return 1;
5507
5508 /* Following flags need at least 2 groups */
5509 if (sd->flags & (SD_LOAD_BALANCE |
5510 SD_BALANCE_NEWIDLE |
5511 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005512 SD_BALANCE_EXEC |
5513 SD_SHARE_CPUPOWER |
5514 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005515 if (sd->groups != sd->groups->next)
5516 return 0;
5517 }
5518
5519 /* Following flags don't use groups */
5520 if (sd->flags & (SD_WAKE_IDLE |
5521 SD_WAKE_AFFINE |
5522 SD_WAKE_BALANCE))
5523 return 0;
5524
5525 return 1;
5526}
5527
Ingo Molnar48f24c42006-07-03 00:25:40 -07005528static int
5529sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005530{
5531 unsigned long cflags = sd->flags, pflags = parent->flags;
5532
5533 if (sd_degenerate(parent))
5534 return 1;
5535
5536 if (!cpus_equal(sd->span, parent->span))
5537 return 0;
5538
5539 /* Does parent contain flags not in child? */
5540 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5541 if (cflags & SD_WAKE_AFFINE)
5542 pflags &= ~SD_WAKE_BALANCE;
5543 /* Flags needing groups don't count if only 1 group in parent */
5544 if (parent->groups == parent->groups->next) {
5545 pflags &= ~(SD_LOAD_BALANCE |
5546 SD_BALANCE_NEWIDLE |
5547 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005548 SD_BALANCE_EXEC |
5549 SD_SHARE_CPUPOWER |
5550 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005551 }
5552 if (~cflags & pflags)
5553 return 0;
5554
5555 return 1;
5556}
5557
Linus Torvalds1da177e2005-04-16 15:20:36 -07005558/*
5559 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5560 * hold the hotplug lock.
5561 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005562static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005563{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005564 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005565 struct sched_domain *tmp;
5566
5567 /* Remove the sched domains which do not contribute to scheduling. */
5568 for (tmp = sd; tmp; tmp = tmp->parent) {
5569 struct sched_domain *parent = tmp->parent;
5570 if (!parent)
5571 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005572 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005573 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005574 if (parent->parent)
5575 parent->parent->child = tmp;
5576 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005577 }
5578
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005579 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005580 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005581 if (sd)
5582 sd->child = NULL;
5583 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005584
5585 sched_domain_debug(sd, cpu);
5586
Nick Piggin674311d2005-06-25 14:57:27 -07005587 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005588}
5589
5590/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005591static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005592
5593/* Setup the mask of cpus configured for isolated domains */
5594static int __init isolated_cpu_setup(char *str)
5595{
5596 int ints[NR_CPUS], i;
5597
5598 str = get_options(str, ARRAY_SIZE(ints), ints);
5599 cpus_clear(cpu_isolated_map);
5600 for (i = 1; i <= ints[0]; i++)
5601 if (ints[i] < NR_CPUS)
5602 cpu_set(ints[i], cpu_isolated_map);
5603 return 1;
5604}
5605
5606__setup ("isolcpus=", isolated_cpu_setup);
5607
5608/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005609 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5610 * to a function which identifies what group(along with sched group) a CPU
5611 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5612 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005613 *
5614 * init_sched_build_groups will build a circular linked list of the groups
5615 * covered by the given span, and will set each group's ->cpumask correctly,
5616 * and ->cpu_power to 0.
5617 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005618static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005619init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5620 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5621 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005622{
5623 struct sched_group *first = NULL, *last = NULL;
5624 cpumask_t covered = CPU_MASK_NONE;
5625 int i;
5626
5627 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005628 struct sched_group *sg;
5629 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005630 int j;
5631
5632 if (cpu_isset(i, covered))
5633 continue;
5634
5635 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005636 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005637
5638 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005639 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005640 continue;
5641
5642 cpu_set(j, covered);
5643 cpu_set(j, sg->cpumask);
5644 }
5645 if (!first)
5646 first = sg;
5647 if (last)
5648 last->next = sg;
5649 last = sg;
5650 }
5651 last->next = first;
5652}
5653
John Hawkes9c1cfda2005-09-06 15:18:14 -07005654#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005655
John Hawkes9c1cfda2005-09-06 15:18:14 -07005656#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005657
John Hawkes9c1cfda2005-09-06 15:18:14 -07005658/**
5659 * find_next_best_node - find the next node to include in a sched_domain
5660 * @node: node whose sched_domain we're building
5661 * @used_nodes: nodes already in the sched_domain
5662 *
5663 * Find the next node to include in a given scheduling domain. Simply
5664 * finds the closest node not already in the @used_nodes map.
5665 *
5666 * Should use nodemask_t.
5667 */
5668static int find_next_best_node(int node, unsigned long *used_nodes)
5669{
5670 int i, n, val, min_val, best_node = 0;
5671
5672 min_val = INT_MAX;
5673
5674 for (i = 0; i < MAX_NUMNODES; i++) {
5675 /* Start at @node */
5676 n = (node + i) % MAX_NUMNODES;
5677
5678 if (!nr_cpus_node(n))
5679 continue;
5680
5681 /* Skip already used nodes */
5682 if (test_bit(n, used_nodes))
5683 continue;
5684
5685 /* Simple min distance search */
5686 val = node_distance(node, n);
5687
5688 if (val < min_val) {
5689 min_val = val;
5690 best_node = n;
5691 }
5692 }
5693
5694 set_bit(best_node, used_nodes);
5695 return best_node;
5696}
5697
5698/**
5699 * sched_domain_node_span - get a cpumask for a node's sched_domain
5700 * @node: node whose cpumask we're constructing
5701 * @size: number of nodes to include in this span
5702 *
5703 * Given a node, construct a good cpumask for its sched_domain to span. It
5704 * should be one that prevents unnecessary balancing, but also spreads tasks
5705 * out optimally.
5706 */
5707static cpumask_t sched_domain_node_span(int node)
5708{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005709 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005710 cpumask_t span, nodemask;
5711 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005712
5713 cpus_clear(span);
5714 bitmap_zero(used_nodes, MAX_NUMNODES);
5715
5716 nodemask = node_to_cpumask(node);
5717 cpus_or(span, span, nodemask);
5718 set_bit(node, used_nodes);
5719
5720 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5721 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005722
John Hawkes9c1cfda2005-09-06 15:18:14 -07005723 nodemask = node_to_cpumask(next_node);
5724 cpus_or(span, span, nodemask);
5725 }
5726
5727 return span;
5728}
5729#endif
5730
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005731int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005732
John Hawkes9c1cfda2005-09-06 15:18:14 -07005733/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005734 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005735 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005736#ifdef CONFIG_SCHED_SMT
5737static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005738static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005739
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005740static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5741 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005742{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005743 if (sg)
5744 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005745 return cpu;
5746}
5747#endif
5748
Ingo Molnar48f24c42006-07-03 00:25:40 -07005749/*
5750 * multi-core sched-domains:
5751 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005752#ifdef CONFIG_SCHED_MC
5753static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005754static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005755#endif
5756
5757#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005758static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5759 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005760{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005761 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005762 cpumask_t mask = cpu_sibling_map[cpu];
5763 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005764 group = first_cpu(mask);
5765 if (sg)
5766 *sg = &per_cpu(sched_group_core, group);
5767 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005768}
5769#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005770static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5771 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005772{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005773 if (sg)
5774 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005775 return cpu;
5776}
5777#endif
5778
Linus Torvalds1da177e2005-04-16 15:20:36 -07005779static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005780static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005781
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005782static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5783 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005784{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005785 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005786#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005787 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005788 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005789 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005790#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005791 cpumask_t mask = cpu_sibling_map[cpu];
5792 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005793 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005794#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005795 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005796#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005797 if (sg)
5798 *sg = &per_cpu(sched_group_phys, group);
5799 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005800}
5801
5802#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005803/*
5804 * The init_sched_build_groups can't handle what we want to do with node
5805 * groups, so roll our own. Now each node has its own list of groups which
5806 * gets dynamically allocated.
5807 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005808static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005809static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005810
5811static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005812static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005813
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005814static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5815 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005816{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005817 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5818 int group;
5819
5820 cpus_and(nodemask, nodemask, *cpu_map);
5821 group = first_cpu(nodemask);
5822
5823 if (sg)
5824 *sg = &per_cpu(sched_group_allnodes, group);
5825 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005826}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005827
Siddha, Suresh B08069032006-03-27 01:15:23 -08005828static void init_numa_sched_groups_power(struct sched_group *group_head)
5829{
5830 struct sched_group *sg = group_head;
5831 int j;
5832
5833 if (!sg)
5834 return;
5835next_sg:
5836 for_each_cpu_mask(j, sg->cpumask) {
5837 struct sched_domain *sd;
5838
5839 sd = &per_cpu(phys_domains, j);
5840 if (j != first_cpu(sd->groups->cpumask)) {
5841 /*
5842 * Only add "power" once for each
5843 * physical package.
5844 */
5845 continue;
5846 }
5847
Eric Dumazet5517d862007-05-08 00:32:57 -07005848 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005849 }
5850 sg = sg->next;
5851 if (sg != group_head)
5852 goto next_sg;
5853}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005854#endif
5855
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005856#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005857/* Free memory allocated for various sched_group structures */
5858static void free_sched_groups(const cpumask_t *cpu_map)
5859{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005860 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005861
5862 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005863 struct sched_group **sched_group_nodes
5864 = sched_group_nodes_bycpu[cpu];
5865
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005866 if (!sched_group_nodes)
5867 continue;
5868
5869 for (i = 0; i < MAX_NUMNODES; i++) {
5870 cpumask_t nodemask = node_to_cpumask(i);
5871 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5872
5873 cpus_and(nodemask, nodemask, *cpu_map);
5874 if (cpus_empty(nodemask))
5875 continue;
5876
5877 if (sg == NULL)
5878 continue;
5879 sg = sg->next;
5880next_sg:
5881 oldsg = sg;
5882 sg = sg->next;
5883 kfree(oldsg);
5884 if (oldsg != sched_group_nodes[i])
5885 goto next_sg;
5886 }
5887 kfree(sched_group_nodes);
5888 sched_group_nodes_bycpu[cpu] = NULL;
5889 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005890}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005891#else
5892static void free_sched_groups(const cpumask_t *cpu_map)
5893{
5894}
5895#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005896
Linus Torvalds1da177e2005-04-16 15:20:36 -07005897/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005898 * Initialize sched groups cpu_power.
5899 *
5900 * cpu_power indicates the capacity of sched group, which is used while
5901 * distributing the load between different sched groups in a sched domain.
5902 * Typically cpu_power for all the groups in a sched domain will be same unless
5903 * there are asymmetries in the topology. If there are asymmetries, group
5904 * having more cpu_power will pickup more load compared to the group having
5905 * less cpu_power.
5906 *
5907 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5908 * the maximum number of tasks a group can handle in the presence of other idle
5909 * or lightly loaded groups in the same sched domain.
5910 */
5911static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5912{
5913 struct sched_domain *child;
5914 struct sched_group *group;
5915
5916 WARN_ON(!sd || !sd->groups);
5917
5918 if (cpu != first_cpu(sd->groups->cpumask))
5919 return;
5920
5921 child = sd->child;
5922
Eric Dumazet5517d862007-05-08 00:32:57 -07005923 sd->groups->__cpu_power = 0;
5924
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005925 /*
5926 * For perf policy, if the groups in child domain share resources
5927 * (for example cores sharing some portions of the cache hierarchy
5928 * or SMT), then set this domain groups cpu_power such that each group
5929 * can handle only one task, when there are other idle groups in the
5930 * same sched domain.
5931 */
5932 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5933 (child->flags &
5934 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07005935 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005936 return;
5937 }
5938
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005939 /*
5940 * add cpu_power of each child group to this groups cpu_power
5941 */
5942 group = child->groups;
5943 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07005944 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005945 group = group->next;
5946 } while (group != child->groups);
5947}
5948
5949/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005950 * Build sched domains for a given set of cpus and attach the sched domains
5951 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005952 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005953static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005954{
5955 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005956 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07005957#ifdef CONFIG_NUMA
5958 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005959 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07005960
5961 /*
5962 * Allocate the per-node list of sched groups
5963 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005964 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07005965 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07005966 if (!sched_group_nodes) {
5967 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005968 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07005969 }
5970 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5971#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005972
5973 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005974 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005975 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005976 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005977 struct sched_domain *sd = NULL, *p;
5978 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5979
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005980 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005981
5982#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07005983 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005984 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5985 sd = &per_cpu(allnodes_domains, i);
5986 *sd = SD_ALLNODES_INIT;
5987 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005988 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005989 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005990 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005991 } else
5992 p = NULL;
5993
Linus Torvalds1da177e2005-04-16 15:20:36 -07005994 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005995 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005996 sd->span = sched_domain_node_span(cpu_to_node(i));
5997 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005998 if (p)
5999 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006000 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006001#endif
6002
6003 p = sd;
6004 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006005 *sd = SD_CPU_INIT;
6006 sd->span = nodemask;
6007 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006008 if (p)
6009 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006010 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006011
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006012#ifdef CONFIG_SCHED_MC
6013 p = sd;
6014 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006015 *sd = SD_MC_INIT;
6016 sd->span = cpu_coregroup_map(i);
6017 cpus_and(sd->span, sd->span, *cpu_map);
6018 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006019 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006020 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006021#endif
6022
Linus Torvalds1da177e2005-04-16 15:20:36 -07006023#ifdef CONFIG_SCHED_SMT
6024 p = sd;
6025 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006026 *sd = SD_SIBLING_INIT;
6027 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006028 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006029 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006030 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006031 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006032#endif
6033 }
6034
6035#ifdef CONFIG_SCHED_SMT
6036 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006037 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006038 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006039 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006040 if (i != first_cpu(this_sibling_map))
6041 continue;
6042
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006043 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006044 }
6045#endif
6046
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006047#ifdef CONFIG_SCHED_MC
6048 /* Set up multi-core groups */
6049 for_each_cpu_mask(i, *cpu_map) {
6050 cpumask_t this_core_map = cpu_coregroup_map(i);
6051 cpus_and(this_core_map, this_core_map, *cpu_map);
6052 if (i != first_cpu(this_core_map))
6053 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006054 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006055 }
6056#endif
6057
6058
Linus Torvalds1da177e2005-04-16 15:20:36 -07006059 /* Set up physical groups */
6060 for (i = 0; i < MAX_NUMNODES; i++) {
6061 cpumask_t nodemask = node_to_cpumask(i);
6062
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006063 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006064 if (cpus_empty(nodemask))
6065 continue;
6066
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006067 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006068 }
6069
6070#ifdef CONFIG_NUMA
6071 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006072 if (sd_allnodes)
6073 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006074
6075 for (i = 0; i < MAX_NUMNODES; i++) {
6076 /* Set up node groups */
6077 struct sched_group *sg, *prev;
6078 cpumask_t nodemask = node_to_cpumask(i);
6079 cpumask_t domainspan;
6080 cpumask_t covered = CPU_MASK_NONE;
6081 int j;
6082
6083 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006084 if (cpus_empty(nodemask)) {
6085 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006086 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006087 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006088
6089 domainspan = sched_domain_node_span(i);
6090 cpus_and(domainspan, domainspan, *cpu_map);
6091
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006092 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006093 if (!sg) {
6094 printk(KERN_WARNING "Can not alloc domain group for "
6095 "node %d\n", i);
6096 goto error;
6097 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006098 sched_group_nodes[i] = sg;
6099 for_each_cpu_mask(j, nodemask) {
6100 struct sched_domain *sd;
6101 sd = &per_cpu(node_domains, j);
6102 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006103 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006104 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006105 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006106 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006107 cpus_or(covered, covered, nodemask);
6108 prev = sg;
6109
6110 for (j = 0; j < MAX_NUMNODES; j++) {
6111 cpumask_t tmp, notcovered;
6112 int n = (i + j) % MAX_NUMNODES;
6113
6114 cpus_complement(notcovered, covered);
6115 cpus_and(tmp, notcovered, *cpu_map);
6116 cpus_and(tmp, tmp, domainspan);
6117 if (cpus_empty(tmp))
6118 break;
6119
6120 nodemask = node_to_cpumask(n);
6121 cpus_and(tmp, tmp, nodemask);
6122 if (cpus_empty(tmp))
6123 continue;
6124
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006125 sg = kmalloc_node(sizeof(struct sched_group),
6126 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006127 if (!sg) {
6128 printk(KERN_WARNING
6129 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006130 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006131 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006132 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006133 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006134 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006135 cpus_or(covered, covered, tmp);
6136 prev->next = sg;
6137 prev = sg;
6138 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006139 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006140#endif
6141
6142 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006143#ifdef CONFIG_SCHED_SMT
6144 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006145 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006146 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006147 }
6148#endif
6149#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006150 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006151 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006152 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006153 }
6154#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006155
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006156 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006157 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006158 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006159 }
6160
John Hawkes9c1cfda2005-09-06 15:18:14 -07006161#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006162 for (i = 0; i < MAX_NUMNODES; i++)
6163 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006164
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006165 if (sd_allnodes) {
6166 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006167
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006168 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006169 init_numa_sched_groups_power(sg);
6170 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006171#endif
6172
Linus Torvalds1da177e2005-04-16 15:20:36 -07006173 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006174 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006175 struct sched_domain *sd;
6176#ifdef CONFIG_SCHED_SMT
6177 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006178#elif defined(CONFIG_SCHED_MC)
6179 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006180#else
6181 sd = &per_cpu(phys_domains, i);
6182#endif
6183 cpu_attach_domain(sd, i);
6184 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006185
6186 return 0;
6187
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006188#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006189error:
6190 free_sched_groups(cpu_map);
6191 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006192#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006193}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006194/*
6195 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6196 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006197static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006198{
6199 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006200 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006201
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006202 /*
6203 * Setup mask for cpus without special case scheduling requirements.
6204 * For now this just excludes isolated cpus, but could be used to
6205 * exclude other special cases in the future.
6206 */
6207 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6208
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006209 err = build_sched_domains(&cpu_default_map);
6210
6211 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006212}
6213
6214static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006215{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006216 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006217}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006218
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006219/*
6220 * Detach sched domains from a group of cpus specified in cpu_map
6221 * These cpus will now be attached to the NULL domain
6222 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006223static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006224{
6225 int i;
6226
6227 for_each_cpu_mask(i, *cpu_map)
6228 cpu_attach_domain(NULL, i);
6229 synchronize_sched();
6230 arch_destroy_sched_domains(cpu_map);
6231}
6232
6233/*
6234 * Partition sched domains as specified by the cpumasks below.
6235 * This attaches all cpus from the cpumasks to the NULL domain,
6236 * waits for a RCU quiescent period, recalculates sched
6237 * domain information and then attaches them back to the
6238 * correct sched domains
6239 * Call with hotplug lock held
6240 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006241int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006242{
6243 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006244 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006245
6246 cpus_and(*partition1, *partition1, cpu_online_map);
6247 cpus_and(*partition2, *partition2, cpu_online_map);
6248 cpus_or(change_map, *partition1, *partition2);
6249
6250 /* Detach sched domains from all of the affected cpus */
6251 detach_destroy_domains(&change_map);
6252 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006253 err = build_sched_domains(partition1);
6254 if (!err && !cpus_empty(*partition2))
6255 err = build_sched_domains(partition2);
6256
6257 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006258}
6259
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006260#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6261int arch_reinit_sched_domains(void)
6262{
6263 int err;
6264
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006265 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006266 detach_destroy_domains(&cpu_online_map);
6267 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006268 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006269
6270 return err;
6271}
6272
6273static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6274{
6275 int ret;
6276
6277 if (buf[0] != '0' && buf[0] != '1')
6278 return -EINVAL;
6279
6280 if (smt)
6281 sched_smt_power_savings = (buf[0] == '1');
6282 else
6283 sched_mc_power_savings = (buf[0] == '1');
6284
6285 ret = arch_reinit_sched_domains();
6286
6287 return ret ? ret : count;
6288}
6289
6290int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6291{
6292 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006293
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006294#ifdef CONFIG_SCHED_SMT
6295 if (smt_capable())
6296 err = sysfs_create_file(&cls->kset.kobj,
6297 &attr_sched_smt_power_savings.attr);
6298#endif
6299#ifdef CONFIG_SCHED_MC
6300 if (!err && mc_capable())
6301 err = sysfs_create_file(&cls->kset.kobj,
6302 &attr_sched_mc_power_savings.attr);
6303#endif
6304 return err;
6305}
6306#endif
6307
6308#ifdef CONFIG_SCHED_MC
6309static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6310{
6311 return sprintf(page, "%u\n", sched_mc_power_savings);
6312}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006313static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6314 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006315{
6316 return sched_power_savings_store(buf, count, 0);
6317}
6318SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6319 sched_mc_power_savings_store);
6320#endif
6321
6322#ifdef CONFIG_SCHED_SMT
6323static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6324{
6325 return sprintf(page, "%u\n", sched_smt_power_savings);
6326}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006327static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6328 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006329{
6330 return sched_power_savings_store(buf, count, 1);
6331}
6332SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6333 sched_smt_power_savings_store);
6334#endif
6335
Linus Torvalds1da177e2005-04-16 15:20:36 -07006336/*
6337 * Force a reinitialization of the sched domains hierarchy. The domains
6338 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006339 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006340 * which will prevent rebalancing while the sched domains are recalculated.
6341 */
6342static int update_sched_domains(struct notifier_block *nfb,
6343 unsigned long action, void *hcpu)
6344{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006345 switch (action) {
6346 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006347 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006348 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006349 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006350 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006351 return NOTIFY_OK;
6352
6353 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006354 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006355 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006356 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006357 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006358 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006359 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006360 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006361 /*
6362 * Fall through and re-initialise the domains.
6363 */
6364 break;
6365 default:
6366 return NOTIFY_DONE;
6367 }
6368
6369 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006370 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006371
6372 return NOTIFY_OK;
6373}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006374
6375void __init sched_init_smp(void)
6376{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006377 cpumask_t non_isolated_cpus;
6378
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006379 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006380 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006381 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006382 if (cpus_empty(non_isolated_cpus))
6383 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006384 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006385 /* XXX: Theoretical race here - CPU may be hotplugged now */
6386 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006387
6388 /* Move init over to a non-isolated CPU */
6389 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6390 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006391}
6392#else
6393void __init sched_init_smp(void)
6394{
6395}
6396#endif /* CONFIG_SMP */
6397
6398int in_sched_functions(unsigned long addr)
6399{
6400 /* Linker adds these: start and end of __sched functions */
6401 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006402
Linus Torvalds1da177e2005-04-16 15:20:36 -07006403 return in_lock_functions(addr) ||
6404 (addr >= (unsigned long)__sched_text_start
6405 && addr < (unsigned long)__sched_text_end);
6406}
6407
6408void __init sched_init(void)
6409{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006410 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006411 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006412
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006413 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006414 struct prio_array *array;
6415 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006416
6417 rq = cpu_rq(i);
6418 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006419 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006420 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006421 rq->active = rq->arrays;
6422 rq->expired = rq->arrays + 1;
6423 rq->best_expired_prio = MAX_PRIO;
6424
6425#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006426 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006427 for (j = 1; j < 3; j++)
6428 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006429 rq->active_balance = 0;
6430 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006431 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006432 rq->migration_thread = NULL;
6433 INIT_LIST_HEAD(&rq->migration_queue);
6434#endif
6435 atomic_set(&rq->nr_iowait, 0);
6436
6437 for (j = 0; j < 2; j++) {
6438 array = rq->arrays + j;
6439 for (k = 0; k < MAX_PRIO; k++) {
6440 INIT_LIST_HEAD(array->queue + k);
6441 __clear_bit(k, array->bitmap);
6442 }
6443 // delimiter for bitsearch
6444 __set_bit(MAX_PRIO, array->bitmap);
6445 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006446 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006447 }
6448
Peter Williams2dd73a42006-06-27 02:54:34 -07006449 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006450
Christoph Lameterc9819f42006-12-10 02:20:25 -08006451#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006452 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006453 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6454#endif
6455
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006456#ifdef CONFIG_RT_MUTEXES
6457 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6458#endif
6459
Linus Torvalds1da177e2005-04-16 15:20:36 -07006460 /*
6461 * The boot idle thread does lazy MMU switching as well:
6462 */
6463 atomic_inc(&init_mm.mm_count);
6464 enter_lazy_tlb(&init_mm, current);
6465
6466 /*
6467 * Make us the idle thread. Technically, schedule() should not be
6468 * called from this thread, however somewhere below it might be,
6469 * but because we are the idle thread, we just pick up running again
6470 * when this runqueue becomes "idle".
6471 */
6472 init_idle(current, smp_processor_id());
6473}
6474
6475#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6476void __might_sleep(char *file, int line)
6477{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006478#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006479 static unsigned long prev_jiffy; /* ratelimiting */
6480
6481 if ((in_atomic() || irqs_disabled()) &&
6482 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6483 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6484 return;
6485 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006486 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006487 " context at %s:%d\n", file, line);
6488 printk("in_atomic():%d, irqs_disabled():%d\n",
6489 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006490 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006491 if (irqs_disabled())
6492 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006493 dump_stack();
6494 }
6495#endif
6496}
6497EXPORT_SYMBOL(__might_sleep);
6498#endif
6499
6500#ifdef CONFIG_MAGIC_SYSRQ
6501void normalize_rt_tasks(void)
6502{
Ingo Molnar70b97a72006-07-03 00:25:42 -07006503 struct prio_array *array;
Ingo Molnara0f98a12007-06-17 18:37:45 +02006504 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006505 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006506 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006507
6508 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006509
6510 do_each_thread(g, p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006511 if (!rt_task(p))
6512 continue;
6513
Ingo Molnarb29739f2006-06-27 02:54:51 -07006514 spin_lock_irqsave(&p->pi_lock, flags);
6515 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006516
6517 array = p->array;
6518 if (array)
6519 deactivate_task(p, task_rq(p));
6520 __setscheduler(p, SCHED_NORMAL, 0);
6521 if (array) {
6522 __activate_task(p, task_rq(p));
6523 resched_task(rq->curr);
6524 }
6525
Ingo Molnarb29739f2006-06-27 02:54:51 -07006526 __task_rq_unlock(rq);
6527 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006528 } while_each_thread(g, p);
6529
Linus Torvalds1da177e2005-04-16 15:20:36 -07006530 read_unlock_irq(&tasklist_lock);
6531}
6532
6533#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006534
6535#ifdef CONFIG_IA64
6536/*
6537 * These functions are only useful for the IA64 MCA handling.
6538 *
6539 * They can only be called when the whole system has been
6540 * stopped - every CPU needs to be quiescent, and no scheduling
6541 * activity can take place. Using them for anything else would
6542 * be a serious bug, and as a result, they aren't even visible
6543 * under any other configuration.
6544 */
6545
6546/**
6547 * curr_task - return the current task for a given cpu.
6548 * @cpu: the processor in question.
6549 *
6550 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6551 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006552struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006553{
6554 return cpu_curr(cpu);
6555}
6556
6557/**
6558 * set_curr_task - set the current task for a given cpu.
6559 * @cpu: the processor in question.
6560 * @p: the task pointer to set.
6561 *
6562 * Description: This function must only be used when non-maskable interrupts
6563 * are serviced on a separate stack. It allows the architecture to switch the
6564 * notion of the current task on a cpu in a non-blocking manner. This function
6565 * must be called with all CPU's synchronized, and interrupts disabled, the
6566 * and caller must save the original value of the current task (see
6567 * curr_task() above) and restore that value before reenabling interrupts and
6568 * re-starting the system.
6569 *
6570 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6571 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006572void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006573{
6574 cpu_curr(cpu) = p;
6575}
6576
6577#endif