| /* |
| * x86 SMP booting functions |
| * |
| * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> |
| * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> |
| * Copyright 2001 Andi Kleen, SuSE Labs. |
| * |
| * Much of the core SMP work is based on previous work by Thomas Radke, to |
| * whom a great many thanks are extended. |
| * |
| * Thanks to Intel for making available several different Pentium, |
| * Pentium Pro and Pentium-II/Xeon MP machines. |
| * Original development of Linux SMP code supported by Caldera. |
| * |
| * This code is released under the GNU General Public License version 2 or |
| * later. |
| * |
| * Fixes |
| * Felix Koop : NR_CPUS used properly |
| * Jose Renau : Handle single CPU case. |
| * Alan Cox : By repeated request 8) - Total BogoMIPS report. |
| * Greg Wright : Fix for kernel stacks panic. |
| * Erich Boleyn : MP v1.4 and additional changes. |
| * Matthias Sattler : Changes for 2.1 kernel map. |
| * Michel Lespinasse : Changes for 2.1 kernel map. |
| * Michael Chastain : Change trampoline.S to gnu as. |
| * Alan Cox : Dumb bug: 'B' step PPro's are fine |
| * Ingo Molnar : Added APIC timers, based on code |
| * from Jose Renau |
| * Ingo Molnar : various cleanups and rewrites |
| * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. |
| * Maciej W. Rozycki : Bits for genuine 82489DX APICs |
| * Andi Kleen : Changed for SMP boot into long mode. |
| * Martin J. Bligh : Added support for multi-quad systems |
| * Dave Jones : Report invalid combinations of Athlon CPUs. |
| * Rusty Russell : Hacked into shape for new "hotplug" boot process. |
| * Andi Kleen : Converted to new state machine. |
| * Ashok Raj : CPU hotplug support |
| * Glauber Costa : i386 and x86_64 integration |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/percpu.h> |
| #include <linux/bootmem.h> |
| #include <linux/err.h> |
| #include <linux/nmi.h> |
| #include <linux/tboot.h> |
| #include <linux/stackprotector.h> |
| #include <linux/gfp.h> |
| |
| #include <asm/acpi.h> |
| #include <asm/desc.h> |
| #include <asm/nmi.h> |
| #include <asm/irq.h> |
| #include <asm/idle.h> |
| #include <asm/trampoline.h> |
| #include <asm/cpu.h> |
| #include <asm/numa.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mtrr.h> |
| #include <asm/mwait.h> |
| #include <asm/apic.h> |
| #include <asm/io_apic.h> |
| #include <asm/setup.h> |
| #include <asm/uv/uv.h> |
| #include <linux/mc146818rtc.h> |
| |
| #include <asm/smpboot_hooks.h> |
| #include <asm/i8259.h> |
| |
| /* State of each CPU */ |
| DEFINE_PER_CPU(int, cpu_state) = { 0 }; |
| |
| /* Store all idle threads, this can be reused instead of creating |
| * a new thread. Also avoids complicated thread destroy functionality |
| * for idle threads. |
| */ |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is |
| * removed after init for !CONFIG_HOTPLUG_CPU. |
| */ |
| static DEFINE_PER_CPU(struct task_struct *, idle_thread_array); |
| #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x)) |
| #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p)) |
| |
| /* |
| * We need this for trampoline_base protection from concurrent accesses when |
| * off- and onlining cores wildly. |
| */ |
| static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex); |
| |
| void cpu_hotplug_driver_lock(void) |
| { |
| mutex_lock(&x86_cpu_hotplug_driver_mutex); |
| } |
| |
| void cpu_hotplug_driver_unlock(void) |
| { |
| mutex_unlock(&x86_cpu_hotplug_driver_mutex); |
| } |
| |
| ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; } |
| ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; } |
| #else |
| static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ; |
| #define get_idle_for_cpu(x) (idle_thread_array[(x)]) |
| #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p)) |
| #endif |
| |
| /* Number of siblings per CPU package */ |
| int smp_num_siblings = 1; |
| EXPORT_SYMBOL(smp_num_siblings); |
| |
| /* Last level cache ID of each logical CPU */ |
| DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID; |
| |
| /* representing HT siblings of each logical CPU */ |
| DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); |
| |
| /* representing HT and core siblings of each logical CPU */ |
| DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_core_map); |
| |
| DEFINE_PER_CPU(cpumask_var_t, cpu_llc_shared_map); |
| |
| /* Per CPU bogomips and other parameters */ |
| DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info); |
| EXPORT_PER_CPU_SYMBOL(cpu_info); |
| |
| atomic_t init_deasserted; |
| |
| /* |
| * Report back to the Boot Processor. |
| * Running on AP. |
| */ |
| static void __cpuinit smp_callin(void) |
| { |
| int cpuid, phys_id; |
| unsigned long timeout; |
| |
| /* |
| * If waken up by an INIT in an 82489DX configuration |
| * we may get here before an INIT-deassert IPI reaches |
| * our local APIC. We have to wait for the IPI or we'll |
| * lock up on an APIC access. |
| */ |
| if (apic->wait_for_init_deassert) |
| apic->wait_for_init_deassert(&init_deasserted); |
| |
| /* |
| * (This works even if the APIC is not enabled.) |
| */ |
| phys_id = read_apic_id(); |
| cpuid = smp_processor_id(); |
| if (cpumask_test_cpu(cpuid, cpu_callin_mask)) { |
| panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__, |
| phys_id, cpuid); |
| } |
| pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); |
| |
| /* |
| * STARTUP IPIs are fragile beasts as they might sometimes |
| * trigger some glue motherboard logic. Complete APIC bus |
| * silence for 1 second, this overestimates the time the |
| * boot CPU is spending to send the up to 2 STARTUP IPIs |
| * by a factor of two. This should be enough. |
| */ |
| |
| /* |
| * Waiting 2s total for startup (udelay is not yet working) |
| */ |
| timeout = jiffies + 2*HZ; |
| while (time_before(jiffies, timeout)) { |
| /* |
| * Has the boot CPU finished it's STARTUP sequence? |
| */ |
| if (cpumask_test_cpu(cpuid, cpu_callout_mask)) |
| break; |
| cpu_relax(); |
| } |
| |
| if (!time_before(jiffies, timeout)) { |
| panic("%s: CPU%d started up but did not get a callout!\n", |
| __func__, cpuid); |
| } |
| |
| /* |
| * the boot CPU has finished the init stage and is spinning |
| * on callin_map until we finish. We are free to set up this |
| * CPU, first the APIC. (this is probably redundant on most |
| * boards) |
| */ |
| |
| pr_debug("CALLIN, before setup_local_APIC().\n"); |
| if (apic->smp_callin_clear_local_apic) |
| apic->smp_callin_clear_local_apic(); |
| setup_local_APIC(); |
| end_local_APIC_setup(); |
| |
| /* |
| * Need to setup vector mappings before we enable interrupts. |
| */ |
| setup_vector_irq(smp_processor_id()); |
| |
| /* |
| * Save our processor parameters. Note: this information |
| * is needed for clock calibration. |
| */ |
| smp_store_cpu_info(cpuid); |
| |
| /* |
| * Get our bogomips. |
| * Update loops_per_jiffy in cpu_data. Previous call to |
| * smp_store_cpu_info() stored a value that is close but not as |
| * accurate as the value just calculated. |
| * |
| * Need to enable IRQs because it can take longer and then |
| * the NMI watchdog might kill us. |
| */ |
| local_irq_enable(); |
| calibrate_delay(); |
| cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; |
| local_irq_disable(); |
| pr_debug("Stack at about %p\n", &cpuid); |
| |
| /* |
| * This must be done before setting cpu_online_mask |
| * or calling notify_cpu_starting. |
| */ |
| set_cpu_sibling_map(raw_smp_processor_id()); |
| wmb(); |
| |
| notify_cpu_starting(cpuid); |
| |
| /* |
| * Allow the master to continue. |
| */ |
| cpumask_set_cpu(cpuid, cpu_callin_mask); |
| } |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| notrace static void __cpuinit start_secondary(void *unused) |
| { |
| /* |
| * Don't put *anything* before cpu_init(), SMP booting is too |
| * fragile that we want to limit the things done here to the |
| * most necessary things. |
| */ |
| cpu_init(); |
| preempt_disable(); |
| smp_callin(); |
| |
| #ifdef CONFIG_X86_32 |
| /* switch away from the initial page table */ |
| load_cr3(swapper_pg_dir); |
| __flush_tlb_all(); |
| #endif |
| |
| /* otherwise gcc will move up smp_processor_id before the cpu_init */ |
| barrier(); |
| /* |
| * Check TSC synchronization with the BP: |
| */ |
| check_tsc_sync_target(); |
| |
| /* |
| * We need to hold call_lock, so there is no inconsistency |
| * between the time smp_call_function() determines number of |
| * IPI recipients, and the time when the determination is made |
| * for which cpus receive the IPI. Holding this |
| * lock helps us to not include this cpu in a currently in progress |
| * smp_call_function(). |
| * |
| * We need to hold vector_lock so there the set of online cpus |
| * does not change while we are assigning vectors to cpus. Holding |
| * this lock ensures we don't half assign or remove an irq from a cpu. |
| */ |
| ipi_call_lock(); |
| lock_vector_lock(); |
| set_cpu_online(smp_processor_id(), true); |
| unlock_vector_lock(); |
| ipi_call_unlock(); |
| per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; |
| x86_platform.nmi_init(); |
| |
| /* |
| * Wait until the cpu which brought this one up marked it |
| * online before enabling interrupts. If we don't do that then |
| * we can end up waking up the softirq thread before this cpu |
| * reached the active state, which makes the scheduler unhappy |
| * and schedule the softirq thread on the wrong cpu. This is |
| * only observable with forced threaded interrupts, but in |
| * theory it could also happen w/o them. It's just way harder |
| * to achieve. |
| */ |
| while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask)) |
| cpu_relax(); |
| |
| /* enable local interrupts */ |
| local_irq_enable(); |
| |
| /* to prevent fake stack check failure in clock setup */ |
| boot_init_stack_canary(); |
| |
| x86_cpuinit.setup_percpu_clockev(); |
| |
| wmb(); |
| cpu_idle(); |
| } |
| |
| /* |
| * The bootstrap kernel entry code has set these up. Save them for |
| * a given CPU |
| */ |
| |
| void __cpuinit smp_store_cpu_info(int id) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(id); |
| |
| *c = boot_cpu_data; |
| c->cpu_index = id; |
| if (id != 0) |
| identify_secondary_cpu(c); |
| } |
| |
| static void __cpuinit link_thread_siblings(int cpu1, int cpu2) |
| { |
| cpumask_set_cpu(cpu1, cpu_sibling_mask(cpu2)); |
| cpumask_set_cpu(cpu2, cpu_sibling_mask(cpu1)); |
| cpumask_set_cpu(cpu1, cpu_core_mask(cpu2)); |
| cpumask_set_cpu(cpu2, cpu_core_mask(cpu1)); |
| cpumask_set_cpu(cpu1, cpu_llc_shared_mask(cpu2)); |
| cpumask_set_cpu(cpu2, cpu_llc_shared_mask(cpu1)); |
| } |
| |
| |
| void __cpuinit set_cpu_sibling_map(int cpu) |
| { |
| int i; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| cpumask_set_cpu(cpu, cpu_sibling_setup_mask); |
| |
| if (smp_num_siblings > 1) { |
| for_each_cpu(i, cpu_sibling_setup_mask) { |
| struct cpuinfo_x86 *o = &cpu_data(i); |
| |
| if (cpu_has(c, X86_FEATURE_TOPOEXT)) { |
| if (c->phys_proc_id == o->phys_proc_id && |
| per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i) && |
| c->compute_unit_id == o->compute_unit_id) |
| link_thread_siblings(cpu, i); |
| } else if (c->phys_proc_id == o->phys_proc_id && |
| c->cpu_core_id == o->cpu_core_id) { |
| link_thread_siblings(cpu, i); |
| } |
| } |
| } else { |
| cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); |
| } |
| |
| cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); |
| |
| if (__this_cpu_read(cpu_info.x86_max_cores) == 1) { |
| cpumask_copy(cpu_core_mask(cpu), cpu_sibling_mask(cpu)); |
| c->booted_cores = 1; |
| return; |
| } |
| |
| for_each_cpu(i, cpu_sibling_setup_mask) { |
| if (per_cpu(cpu_llc_id, cpu) != BAD_APICID && |
| per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) { |
| cpumask_set_cpu(i, cpu_llc_shared_mask(cpu)); |
| cpumask_set_cpu(cpu, cpu_llc_shared_mask(i)); |
| } |
| if (c->phys_proc_id == cpu_data(i).phys_proc_id) { |
| cpumask_set_cpu(i, cpu_core_mask(cpu)); |
| cpumask_set_cpu(cpu, cpu_core_mask(i)); |
| /* |
| * Does this new cpu bringup a new core? |
| */ |
| if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) { |
| /* |
| * for each core in package, increment |
| * the booted_cores for this new cpu |
| */ |
| if (cpumask_first(cpu_sibling_mask(i)) == i) |
| c->booted_cores++; |
| /* |
| * increment the core count for all |
| * the other cpus in this package |
| */ |
| if (i != cpu) |
| cpu_data(i).booted_cores++; |
| } else if (i != cpu && !c->booted_cores) |
| c->booted_cores = cpu_data(i).booted_cores; |
| } |
| } |
| } |
| |
| /* maps the cpu to the sched domain representing multi-core */ |
| const struct cpumask *cpu_coregroup_mask(int cpu) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| /* |
| * For perf, we return last level cache shared map. |
| * And for power savings, we return cpu_core_map |
| */ |
| if ((sched_mc_power_savings || sched_smt_power_savings) && |
| !(cpu_has(c, X86_FEATURE_AMD_DCM))) |
| return cpu_core_mask(cpu); |
| else |
| return cpu_llc_shared_mask(cpu); |
| } |
| |
| static void impress_friends(void) |
| { |
| int cpu; |
| unsigned long bogosum = 0; |
| /* |
| * Allow the user to impress friends. |
| */ |
| pr_debug("Before bogomips.\n"); |
| for_each_possible_cpu(cpu) |
| if (cpumask_test_cpu(cpu, cpu_callout_mask)) |
| bogosum += cpu_data(cpu).loops_per_jiffy; |
| printk(KERN_INFO |
| "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| num_online_cpus(), |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| |
| pr_debug("Before bogocount - setting activated=1.\n"); |
| } |
| |
| void __inquire_remote_apic(int apicid) |
| { |
| unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; |
| const char * const names[] = { "ID", "VERSION", "SPIV" }; |
| int timeout; |
| u32 status; |
| |
| printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid); |
| |
| for (i = 0; i < ARRAY_SIZE(regs); i++) { |
| printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]); |
| |
| /* |
| * Wait for idle. |
| */ |
| status = safe_apic_wait_icr_idle(); |
| if (status) |
| printk(KERN_CONT |
| "a previous APIC delivery may have failed\n"); |
| |
| apic_icr_write(APIC_DM_REMRD | regs[i], apicid); |
| |
| timeout = 0; |
| do { |
| udelay(100); |
| status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; |
| } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); |
| |
| switch (status) { |
| case APIC_ICR_RR_VALID: |
| status = apic_read(APIC_RRR); |
| printk(KERN_CONT "%08x\n", status); |
| break; |
| default: |
| printk(KERN_CONT "failed\n"); |
| } |
| } |
| } |
| |
| /* |
| * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal |
| * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this |
| * won't ... remember to clear down the APIC, etc later. |
| */ |
| int __cpuinit |
| wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip) |
| { |
| unsigned long send_status, accept_status = 0; |
| int maxlvt; |
| |
| /* Target chip */ |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_icr_write(APIC_DM_NMI | apic->dest_logical, logical_apicid); |
| |
| pr_debug("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { |
| maxlvt = lapic_get_maxlvt(); |
| if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| } |
| pr_debug("NMI sent.\n"); |
| |
| if (send_status) |
| printk(KERN_ERR "APIC never delivered???\n"); |
| if (accept_status) |
| printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); |
| |
| return (send_status | accept_status); |
| } |
| |
| static int __cpuinit |
| wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) |
| { |
| unsigned long send_status, accept_status = 0; |
| int maxlvt, num_starts, j; |
| |
| maxlvt = lapic_get_maxlvt(); |
| |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| if (APIC_INTEGRATED(apic_version[phys_apicid])) { |
| if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| |
| pr_debug("Asserting INIT.\n"); |
| |
| /* |
| * Turn INIT on target chip |
| */ |
| /* |
| * Send IPI |
| */ |
| apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, |
| phys_apicid); |
| |
| pr_debug("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| mdelay(10); |
| |
| pr_debug("Deasserting INIT.\n"); |
| |
| /* Target chip */ |
| /* Send IPI */ |
| apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); |
| |
| pr_debug("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| mb(); |
| atomic_set(&init_deasserted, 1); |
| |
| /* |
| * Should we send STARTUP IPIs ? |
| * |
| * Determine this based on the APIC version. |
| * If we don't have an integrated APIC, don't send the STARTUP IPIs. |
| */ |
| if (APIC_INTEGRATED(apic_version[phys_apicid])) |
| num_starts = 2; |
| else |
| num_starts = 0; |
| |
| /* |
| * Paravirt / VMI wants a startup IPI hook here to set up the |
| * target processor state. |
| */ |
| startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, |
| stack_start); |
| |
| /* |
| * Run STARTUP IPI loop. |
| */ |
| pr_debug("#startup loops: %d.\n", num_starts); |
| |
| for (j = 1; j <= num_starts; j++) { |
| pr_debug("Sending STARTUP #%d.\n", j); |
| if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| pr_debug("After apic_write.\n"); |
| |
| /* |
| * STARTUP IPI |
| */ |
| |
| /* Target chip */ |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), |
| phys_apicid); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(300); |
| |
| pr_debug("Startup point 1.\n"); |
| |
| pr_debug("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| if (send_status || accept_status) |
| break; |
| } |
| pr_debug("After Startup.\n"); |
| |
| if (send_status) |
| printk(KERN_ERR "APIC never delivered???\n"); |
| if (accept_status) |
| printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); |
| |
| return (send_status | accept_status); |
| } |
| |
| struct create_idle { |
| struct work_struct work; |
| struct task_struct *idle; |
| struct completion done; |
| int cpu; |
| }; |
| |
| static void __cpuinit do_fork_idle(struct work_struct *work) |
| { |
| struct create_idle *c_idle = |
| container_of(work, struct create_idle, work); |
| |
| c_idle->idle = fork_idle(c_idle->cpu); |
| complete(&c_idle->done); |
| } |
| |
| /* reduce the number of lines printed when booting a large cpu count system */ |
| static void __cpuinit announce_cpu(int cpu, int apicid) |
| { |
| static int current_node = -1; |
| int node = early_cpu_to_node(cpu); |
| |
| if (system_state == SYSTEM_BOOTING) { |
| if (node != current_node) { |
| if (current_node > (-1)) |
| pr_cont(" Ok.\n"); |
| current_node = node; |
| pr_info("Booting Node %3d, Processors ", node); |
| } |
| pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " Ok.\n" : ""); |
| return; |
| } else |
| pr_info("Booting Node %d Processor %d APIC 0x%x\n", |
| node, cpu, apicid); |
| } |
| |
| /* |
| * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad |
| * (ie clustered apic addressing mode), this is a LOGICAL apic ID. |
| * Returns zero if CPU booted OK, else error code from |
| * ->wakeup_secondary_cpu. |
| */ |
| static int __cpuinit do_boot_cpu(int apicid, int cpu) |
| { |
| unsigned long boot_error = 0; |
| unsigned long start_ip; |
| int timeout; |
| struct create_idle c_idle = { |
| .cpu = cpu, |
| .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), |
| }; |
| |
| INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle); |
| |
| alternatives_smp_switch(1); |
| |
| c_idle.idle = get_idle_for_cpu(cpu); |
| |
| /* |
| * We can't use kernel_thread since we must avoid to |
| * reschedule the child. |
| */ |
| if (c_idle.idle) { |
| c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *) |
| (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1); |
| init_idle(c_idle.idle, cpu); |
| goto do_rest; |
| } |
| |
| schedule_work(&c_idle.work); |
| wait_for_completion(&c_idle.done); |
| |
| if (IS_ERR(c_idle.idle)) { |
| printk("failed fork for CPU %d\n", cpu); |
| destroy_work_on_stack(&c_idle.work); |
| return PTR_ERR(c_idle.idle); |
| } |
| |
| set_idle_for_cpu(cpu, c_idle.idle); |
| do_rest: |
| per_cpu(current_task, cpu) = c_idle.idle; |
| #ifdef CONFIG_X86_32 |
| /* Stack for startup_32 can be just as for start_secondary onwards */ |
| irq_ctx_init(cpu); |
| #else |
| clear_tsk_thread_flag(c_idle.idle, TIF_FORK); |
| initial_gs = per_cpu_offset(cpu); |
| per_cpu(kernel_stack, cpu) = |
| (unsigned long)task_stack_page(c_idle.idle) - |
| KERNEL_STACK_OFFSET + THREAD_SIZE; |
| #endif |
| early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); |
| initial_code = (unsigned long)start_secondary; |
| stack_start = c_idle.idle->thread.sp; |
| |
| /* start_ip had better be page-aligned! */ |
| start_ip = trampoline_address(); |
| |
| /* So we see what's up */ |
| announce_cpu(cpu, apicid); |
| |
| /* |
| * This grunge runs the startup process for |
| * the targeted processor. |
| */ |
| |
| printk(KERN_DEBUG "smpboot cpu %d: start_ip = %lx\n", cpu, start_ip); |
| |
| atomic_set(&init_deasserted, 0); |
| |
| if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { |
| |
| pr_debug("Setting warm reset code and vector.\n"); |
| |
| smpboot_setup_warm_reset_vector(start_ip); |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| } |
| |
| /* |
| * Kick the secondary CPU. Use the method in the APIC driver |
| * if it's defined - or use an INIT boot APIC message otherwise: |
| */ |
| if (apic->wakeup_secondary_cpu) |
| boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); |
| else |
| boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); |
| |
| if (!boot_error) { |
| /* |
| * allow APs to start initializing. |
| */ |
| pr_debug("Before Callout %d.\n", cpu); |
| cpumask_set_cpu(cpu, cpu_callout_mask); |
| pr_debug("After Callout %d.\n", cpu); |
| |
| /* |
| * Wait 5s total for a response |
| */ |
| for (timeout = 0; timeout < 50000; timeout++) { |
| if (cpumask_test_cpu(cpu, cpu_callin_mask)) |
| break; /* It has booted */ |
| udelay(100); |
| /* |
| * Allow other tasks to run while we wait for the |
| * AP to come online. This also gives a chance |
| * for the MTRR work(triggered by the AP coming online) |
| * to be completed in the stop machine context. |
| */ |
| schedule(); |
| } |
| |
| if (cpumask_test_cpu(cpu, cpu_callin_mask)) |
| pr_debug("CPU%d: has booted.\n", cpu); |
| else { |
| boot_error = 1; |
| if (*(volatile u32 *)TRAMPOLINE_SYM(trampoline_status) |
| == 0xA5A5A5A5) |
| /* trampoline started but...? */ |
| pr_err("CPU%d: Stuck ??\n", cpu); |
| else |
| /* trampoline code not run */ |
| pr_err("CPU%d: Not responding.\n", cpu); |
| if (apic->inquire_remote_apic) |
| apic->inquire_remote_apic(apicid); |
| } |
| } |
| |
| if (boot_error) { |
| /* Try to put things back the way they were before ... */ |
| numa_remove_cpu(cpu); /* was set by numa_add_cpu */ |
| |
| /* was set by do_boot_cpu() */ |
| cpumask_clear_cpu(cpu, cpu_callout_mask); |
| |
| /* was set by cpu_init() */ |
| cpumask_clear_cpu(cpu, cpu_initialized_mask); |
| |
| set_cpu_present(cpu, false); |
| per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID; |
| } |
| |
| /* mark "stuck" area as not stuck */ |
| *(volatile u32 *)TRAMPOLINE_SYM(trampoline_status) = 0; |
| |
| if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { |
| /* |
| * Cleanup possible dangling ends... |
| */ |
| smpboot_restore_warm_reset_vector(); |
| } |
| |
| destroy_work_on_stack(&c_idle.work); |
| return boot_error; |
| } |
| |
| int __cpuinit native_cpu_up(unsigned int cpu) |
| { |
| int apicid = apic->cpu_present_to_apicid(cpu); |
| unsigned long flags; |
| int err; |
| |
| WARN_ON(irqs_disabled()); |
| |
| pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); |
| |
| if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid || |
| !physid_isset(apicid, phys_cpu_present_map) || |
| (!x2apic_mode && apicid >= 255)) { |
| printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu); |
| return -EINVAL; |
| } |
| |
| /* |
| * Already booted CPU? |
| */ |
| if (cpumask_test_cpu(cpu, cpu_callin_mask)) { |
| pr_debug("do_boot_cpu %d Already started\n", cpu); |
| return -ENOSYS; |
| } |
| |
| /* |
| * Save current MTRR state in case it was changed since early boot |
| * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: |
| */ |
| mtrr_save_state(); |
| |
| per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; |
| |
| err = do_boot_cpu(apicid, cpu); |
| if (err) { |
| pr_debug("do_boot_cpu failed %d\n", err); |
| return -EIO; |
| } |
| |
| /* |
| * Check TSC synchronization with the AP (keep irqs disabled |
| * while doing so): |
| */ |
| local_irq_save(flags); |
| check_tsc_sync_source(cpu); |
| local_irq_restore(flags); |
| |
| while (!cpu_online(cpu)) { |
| cpu_relax(); |
| touch_nmi_watchdog(); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * arch_disable_smp_support() - disables SMP support for x86 at runtime |
| */ |
| void arch_disable_smp_support(void) |
| { |
| disable_ioapic_support(); |
| } |
| |
| /* |
| * Fall back to non SMP mode after errors. |
| * |
| * RED-PEN audit/test this more. I bet there is more state messed up here. |
| */ |
| static __init void disable_smp(void) |
| { |
| init_cpu_present(cpumask_of(0)); |
| init_cpu_possible(cpumask_of(0)); |
| smpboot_clear_io_apic_irqs(); |
| |
| if (smp_found_config) |
| physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); |
| else |
| physid_set_mask_of_physid(0, &phys_cpu_present_map); |
| cpumask_set_cpu(0, cpu_sibling_mask(0)); |
| cpumask_set_cpu(0, cpu_core_mask(0)); |
| } |
| |
| /* |
| * Various sanity checks. |
| */ |
| static int __init smp_sanity_check(unsigned max_cpus) |
| { |
| preempt_disable(); |
| |
| #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) |
| if (def_to_bigsmp && nr_cpu_ids > 8) { |
| unsigned int cpu; |
| unsigned nr; |
| |
| printk(KERN_WARNING |
| "More than 8 CPUs detected - skipping them.\n" |
| "Use CONFIG_X86_BIGSMP.\n"); |
| |
| nr = 0; |
| for_each_present_cpu(cpu) { |
| if (nr >= 8) |
| set_cpu_present(cpu, false); |
| nr++; |
| } |
| |
| nr = 0; |
| for_each_possible_cpu(cpu) { |
| if (nr >= 8) |
| set_cpu_possible(cpu, false); |
| nr++; |
| } |
| |
| nr_cpu_ids = 8; |
| } |
| #endif |
| |
| if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { |
| printk(KERN_WARNING |
| "weird, boot CPU (#%d) not listed by the BIOS.\n", |
| hard_smp_processor_id()); |
| |
| physid_set(hard_smp_processor_id(), phys_cpu_present_map); |
| } |
| |
| /* |
| * If we couldn't find an SMP configuration at boot time, |
| * get out of here now! |
| */ |
| if (!smp_found_config && !acpi_lapic) { |
| preempt_enable(); |
| printk(KERN_NOTICE "SMP motherboard not detected.\n"); |
| disable_smp(); |
| if (APIC_init_uniprocessor()) |
| printk(KERN_NOTICE "Local APIC not detected." |
| " Using dummy APIC emulation.\n"); |
| return -1; |
| } |
| |
| /* |
| * Should not be necessary because the MP table should list the boot |
| * CPU too, but we do it for the sake of robustness anyway. |
| */ |
| if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { |
| printk(KERN_NOTICE |
| "weird, boot CPU (#%d) not listed by the BIOS.\n", |
| boot_cpu_physical_apicid); |
| physid_set(hard_smp_processor_id(), phys_cpu_present_map); |
| } |
| preempt_enable(); |
| |
| /* |
| * If we couldn't find a local APIC, then get out of here now! |
| */ |
| if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && |
| !cpu_has_apic) { |
| if (!disable_apic) { |
| pr_err("BIOS bug, local APIC #%d not detected!...\n", |
| boot_cpu_physical_apicid); |
| pr_err("... forcing use of dummy APIC emulation." |
| "(tell your hw vendor)\n"); |
| } |
| smpboot_clear_io_apic(); |
| disable_ioapic_support(); |
| return -1; |
| } |
| |
| verify_local_APIC(); |
| |
| /* |
| * If SMP should be disabled, then really disable it! |
| */ |
| if (!max_cpus) { |
| printk(KERN_INFO "SMP mode deactivated.\n"); |
| smpboot_clear_io_apic(); |
| |
| connect_bsp_APIC(); |
| setup_local_APIC(); |
| bsp_end_local_APIC_setup(); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void __init smp_cpu_index_default(void) |
| { |
| int i; |
| struct cpuinfo_x86 *c; |
| |
| for_each_possible_cpu(i) { |
| c = &cpu_data(i); |
| /* mark all to hotplug */ |
| c->cpu_index = nr_cpu_ids; |
| } |
| } |
| |
| /* |
| * Prepare for SMP bootup. The MP table or ACPI has been read |
| * earlier. Just do some sanity checking here and enable APIC mode. |
| */ |
| void __init native_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned int i; |
| |
| preempt_disable(); |
| smp_cpu_index_default(); |
| |
| /* |
| * Setup boot CPU information |
| */ |
| smp_store_cpu_info(0); /* Final full version of the data */ |
| cpumask_copy(cpu_callin_mask, cpumask_of(0)); |
| mb(); |
| |
| current_thread_info()->cpu = 0; /* needed? */ |
| for_each_possible_cpu(i) { |
| zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); |
| zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); |
| zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); |
| } |
| set_cpu_sibling_map(0); |
| |
| |
| if (smp_sanity_check(max_cpus) < 0) { |
| printk(KERN_INFO "SMP disabled\n"); |
| disable_smp(); |
| goto out; |
| } |
| |
| default_setup_apic_routing(); |
| |
| preempt_disable(); |
| if (read_apic_id() != boot_cpu_physical_apicid) { |
| panic("Boot APIC ID in local APIC unexpected (%d vs %d)", |
| read_apic_id(), boot_cpu_physical_apicid); |
| /* Or can we switch back to PIC here? */ |
| } |
| preempt_enable(); |
| |
| connect_bsp_APIC(); |
| |
| /* |
| * Switch from PIC to APIC mode. |
| */ |
| setup_local_APIC(); |
| |
| /* |
| * Enable IO APIC before setting up error vector |
| */ |
| if (!skip_ioapic_setup && nr_ioapics) |
| enable_IO_APIC(); |
| |
| bsp_end_local_APIC_setup(); |
| |
| if (apic->setup_portio_remap) |
| apic->setup_portio_remap(); |
| |
| smpboot_setup_io_apic(); |
| /* |
| * Set up local APIC timer on boot CPU. |
| */ |
| |
| printk(KERN_INFO "CPU%d: ", 0); |
| print_cpu_info(&cpu_data(0)); |
| x86_init.timers.setup_percpu_clockev(); |
| |
| if (is_uv_system()) |
| uv_system_init(); |
| |
| set_mtrr_aps_delayed_init(); |
| out: |
| preempt_enable(); |
| } |
| |
| void arch_disable_nonboot_cpus_begin(void) |
| { |
| /* |
| * Avoid the smp alternatives switch during the disable_nonboot_cpus(). |
| * In the suspend path, we will be back in the SMP mode shortly anyways. |
| */ |
| skip_smp_alternatives = true; |
| } |
| |
| void arch_disable_nonboot_cpus_end(void) |
| { |
| skip_smp_alternatives = false; |
| } |
| |
| void arch_enable_nonboot_cpus_begin(void) |
| { |
| set_mtrr_aps_delayed_init(); |
| } |
| |
| void arch_enable_nonboot_cpus_end(void) |
| { |
| mtrr_aps_init(); |
| } |
| |
| /* |
| * Early setup to make printk work. |
| */ |
| void __init native_smp_prepare_boot_cpu(void) |
| { |
| int me = smp_processor_id(); |
| switch_to_new_gdt(me); |
| /* already set me in cpu_online_mask in boot_cpu_init() */ |
| cpumask_set_cpu(me, cpu_callout_mask); |
| per_cpu(cpu_state, me) = CPU_ONLINE; |
| } |
| |
| void __init native_smp_cpus_done(unsigned int max_cpus) |
| { |
| pr_debug("Boot done.\n"); |
| |
| nmi_selftest(); |
| impress_friends(); |
| #ifdef CONFIG_X86_IO_APIC |
| setup_ioapic_dest(); |
| #endif |
| mtrr_aps_init(); |
| } |
| |
| static int __initdata setup_possible_cpus = -1; |
| static int __init _setup_possible_cpus(char *str) |
| { |
| get_option(&str, &setup_possible_cpus); |
| return 0; |
| } |
| early_param("possible_cpus", _setup_possible_cpus); |
| |
| |
| /* |
| * cpu_possible_mask should be static, it cannot change as cpu's |
| * are onlined, or offlined. The reason is per-cpu data-structures |
| * are allocated by some modules at init time, and dont expect to |
| * do this dynamically on cpu arrival/departure. |
| * cpu_present_mask on the other hand can change dynamically. |
| * In case when cpu_hotplug is not compiled, then we resort to current |
| * behaviour, which is cpu_possible == cpu_present. |
| * - Ashok Raj |
| * |
| * Three ways to find out the number of additional hotplug CPUs: |
| * - If the BIOS specified disabled CPUs in ACPI/mptables use that. |
| * - The user can overwrite it with possible_cpus=NUM |
| * - Otherwise don't reserve additional CPUs. |
| * We do this because additional CPUs waste a lot of memory. |
| * -AK |
| */ |
| __init void prefill_possible_map(void) |
| { |
| int i, possible; |
| |
| /* no processor from mptable or madt */ |
| if (!num_processors) |
| num_processors = 1; |
| |
| i = setup_max_cpus ?: 1; |
| if (setup_possible_cpus == -1) { |
| possible = num_processors; |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (setup_max_cpus) |
| possible += disabled_cpus; |
| #else |
| if (possible > i) |
| possible = i; |
| #endif |
| } else |
| possible = setup_possible_cpus; |
| |
| total_cpus = max_t(int, possible, num_processors + disabled_cpus); |
| |
| /* nr_cpu_ids could be reduced via nr_cpus= */ |
| if (possible > nr_cpu_ids) { |
| printk(KERN_WARNING |
| "%d Processors exceeds NR_CPUS limit of %d\n", |
| possible, nr_cpu_ids); |
| possible = nr_cpu_ids; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (!setup_max_cpus) |
| #endif |
| if (possible > i) { |
| printk(KERN_WARNING |
| "%d Processors exceeds max_cpus limit of %u\n", |
| possible, setup_max_cpus); |
| possible = i; |
| } |
| |
| printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n", |
| possible, max_t(int, possible - num_processors, 0)); |
| |
| for (i = 0; i < possible; i++) |
| set_cpu_possible(i, true); |
| for (; i < NR_CPUS; i++) |
| set_cpu_possible(i, false); |
| |
| nr_cpu_ids = possible; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static void remove_siblinginfo(int cpu) |
| { |
| int sibling; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| for_each_cpu(sibling, cpu_core_mask(cpu)) { |
| cpumask_clear_cpu(cpu, cpu_core_mask(sibling)); |
| /*/ |
| * last thread sibling in this cpu core going down |
| */ |
| if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) |
| cpu_data(sibling).booted_cores--; |
| } |
| |
| for_each_cpu(sibling, cpu_sibling_mask(cpu)) |
| cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling)); |
| cpumask_clear(cpu_sibling_mask(cpu)); |
| cpumask_clear(cpu_core_mask(cpu)); |
| c->phys_proc_id = 0; |
| c->cpu_core_id = 0; |
| cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); |
| } |
| |
| static void __ref remove_cpu_from_maps(int cpu) |
| { |
| set_cpu_online(cpu, false); |
| cpumask_clear_cpu(cpu, cpu_callout_mask); |
| cpumask_clear_cpu(cpu, cpu_callin_mask); |
| /* was set by cpu_init() */ |
| cpumask_clear_cpu(cpu, cpu_initialized_mask); |
| numa_remove_cpu(cpu); |
| } |
| |
| void cpu_disable_common(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| remove_siblinginfo(cpu); |
| |
| /* It's now safe to remove this processor from the online map */ |
| lock_vector_lock(); |
| remove_cpu_from_maps(cpu); |
| unlock_vector_lock(); |
| fixup_irqs(); |
| } |
| |
| int native_cpu_disable(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Perhaps use cpufreq to drop frequency, but that could go |
| * into generic code. |
| * |
| * We won't take down the boot processor on i386 due to some |
| * interrupts only being able to be serviced by the BSP. |
| * Especially so if we're not using an IOAPIC -zwane |
| */ |
| if (cpu == 0) |
| return -EBUSY; |
| |
| clear_local_APIC(); |
| |
| cpu_disable_common(); |
| return 0; |
| } |
| |
| void native_cpu_die(unsigned int cpu) |
| { |
| /* We don't do anything here: idle task is faking death itself. */ |
| unsigned int i; |
| |
| for (i = 0; i < 10; i++) { |
| /* They ack this in play_dead by setting CPU_DEAD */ |
| if (per_cpu(cpu_state, cpu) == CPU_DEAD) { |
| if (system_state == SYSTEM_RUNNING) |
| pr_info("CPU %u is now offline\n", cpu); |
| |
| if (1 == num_online_cpus()) |
| alternatives_smp_switch(0); |
| return; |
| } |
| msleep(100); |
| } |
| pr_err("CPU %u didn't die...\n", cpu); |
| } |
| |
| void play_dead_common(void) |
| { |
| idle_task_exit(); |
| reset_lazy_tlbstate(); |
| amd_e400_remove_cpu(raw_smp_processor_id()); |
| |
| mb(); |
| /* Ack it */ |
| __this_cpu_write(cpu_state, CPU_DEAD); |
| |
| /* |
| * With physical CPU hotplug, we should halt the cpu |
| */ |
| local_irq_disable(); |
| } |
| |
| /* |
| * We need to flush the caches before going to sleep, lest we have |
| * dirty data in our caches when we come back up. |
| */ |
| static inline void mwait_play_dead(void) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| unsigned int highest_cstate = 0; |
| unsigned int highest_subcstate = 0; |
| int i; |
| void *mwait_ptr; |
| struct cpuinfo_x86 *c = __this_cpu_ptr(&cpu_info); |
| |
| if (!(this_cpu_has(X86_FEATURE_MWAIT) && mwait_usable(c))) |
| return; |
| if (!this_cpu_has(X86_FEATURE_CLFLSH)) |
| return; |
| if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) |
| return; |
| |
| eax = CPUID_MWAIT_LEAF; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| |
| /* |
| * eax will be 0 if EDX enumeration is not valid. |
| * Initialized below to cstate, sub_cstate value when EDX is valid. |
| */ |
| if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { |
| eax = 0; |
| } else { |
| edx >>= MWAIT_SUBSTATE_SIZE; |
| for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { |
| if (edx & MWAIT_SUBSTATE_MASK) { |
| highest_cstate = i; |
| highest_subcstate = edx & MWAIT_SUBSTATE_MASK; |
| } |
| } |
| eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | |
| (highest_subcstate - 1); |
| } |
| |
| /* |
| * This should be a memory location in a cache line which is |
| * unlikely to be touched by other processors. The actual |
| * content is immaterial as it is not actually modified in any way. |
| */ |
| mwait_ptr = ¤t_thread_info()->flags; |
| |
| wbinvd(); |
| |
| while (1) { |
| /* |
| * The CLFLUSH is a workaround for erratum AAI65 for |
| * the Xeon 7400 series. It's not clear it is actually |
| * needed, but it should be harmless in either case. |
| * The WBINVD is insufficient due to the spurious-wakeup |
| * case where we return around the loop. |
| */ |
| clflush(mwait_ptr); |
| __monitor(mwait_ptr, 0, 0); |
| mb(); |
| __mwait(eax, 0); |
| } |
| } |
| |
| static inline void hlt_play_dead(void) |
| { |
| if (__this_cpu_read(cpu_info.x86) >= 4) |
| wbinvd(); |
| |
| while (1) { |
| native_halt(); |
| } |
| } |
| |
| void native_play_dead(void) |
| { |
| play_dead_common(); |
| tboot_shutdown(TB_SHUTDOWN_WFS); |
| |
| mwait_play_dead(); /* Only returns on failure */ |
| hlt_play_dead(); |
| } |
| |
| #else /* ... !CONFIG_HOTPLUG_CPU */ |
| int native_cpu_disable(void) |
| { |
| return -ENOSYS; |
| } |
| |
| void native_cpu_die(unsigned int cpu) |
| { |
| /* We said "no" in __cpu_disable */ |
| BUG(); |
| } |
| |
| void native_play_dead(void) |
| { |
| BUG(); |
| } |
| |
| #endif |