| /* |
| |
| fp_arith.c: floating-point math routines for the Linux-m68k |
| floating point emulator. |
| |
| Copyright (c) 1998-1999 David Huggins-Daines. |
| |
| Somewhat based on the AlphaLinux floating point emulator, by David |
| Mosberger-Tang. |
| |
| You may copy, modify, and redistribute this file under the terms of |
| the GNU General Public License, version 2, or any later version, at |
| your convenience. |
| */ |
| |
| #include "fp_emu.h" |
| #include "multi_arith.h" |
| #include "fp_arith.h" |
| |
| const struct fp_ext fp_QNaN = |
| { |
| .exp = 0x7fff, |
| .mant = { .m64 = ~0 } |
| }; |
| |
| const struct fp_ext fp_Inf = |
| { |
| .exp = 0x7fff, |
| }; |
| |
| /* let's start with the easy ones */ |
| |
| struct fp_ext * |
| fp_fabs(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "fabs\n"); |
| |
| fp_monadic_check(dest, src); |
| |
| dest->sign = 0; |
| |
| return dest; |
| } |
| |
| struct fp_ext * |
| fp_fneg(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "fneg\n"); |
| |
| fp_monadic_check(dest, src); |
| |
| dest->sign = !dest->sign; |
| |
| return dest; |
| } |
| |
| /* Now, the slightly harder ones */ |
| |
| /* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB, |
| FDSUB, and FCMP instructions. */ |
| |
| struct fp_ext * |
| fp_fadd(struct fp_ext *dest, struct fp_ext *src) |
| { |
| int diff; |
| |
| dprint(PINSTR, "fadd\n"); |
| |
| fp_dyadic_check(dest, src); |
| |
| if (IS_INF(dest)) { |
| /* infinity - infinity == NaN */ |
| if (IS_INF(src) && (src->sign != dest->sign)) |
| fp_set_nan(dest); |
| return dest; |
| } |
| if (IS_INF(src)) { |
| fp_copy_ext(dest, src); |
| return dest; |
| } |
| |
| if (IS_ZERO(dest)) { |
| if (IS_ZERO(src)) { |
| if (src->sign != dest->sign) { |
| if (FPDATA->rnd == FPCR_ROUND_RM) |
| dest->sign = 1; |
| else |
| dest->sign = 0; |
| } |
| } else |
| fp_copy_ext(dest, src); |
| return dest; |
| } |
| |
| dest->lowmant = src->lowmant = 0; |
| |
| if ((diff = dest->exp - src->exp) > 0) |
| fp_denormalize(src, diff); |
| else if ((diff = -diff) > 0) |
| fp_denormalize(dest, diff); |
| |
| if (dest->sign == src->sign) { |
| if (fp_addmant(dest, src)) |
| if (!fp_addcarry(dest)) |
| return dest; |
| } else { |
| if (dest->mant.m64 < src->mant.m64) { |
| fp_submant(dest, src, dest); |
| dest->sign = !dest->sign; |
| } else |
| fp_submant(dest, dest, src); |
| } |
| |
| return dest; |
| } |
| |
| /* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB |
| instructions. |
| |
| Remember that the arguments are in assembler-syntax order! */ |
| |
| struct fp_ext * |
| fp_fsub(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "fsub "); |
| |
| src->sign = !src->sign; |
| return fp_fadd(dest, src); |
| } |
| |
| |
| struct fp_ext * |
| fp_fcmp(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "fcmp "); |
| |
| FPDATA->temp[1] = *dest; |
| src->sign = !src->sign; |
| return fp_fadd(&FPDATA->temp[1], src); |
| } |
| |
| struct fp_ext * |
| fp_ftst(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "ftst\n"); |
| |
| (void)dest; |
| |
| return src; |
| } |
| |
| struct fp_ext * |
| fp_fmul(struct fp_ext *dest, struct fp_ext *src) |
| { |
| union fp_mant128 temp; |
| int exp; |
| |
| dprint(PINSTR, "fmul\n"); |
| |
| fp_dyadic_check(dest, src); |
| |
| /* calculate the correct sign now, as it's necessary for infinities */ |
| dest->sign = src->sign ^ dest->sign; |
| |
| /* Handle infinities */ |
| if (IS_INF(dest)) { |
| if (IS_ZERO(src)) |
| fp_set_nan(dest); |
| return dest; |
| } |
| if (IS_INF(src)) { |
| if (IS_ZERO(dest)) |
| fp_set_nan(dest); |
| else |
| fp_copy_ext(dest, src); |
| return dest; |
| } |
| |
| /* Of course, as we all know, zero * anything = zero. You may |
| not have known that it might be a positive or negative |
| zero... */ |
| if (IS_ZERO(dest) || IS_ZERO(src)) { |
| dest->exp = 0; |
| dest->mant.m64 = 0; |
| dest->lowmant = 0; |
| |
| return dest; |
| } |
| |
| exp = dest->exp + src->exp - 0x3ffe; |
| |
| /* shift up the mantissa for denormalized numbers, |
| so that the highest bit is set, this makes the |
| shift of the result below easier */ |
| if ((long)dest->mant.m32[0] >= 0) |
| exp -= fp_overnormalize(dest); |
| if ((long)src->mant.m32[0] >= 0) |
| exp -= fp_overnormalize(src); |
| |
| /* now, do a 64-bit multiply with expansion */ |
| fp_multiplymant(&temp, dest, src); |
| |
| /* normalize it back to 64 bits and stuff it back into the |
| destination struct */ |
| if ((long)temp.m32[0] > 0) { |
| exp--; |
| fp_putmant128(dest, &temp, 1); |
| } else |
| fp_putmant128(dest, &temp, 0); |
| |
| if (exp >= 0x7fff) { |
| fp_set_ovrflw(dest); |
| return dest; |
| } |
| dest->exp = exp; |
| if (exp < 0) { |
| fp_set_sr(FPSR_EXC_UNFL); |
| fp_denormalize(dest, -exp); |
| } |
| |
| return dest; |
| } |
| |
| /* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and |
| FSGLDIV instructions. |
| |
| Note that the order of the operands is counter-intuitive: instead |
| of src / dest, the result is actually dest / src. */ |
| |
| struct fp_ext * |
| fp_fdiv(struct fp_ext *dest, struct fp_ext *src) |
| { |
| union fp_mant128 temp; |
| int exp; |
| |
| dprint(PINSTR, "fdiv\n"); |
| |
| fp_dyadic_check(dest, src); |
| |
| /* calculate the correct sign now, as it's necessary for infinities */ |
| dest->sign = src->sign ^ dest->sign; |
| |
| /* Handle infinities */ |
| if (IS_INF(dest)) { |
| /* infinity / infinity = NaN (quiet, as always) */ |
| if (IS_INF(src)) |
| fp_set_nan(dest); |
| /* infinity / anything else = infinity (with approprate sign) */ |
| return dest; |
| } |
| if (IS_INF(src)) { |
| /* anything / infinity = zero (with appropriate sign) */ |
| dest->exp = 0; |
| dest->mant.m64 = 0; |
| dest->lowmant = 0; |
| |
| return dest; |
| } |
| |
| /* zeroes */ |
| if (IS_ZERO(dest)) { |
| /* zero / zero = NaN */ |
| if (IS_ZERO(src)) |
| fp_set_nan(dest); |
| /* zero / anything else = zero */ |
| return dest; |
| } |
| if (IS_ZERO(src)) { |
| /* anything / zero = infinity (with appropriate sign) */ |
| fp_set_sr(FPSR_EXC_DZ); |
| dest->exp = 0x7fff; |
| dest->mant.m64 = 0; |
| |
| return dest; |
| } |
| |
| exp = dest->exp - src->exp + 0x3fff; |
| |
| /* shift up the mantissa for denormalized numbers, |
| so that the highest bit is set, this makes lots |
| of things below easier */ |
| if ((long)dest->mant.m32[0] >= 0) |
| exp -= fp_overnormalize(dest); |
| if ((long)src->mant.m32[0] >= 0) |
| exp -= fp_overnormalize(src); |
| |
| /* now, do the 64-bit divide */ |
| fp_dividemant(&temp, dest, src); |
| |
| /* normalize it back to 64 bits and stuff it back into the |
| destination struct */ |
| if (!temp.m32[0]) { |
| exp--; |
| fp_putmant128(dest, &temp, 32); |
| } else |
| fp_putmant128(dest, &temp, 31); |
| |
| if (exp >= 0x7fff) { |
| fp_set_ovrflw(dest); |
| return dest; |
| } |
| dest->exp = exp; |
| if (exp < 0) { |
| fp_set_sr(FPSR_EXC_UNFL); |
| fp_denormalize(dest, -exp); |
| } |
| |
| return dest; |
| } |
| |
| struct fp_ext * |
| fp_fsglmul(struct fp_ext *dest, struct fp_ext *src) |
| { |
| int exp; |
| |
| dprint(PINSTR, "fsglmul\n"); |
| |
| fp_dyadic_check(dest, src); |
| |
| /* calculate the correct sign now, as it's necessary for infinities */ |
| dest->sign = src->sign ^ dest->sign; |
| |
| /* Handle infinities */ |
| if (IS_INF(dest)) { |
| if (IS_ZERO(src)) |
| fp_set_nan(dest); |
| return dest; |
| } |
| if (IS_INF(src)) { |
| if (IS_ZERO(dest)) |
| fp_set_nan(dest); |
| else |
| fp_copy_ext(dest, src); |
| return dest; |
| } |
| |
| /* Of course, as we all know, zero * anything = zero. You may |
| not have known that it might be a positive or negative |
| zero... */ |
| if (IS_ZERO(dest) || IS_ZERO(src)) { |
| dest->exp = 0; |
| dest->mant.m64 = 0; |
| dest->lowmant = 0; |
| |
| return dest; |
| } |
| |
| exp = dest->exp + src->exp - 0x3ffe; |
| |
| /* do a 32-bit multiply */ |
| fp_mul64(dest->mant.m32[0], dest->mant.m32[1], |
| dest->mant.m32[0] & 0xffffff00, |
| src->mant.m32[0] & 0xffffff00); |
| |
| if (exp >= 0x7fff) { |
| fp_set_ovrflw(dest); |
| return dest; |
| } |
| dest->exp = exp; |
| if (exp < 0) { |
| fp_set_sr(FPSR_EXC_UNFL); |
| fp_denormalize(dest, -exp); |
| } |
| |
| return dest; |
| } |
| |
| struct fp_ext * |
| fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src) |
| { |
| int exp; |
| unsigned long quot, rem; |
| |
| dprint(PINSTR, "fsgldiv\n"); |
| |
| fp_dyadic_check(dest, src); |
| |
| /* calculate the correct sign now, as it's necessary for infinities */ |
| dest->sign = src->sign ^ dest->sign; |
| |
| /* Handle infinities */ |
| if (IS_INF(dest)) { |
| /* infinity / infinity = NaN (quiet, as always) */ |
| if (IS_INF(src)) |
| fp_set_nan(dest); |
| /* infinity / anything else = infinity (with approprate sign) */ |
| return dest; |
| } |
| if (IS_INF(src)) { |
| /* anything / infinity = zero (with appropriate sign) */ |
| dest->exp = 0; |
| dest->mant.m64 = 0; |
| dest->lowmant = 0; |
| |
| return dest; |
| } |
| |
| /* zeroes */ |
| if (IS_ZERO(dest)) { |
| /* zero / zero = NaN */ |
| if (IS_ZERO(src)) |
| fp_set_nan(dest); |
| /* zero / anything else = zero */ |
| return dest; |
| } |
| if (IS_ZERO(src)) { |
| /* anything / zero = infinity (with appropriate sign) */ |
| fp_set_sr(FPSR_EXC_DZ); |
| dest->exp = 0x7fff; |
| dest->mant.m64 = 0; |
| |
| return dest; |
| } |
| |
| exp = dest->exp - src->exp + 0x3fff; |
| |
| dest->mant.m32[0] &= 0xffffff00; |
| src->mant.m32[0] &= 0xffffff00; |
| |
| /* do the 32-bit divide */ |
| if (dest->mant.m32[0] >= src->mant.m32[0]) { |
| fp_sub64(dest->mant, src->mant); |
| fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); |
| dest->mant.m32[0] = 0x80000000 | (quot >> 1); |
| dest->mant.m32[1] = (quot & 1) | rem; /* only for rounding */ |
| } else { |
| fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); |
| dest->mant.m32[0] = quot; |
| dest->mant.m32[1] = rem; /* only for rounding */ |
| exp--; |
| } |
| |
| if (exp >= 0x7fff) { |
| fp_set_ovrflw(dest); |
| return dest; |
| } |
| dest->exp = exp; |
| if (exp < 0) { |
| fp_set_sr(FPSR_EXC_UNFL); |
| fp_denormalize(dest, -exp); |
| } |
| |
| return dest; |
| } |
| |
| /* fp_roundint: Internal rounding function for use by several of these |
| emulated instructions. |
| |
| This one rounds off the fractional part using the rounding mode |
| specified. */ |
| |
| static void fp_roundint(struct fp_ext *dest, int mode) |
| { |
| union fp_mant64 oldmant; |
| unsigned long mask; |
| |
| if (!fp_normalize_ext(dest)) |
| return; |
| |
| /* infinities and zeroes */ |
| if (IS_INF(dest) || IS_ZERO(dest)) |
| return; |
| |
| /* first truncate the lower bits */ |
| oldmant = dest->mant; |
| switch (dest->exp) { |
| case 0 ... 0x3ffe: |
| dest->mant.m64 = 0; |
| break; |
| case 0x3fff ... 0x401e: |
| dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp); |
| dest->mant.m32[1] = 0; |
| if (oldmant.m64 == dest->mant.m64) |
| return; |
| break; |
| case 0x401f ... 0x403e: |
| dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp); |
| if (oldmant.m32[1] == dest->mant.m32[1]) |
| return; |
| break; |
| default: |
| return; |
| } |
| fp_set_sr(FPSR_EXC_INEX2); |
| |
| /* We might want to normalize upwards here... however, since |
| we know that this is only called on the output of fp_fdiv, |
| or with the input to fp_fint or fp_fintrz, and the inputs |
| to all these functions are either normal or denormalized |
| (no subnormals allowed!), there's really no need. |
| |
| In the case of fp_fdiv, observe that 0x80000000 / 0xffff = |
| 0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the |
| smallest possible normal dividend and the largest possible normal |
| divisor will still produce a normal quotient, therefore, (normal |
| << 64) / normal is normal in all cases) */ |
| |
| switch (mode) { |
| case FPCR_ROUND_RN: |
| switch (dest->exp) { |
| case 0 ... 0x3ffd: |
| return; |
| case 0x3ffe: |
| /* As noted above, the input is always normal, so the |
| guard bit (bit 63) is always set. therefore, the |
| only case in which we will NOT round to 1.0 is when |
| the input is exactly 0.5. */ |
| if (oldmant.m64 == (1ULL << 63)) |
| return; |
| break; |
| case 0x3fff ... 0x401d: |
| mask = 1 << (0x401d - dest->exp); |
| if (!(oldmant.m32[0] & mask)) |
| return; |
| if (oldmant.m32[0] & (mask << 1)) |
| break; |
| if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) && |
| !oldmant.m32[1]) |
| return; |
| break; |
| case 0x401e: |
| if (!(oldmant.m32[1] >= 0)) |
| return; |
| if (oldmant.m32[0] & 1) |
| break; |
| if (!(oldmant.m32[1] << 1)) |
| return; |
| break; |
| case 0x401f ... 0x403d: |
| mask = 1 << (0x403d - dest->exp); |
| if (!(oldmant.m32[1] & mask)) |
| return; |
| if (oldmant.m32[1] & (mask << 1)) |
| break; |
| if (!(oldmant.m32[1] << (dest->exp - 0x401d))) |
| return; |
| break; |
| default: |
| return; |
| } |
| break; |
| case FPCR_ROUND_RZ: |
| return; |
| default: |
| if (dest->sign ^ (mode - FPCR_ROUND_RM)) |
| break; |
| return; |
| } |
| |
| switch (dest->exp) { |
| case 0 ... 0x3ffe: |
| dest->exp = 0x3fff; |
| dest->mant.m64 = 1ULL << 63; |
| break; |
| case 0x3fff ... 0x401e: |
| mask = 1 << (0x401e - dest->exp); |
| if (dest->mant.m32[0] += mask) |
| break; |
| dest->mant.m32[0] = 0x80000000; |
| dest->exp++; |
| break; |
| case 0x401f ... 0x403e: |
| mask = 1 << (0x403e - dest->exp); |
| if (dest->mant.m32[1] += mask) |
| break; |
| if (dest->mant.m32[0] += 1) |
| break; |
| dest->mant.m32[0] = 0x80000000; |
| dest->exp++; |
| break; |
| } |
| } |
| |
| /* modrem_kernel: Implementation of the FREM and FMOD instructions |
| (which are exactly the same, except for the rounding used on the |
| intermediate value) */ |
| |
| static struct fp_ext * |
| modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode) |
| { |
| struct fp_ext tmp; |
| |
| fp_dyadic_check(dest, src); |
| |
| /* Infinities and zeros */ |
| if (IS_INF(dest) || IS_ZERO(src)) { |
| fp_set_nan(dest); |
| return dest; |
| } |
| if (IS_ZERO(dest) || IS_INF(src)) |
| return dest; |
| |
| /* FIXME: there is almost certainly a smarter way to do this */ |
| fp_copy_ext(&tmp, dest); |
| fp_fdiv(&tmp, src); /* NOTE: src might be modified */ |
| fp_roundint(&tmp, mode); |
| fp_fmul(&tmp, src); |
| fp_fsub(dest, &tmp); |
| |
| /* set the quotient byte */ |
| fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7)); |
| return dest; |
| } |
| |
| /* fp_fmod: Implements the kernel of the FMOD instruction. |
| |
| Again, the argument order is backwards. The result, as defined in |
| the Motorola manuals, is: |
| |
| fmod(src,dest) = (dest - (src * floor(dest / src))) */ |
| |
| struct fp_ext * |
| fp_fmod(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "fmod\n"); |
| return modrem_kernel(dest, src, FPCR_ROUND_RZ); |
| } |
| |
| /* fp_frem: Implements the kernel of the FREM instruction. |
| |
| frem(src,dest) = (dest - (src * round(dest / src))) |
| */ |
| |
| struct fp_ext * |
| fp_frem(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "frem\n"); |
| return modrem_kernel(dest, src, FPCR_ROUND_RN); |
| } |
| |
| struct fp_ext * |
| fp_fint(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "fint\n"); |
| |
| fp_copy_ext(dest, src); |
| |
| fp_roundint(dest, FPDATA->rnd); |
| |
| return dest; |
| } |
| |
| struct fp_ext * |
| fp_fintrz(struct fp_ext *dest, struct fp_ext *src) |
| { |
| dprint(PINSTR, "fintrz\n"); |
| |
| fp_copy_ext(dest, src); |
| |
| fp_roundint(dest, FPCR_ROUND_RZ); |
| |
| return dest; |
| } |
| |
| struct fp_ext * |
| fp_fscale(struct fp_ext *dest, struct fp_ext *src) |
| { |
| int scale, oldround; |
| |
| dprint(PINSTR, "fscale\n"); |
| |
| fp_dyadic_check(dest, src); |
| |
| /* Infinities */ |
| if (IS_INF(src)) { |
| fp_set_nan(dest); |
| return dest; |
| } |
| if (IS_INF(dest)) |
| return dest; |
| |
| /* zeroes */ |
| if (IS_ZERO(src) || IS_ZERO(dest)) |
| return dest; |
| |
| /* Source exponent out of range */ |
| if (src->exp >= 0x400c) { |
| fp_set_ovrflw(dest); |
| return dest; |
| } |
| |
| /* src must be rounded with round to zero. */ |
| oldround = FPDATA->rnd; |
| FPDATA->rnd = FPCR_ROUND_RZ; |
| scale = fp_conv_ext2long(src); |
| FPDATA->rnd = oldround; |
| |
| /* new exponent */ |
| scale += dest->exp; |
| |
| if (scale >= 0x7fff) { |
| fp_set_ovrflw(dest); |
| } else if (scale <= 0) { |
| fp_set_sr(FPSR_EXC_UNFL); |
| fp_denormalize(dest, -scale); |
| } else |
| dest->exp = scale; |
| |
| return dest; |
| } |
| |