| |
| /* |
| * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART. |
| * |
| * Author: Abraham vd Merwe <abraham@2d3d.co.za> |
| * |
| * Copyright (c) 2001, 2d3D, Inc. |
| * |
| * This code is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * References: |
| * |
| * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet |
| * - Order Number: 290644-005 |
| * - January 2000 |
| * |
| * [2] MTD internal API documentation |
| * - http://www.linux-mtd.infradead.org/ |
| * |
| * Limitations: |
| * |
| * Even though this driver is written for 3 Volt Fast Boot |
| * Block Flash Memory, it is rather specific to LART. With |
| * Minor modifications, notably the without data/address line |
| * mangling and different bus settings, etc. it should be |
| * trivial to adapt to other platforms. |
| * |
| * If somebody would sponsor me a different board, I'll |
| * adapt the driver (: |
| */ |
| |
| /* debugging */ |
| //#define LART_DEBUG |
| |
| /* partition support */ |
| #define HAVE_PARTITIONS |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/mtd/mtd.h> |
| #ifdef HAVE_PARTITIONS |
| #include <linux/mtd/partitions.h> |
| #endif |
| |
| #ifndef CONFIG_SA1100_LART |
| #error This is for LART architecture only |
| #endif |
| |
| static char module_name[] = "lart"; |
| |
| /* |
| * These values is specific to 28Fxxxx3 flash memory. |
| * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet |
| */ |
| #define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH) |
| #define FLASH_NUMBLOCKS_16m_PARAM 8 |
| #define FLASH_NUMBLOCKS_8m_PARAM 8 |
| |
| /* |
| * These values is specific to 28Fxxxx3 flash memory. |
| * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet |
| */ |
| #define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH) |
| #define FLASH_NUMBLOCKS_16m_MAIN 31 |
| #define FLASH_NUMBLOCKS_8m_MAIN 15 |
| |
| /* |
| * These values are specific to LART |
| */ |
| |
| /* general */ |
| #define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */ |
| #define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */ |
| |
| /* blob */ |
| #define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM |
| #define BLOB_START 0x00000000 |
| #define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM) |
| |
| /* kernel */ |
| #define NUM_KERNEL_BLOCKS 7 |
| #define KERNEL_START (BLOB_START + BLOB_LEN) |
| #define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN) |
| |
| /* initial ramdisk */ |
| #define NUM_INITRD_BLOCKS 24 |
| #define INITRD_START (KERNEL_START + KERNEL_LEN) |
| #define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN) |
| |
| /* |
| * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet |
| */ |
| #define READ_ARRAY 0x00FF00FF /* Read Array/Reset */ |
| #define READ_ID_CODES 0x00900090 /* Read Identifier Codes */ |
| #define ERASE_SETUP 0x00200020 /* Block Erase */ |
| #define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */ |
| #define PGM_SETUP 0x00400040 /* Program */ |
| #define STATUS_READ 0x00700070 /* Read Status Register */ |
| #define STATUS_CLEAR 0x00500050 /* Clear Status Register */ |
| #define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */ |
| #define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */ |
| #define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */ |
| |
| /* |
| * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet |
| */ |
| #define FLASH_MANUFACTURER 0x00890089 |
| #define FLASH_DEVICE_8mbit_TOP 0x88f188f1 |
| #define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2 |
| #define FLASH_DEVICE_16mbit_TOP 0x88f388f3 |
| #define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4 |
| |
| /***************************************************************************************************/ |
| |
| /* |
| * The data line mapping on LART is as follows: |
| * |
| * U2 CPU | U3 CPU |
| * ------------------- |
| * 0 20 | 0 12 |
| * 1 22 | 1 14 |
| * 2 19 | 2 11 |
| * 3 17 | 3 9 |
| * 4 24 | 4 0 |
| * 5 26 | 5 2 |
| * 6 31 | 6 7 |
| * 7 29 | 7 5 |
| * 8 21 | 8 13 |
| * 9 23 | 9 15 |
| * 10 18 | 10 10 |
| * 11 16 | 11 8 |
| * 12 25 | 12 1 |
| * 13 27 | 13 3 |
| * 14 30 | 14 6 |
| * 15 28 | 15 4 |
| */ |
| |
| /* Mangle data (x) */ |
| #define DATA_TO_FLASH(x) \ |
| ( \ |
| (((x) & 0x08009000) >> 11) + \ |
| (((x) & 0x00002000) >> 10) + \ |
| (((x) & 0x04004000) >> 8) + \ |
| (((x) & 0x00000010) >> 4) + \ |
| (((x) & 0x91000820) >> 3) + \ |
| (((x) & 0x22080080) >> 2) + \ |
| ((x) & 0x40000400) + \ |
| (((x) & 0x00040040) << 1) + \ |
| (((x) & 0x00110000) << 4) + \ |
| (((x) & 0x00220100) << 5) + \ |
| (((x) & 0x00800208) << 6) + \ |
| (((x) & 0x00400004) << 9) + \ |
| (((x) & 0x00000001) << 12) + \ |
| (((x) & 0x00000002) << 13) \ |
| ) |
| |
| /* Unmangle data (x) */ |
| #define FLASH_TO_DATA(x) \ |
| ( \ |
| (((x) & 0x00010012) << 11) + \ |
| (((x) & 0x00000008) << 10) + \ |
| (((x) & 0x00040040) << 8) + \ |
| (((x) & 0x00000001) << 4) + \ |
| (((x) & 0x12200104) << 3) + \ |
| (((x) & 0x08820020) << 2) + \ |
| ((x) & 0x40000400) + \ |
| (((x) & 0x00080080) >> 1) + \ |
| (((x) & 0x01100000) >> 4) + \ |
| (((x) & 0x04402000) >> 5) + \ |
| (((x) & 0x20008200) >> 6) + \ |
| (((x) & 0x80000800) >> 9) + \ |
| (((x) & 0x00001000) >> 12) + \ |
| (((x) & 0x00004000) >> 13) \ |
| ) |
| |
| /* |
| * The address line mapping on LART is as follows: |
| * |
| * U3 CPU | U2 CPU |
| * ------------------- |
| * 0 2 | 0 2 |
| * 1 3 | 1 3 |
| * 2 9 | 2 9 |
| * 3 13 | 3 8 |
| * 4 8 | 4 7 |
| * 5 12 | 5 6 |
| * 6 11 | 6 5 |
| * 7 10 | 7 4 |
| * 8 4 | 8 10 |
| * 9 5 | 9 11 |
| * 10 6 | 10 12 |
| * 11 7 | 11 13 |
| * |
| * BOOT BLOCK BOUNDARY |
| * |
| * 12 15 | 12 15 |
| * 13 14 | 13 14 |
| * 14 16 | 14 16 |
| * |
| * MAIN BLOCK BOUNDARY |
| * |
| * 15 17 | 15 18 |
| * 16 18 | 16 17 |
| * 17 20 | 17 20 |
| * 18 19 | 18 19 |
| * 19 21 | 19 21 |
| * |
| * As we can see from above, the addresses aren't mangled across |
| * block boundaries, so we don't need to worry about address |
| * translations except for sending/reading commands during |
| * initialization |
| */ |
| |
| /* Mangle address (x) on chip U2 */ |
| #define ADDR_TO_FLASH_U2(x) \ |
| ( \ |
| (((x) & 0x00000f00) >> 4) + \ |
| (((x) & 0x00042000) << 1) + \ |
| (((x) & 0x0009c003) << 2) + \ |
| (((x) & 0x00021080) << 3) + \ |
| (((x) & 0x00000010) << 4) + \ |
| (((x) & 0x00000040) << 5) + \ |
| (((x) & 0x00000024) << 7) + \ |
| (((x) & 0x00000008) << 10) \ |
| ) |
| |
| /* Unmangle address (x) on chip U2 */ |
| #define FLASH_U2_TO_ADDR(x) \ |
| ( \ |
| (((x) << 4) & 0x00000f00) + \ |
| (((x) >> 1) & 0x00042000) + \ |
| (((x) >> 2) & 0x0009c003) + \ |
| (((x) >> 3) & 0x00021080) + \ |
| (((x) >> 4) & 0x00000010) + \ |
| (((x) >> 5) & 0x00000040) + \ |
| (((x) >> 7) & 0x00000024) + \ |
| (((x) >> 10) & 0x00000008) \ |
| ) |
| |
| /* Mangle address (x) on chip U3 */ |
| #define ADDR_TO_FLASH_U3(x) \ |
| ( \ |
| (((x) & 0x00000080) >> 3) + \ |
| (((x) & 0x00000040) >> 1) + \ |
| (((x) & 0x00052020) << 1) + \ |
| (((x) & 0x00084f03) << 2) + \ |
| (((x) & 0x00029010) << 3) + \ |
| (((x) & 0x00000008) << 5) + \ |
| (((x) & 0x00000004) << 7) \ |
| ) |
| |
| /* Unmangle address (x) on chip U3 */ |
| #define FLASH_U3_TO_ADDR(x) \ |
| ( \ |
| (((x) << 3) & 0x00000080) + \ |
| (((x) << 1) & 0x00000040) + \ |
| (((x) >> 1) & 0x00052020) + \ |
| (((x) >> 2) & 0x00084f03) + \ |
| (((x) >> 3) & 0x00029010) + \ |
| (((x) >> 5) & 0x00000008) + \ |
| (((x) >> 7) & 0x00000004) \ |
| ) |
| |
| /***************************************************************************************************/ |
| |
| static __u8 read8 (__u32 offset) |
| { |
| volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset); |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data); |
| #endif |
| return (*data); |
| } |
| |
| static __u32 read32 (__u32 offset) |
| { |
| volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data); |
| #endif |
| return (*data); |
| } |
| |
| static void write32 (__u32 x,__u32 offset) |
| { |
| volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); |
| *data = x; |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data); |
| #endif |
| } |
| |
| /***************************************************************************************************/ |
| |
| /* |
| * Probe for 16mbit flash memory on a LART board without doing |
| * too much damage. Since we need to write 1 dword to memory, |
| * we're f**cked if this happens to be DRAM since we can't |
| * restore the memory (otherwise we might exit Read Array mode). |
| * |
| * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise. |
| */ |
| static int flash_probe (void) |
| { |
| __u32 manufacturer,devtype; |
| |
| /* setup "Read Identifier Codes" mode */ |
| write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000); |
| |
| /* probe U2. U2/U3 returns the same data since the first 3 |
| * address lines is mangled in the same way */ |
| manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000))); |
| devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001))); |
| |
| /* put the flash back into command mode */ |
| write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000); |
| |
| return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM)); |
| } |
| |
| /* |
| * Erase one block of flash memory at offset ``offset'' which is any |
| * address within the block which should be erased. |
| * |
| * Returns 1 if successful, 0 otherwise. |
| */ |
| static inline int erase_block (__u32 offset) |
| { |
| __u32 status; |
| |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset); |
| #endif |
| |
| /* erase and confirm */ |
| write32 (DATA_TO_FLASH (ERASE_SETUP),offset); |
| write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset); |
| |
| /* wait for block erase to finish */ |
| do |
| { |
| write32 (DATA_TO_FLASH (STATUS_READ),offset); |
| status = FLASH_TO_DATA (read32 (offset)); |
| } |
| while ((~status & STATUS_BUSY) != 0); |
| |
| /* put the flash back into command mode */ |
| write32 (DATA_TO_FLASH (READ_ARRAY),offset); |
| |
| /* was the erase successful? */ |
| if ((status & STATUS_ERASE_ERR)) |
| { |
| printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset); |
| return (0); |
| } |
| |
| return (1); |
| } |
| |
| static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) |
| { |
| __u32 addr,len; |
| int i,first; |
| |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len); |
| #endif |
| |
| /* sanity checks */ |
| if (instr->addr + instr->len > mtd->size) return (-EINVAL); |
| |
| /* |
| * check that both start and end of the requested erase are |
| * aligned with the erasesize at the appropriate addresses. |
| * |
| * skip all erase regions which are ended before the start of |
| * the requested erase. Actually, to save on the calculations, |
| * we skip to the first erase region which starts after the |
| * start of the requested erase, and then go back one. |
| */ |
| for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ; |
| i--; |
| |
| /* |
| * ok, now i is pointing at the erase region in which this |
| * erase request starts. Check the start of the requested |
| * erase range is aligned with the erase size which is in |
| * effect here. |
| */ |
| if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1))) |
| return -EINVAL; |
| |
| /* Remember the erase region we start on */ |
| first = i; |
| |
| /* |
| * next, check that the end of the requested erase is aligned |
| * with the erase region at that address. |
| * |
| * as before, drop back one to point at the region in which |
| * the address actually falls |
| */ |
| for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ; |
| i--; |
| |
| /* is the end aligned on a block boundary? */ |
| if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1))) |
| return -EINVAL; |
| |
| addr = instr->addr; |
| len = instr->len; |
| |
| i = first; |
| |
| /* now erase those blocks */ |
| while (len) |
| { |
| if (!erase_block (addr)) |
| { |
| instr->state = MTD_ERASE_FAILED; |
| return (-EIO); |
| } |
| |
| addr += mtd->eraseregions[i].erasesize; |
| len -= mtd->eraseregions[i].erasesize; |
| |
| if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++; |
| } |
| |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return (0); |
| } |
| |
| static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf) |
| { |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len); |
| #endif |
| |
| /* sanity checks */ |
| if (!len) return (0); |
| if (from + len > mtd->size) return (-EINVAL); |
| |
| /* we always read len bytes */ |
| *retlen = len; |
| |
| /* first, we read bytes until we reach a dword boundary */ |
| if (from & (BUSWIDTH - 1)) |
| { |
| int gap = BUSWIDTH - (from & (BUSWIDTH - 1)); |
| |
| while (len && gap--) *buf++ = read8 (from++), len--; |
| } |
| |
| /* now we read dwords until we reach a non-dword boundary */ |
| while (len >= BUSWIDTH) |
| { |
| *((__u32 *) buf) = read32 (from); |
| |
| buf += BUSWIDTH; |
| from += BUSWIDTH; |
| len -= BUSWIDTH; |
| } |
| |
| /* top up the last unaligned bytes */ |
| if (len & (BUSWIDTH - 1)) |
| while (len--) *buf++ = read8 (from++); |
| |
| return (0); |
| } |
| |
| /* |
| * Write one dword ``x'' to flash memory at offset ``offset''. ``offset'' |
| * must be 32 bits, i.e. it must be on a dword boundary. |
| * |
| * Returns 1 if successful, 0 otherwise. |
| */ |
| static inline int write_dword (__u32 offset,__u32 x) |
| { |
| __u32 status; |
| |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x); |
| #endif |
| |
| /* setup writing */ |
| write32 (DATA_TO_FLASH (PGM_SETUP),offset); |
| |
| /* write the data */ |
| write32 (x,offset); |
| |
| /* wait for the write to finish */ |
| do |
| { |
| write32 (DATA_TO_FLASH (STATUS_READ),offset); |
| status = FLASH_TO_DATA (read32 (offset)); |
| } |
| while ((~status & STATUS_BUSY) != 0); |
| |
| /* put the flash back into command mode */ |
| write32 (DATA_TO_FLASH (READ_ARRAY),offset); |
| |
| /* was the write successful? */ |
| if ((status & STATUS_PGM_ERR) || read32 (offset) != x) |
| { |
| printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset); |
| return (0); |
| } |
| |
| return (1); |
| } |
| |
| static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) |
| { |
| __u8 tmp[4]; |
| int i,n; |
| |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len); |
| #endif |
| |
| *retlen = 0; |
| |
| /* sanity checks */ |
| if (!len) return (0); |
| if (to + len > mtd->size) return (-EINVAL); |
| |
| /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ |
| if (to & (BUSWIDTH - 1)) |
| { |
| __u32 aligned = to & ~(BUSWIDTH - 1); |
| int gap = to - aligned; |
| |
| i = n = 0; |
| |
| while (gap--) tmp[i++] = 0xFF; |
| while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--; |
| while (i < BUSWIDTH) tmp[i++] = 0xFF; |
| |
| if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO); |
| |
| to += n; |
| buf += n; |
| *retlen += n; |
| } |
| |
| /* now we write dwords until we reach a non-dword boundary */ |
| while (len >= BUSWIDTH) |
| { |
| if (!write_dword (to,*((__u32 *) buf))) return (-EIO); |
| |
| to += BUSWIDTH; |
| buf += BUSWIDTH; |
| *retlen += BUSWIDTH; |
| len -= BUSWIDTH; |
| } |
| |
| /* top up the last unaligned bytes, padded with 0xFF.... */ |
| if (len & (BUSWIDTH - 1)) |
| { |
| i = n = 0; |
| |
| while (len--) tmp[i++] = buf[n++]; |
| while (i < BUSWIDTH) tmp[i++] = 0xFF; |
| |
| if (!write_dword (to,*((__u32 *) tmp))) return (-EIO); |
| |
| *retlen += n; |
| } |
| |
| return (0); |
| } |
| |
| /***************************************************************************************************/ |
| |
| static struct mtd_info mtd; |
| |
| static struct mtd_erase_region_info erase_regions[] = { |
| /* parameter blocks */ |
| { |
| .offset = 0x00000000, |
| .erasesize = FLASH_BLOCKSIZE_PARAM, |
| .numblocks = FLASH_NUMBLOCKS_16m_PARAM, |
| }, |
| /* main blocks */ |
| { |
| .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM, |
| .erasesize = FLASH_BLOCKSIZE_MAIN, |
| .numblocks = FLASH_NUMBLOCKS_16m_MAIN, |
| } |
| }; |
| |
| #ifdef HAVE_PARTITIONS |
| static struct mtd_partition lart_partitions[] = { |
| /* blob */ |
| { |
| .name = "blob", |
| .offset = BLOB_START, |
| .size = BLOB_LEN, |
| }, |
| /* kernel */ |
| { |
| .name = "kernel", |
| .offset = KERNEL_START, /* MTDPART_OFS_APPEND */ |
| .size = KERNEL_LEN, |
| }, |
| /* initial ramdisk / file system */ |
| { |
| .name = "file system", |
| .offset = INITRD_START, /* MTDPART_OFS_APPEND */ |
| .size = INITRD_LEN, /* MTDPART_SIZ_FULL */ |
| } |
| }; |
| #endif |
| |
| static int __init lart_flash_init (void) |
| { |
| int result; |
| memset (&mtd,0,sizeof (mtd)); |
| printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n"); |
| printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name); |
| if (!flash_probe ()) |
| { |
| printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name); |
| return (-ENXIO); |
| } |
| printk ("%s: This looks like a LART board to me.\n",module_name); |
| mtd.name = module_name; |
| mtd.type = MTD_NORFLASH; |
| mtd.writesize = 1; |
| mtd.flags = MTD_CAP_NORFLASH; |
| mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; |
| mtd.erasesize = FLASH_BLOCKSIZE_MAIN; |
| mtd.numeraseregions = ARRAY_SIZE(erase_regions); |
| mtd.eraseregions = erase_regions; |
| mtd.erase = flash_erase; |
| mtd.read = flash_read; |
| mtd.write = flash_write; |
| mtd.owner = THIS_MODULE; |
| |
| #ifdef LART_DEBUG |
| printk (KERN_DEBUG |
| "mtd.name = %s\n" |
| "mtd.size = 0x%.8x (%uM)\n" |
| "mtd.erasesize = 0x%.8x (%uK)\n" |
| "mtd.numeraseregions = %d\n", |
| mtd.name, |
| mtd.size,mtd.size / (1024*1024), |
| mtd.erasesize,mtd.erasesize / 1024, |
| mtd.numeraseregions); |
| |
| if (mtd.numeraseregions) |
| for (result = 0; result < mtd.numeraseregions; result++) |
| printk (KERN_DEBUG |
| "\n\n" |
| "mtd.eraseregions[%d].offset = 0x%.8x\n" |
| "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n" |
| "mtd.eraseregions[%d].numblocks = %d\n", |
| result,mtd.eraseregions[result].offset, |
| result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024, |
| result,mtd.eraseregions[result].numblocks); |
| |
| #ifdef HAVE_PARTITIONS |
| printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions)); |
| |
| for (result = 0; result < ARRAY_SIZE(lart_partitions); result++) |
| printk (KERN_DEBUG |
| "\n\n" |
| "lart_partitions[%d].name = %s\n" |
| "lart_partitions[%d].offset = 0x%.8x\n" |
| "lart_partitions[%d].size = 0x%.8x (%uK)\n", |
| result,lart_partitions[result].name, |
| result,lart_partitions[result].offset, |
| result,lart_partitions[result].size,lart_partitions[result].size / 1024); |
| #endif |
| #endif |
| |
| #ifndef HAVE_PARTITIONS |
| result = mtd_device_register(&mtd, NULL, 0); |
| #else |
| result = mtd_device_register(&mtd, lart_partitions, |
| ARRAY_SIZE(lart_partitions)); |
| #endif |
| |
| return (result); |
| } |
| |
| static void __exit lart_flash_exit (void) |
| { |
| #ifndef HAVE_PARTITIONS |
| mtd_device_unregister(&mtd); |
| #else |
| mtd_device_unregister(&mtd); |
| #endif |
| } |
| |
| module_init (lart_flash_init); |
| module_exit (lart_flash_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>"); |
| MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board"); |