| /* |
| * Driver for Microtune MT2266 "Direct conversion low power broadband tuner" |
| * |
| * Copyright (c) 2007 Olivier DANET <odanet@caramail.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/dvb/frontend.h> |
| #include <linux/i2c.h> |
| #include <linux/slab.h> |
| |
| #include "dvb_frontend.h" |
| #include "mt2266.h" |
| |
| #define I2C_ADDRESS 0x60 |
| |
| #define REG_PART_REV 0 |
| #define REG_TUNE 1 |
| #define REG_BAND 6 |
| #define REG_BANDWIDTH 8 |
| #define REG_LOCK 0x12 |
| |
| #define PART_REV 0x85 |
| |
| struct mt2266_priv { |
| struct mt2266_config *cfg; |
| struct i2c_adapter *i2c; |
| |
| u32 frequency; |
| u32 bandwidth; |
| u8 band; |
| }; |
| |
| #define MT2266_VHF 1 |
| #define MT2266_UHF 0 |
| |
| /* Here, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); |
| |
| #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2266: " args); printk("\n"); }} while (0) |
| |
| // Reads a single register |
| static int mt2266_readreg(struct mt2266_priv *priv, u8 reg, u8 *val) |
| { |
| struct i2c_msg msg[2] = { |
| { .addr = priv->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 }, |
| { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 }, |
| }; |
| if (i2c_transfer(priv->i2c, msg, 2) != 2) { |
| printk(KERN_WARNING "MT2266 I2C read failed\n"); |
| return -EREMOTEIO; |
| } |
| return 0; |
| } |
| |
| // Writes a single register |
| static int mt2266_writereg(struct mt2266_priv *priv, u8 reg, u8 val) |
| { |
| u8 buf[2] = { reg, val }; |
| struct i2c_msg msg = { |
| .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2 |
| }; |
| if (i2c_transfer(priv->i2c, &msg, 1) != 1) { |
| printk(KERN_WARNING "MT2266 I2C write failed\n"); |
| return -EREMOTEIO; |
| } |
| return 0; |
| } |
| |
| // Writes a set of consecutive registers |
| static int mt2266_writeregs(struct mt2266_priv *priv,u8 *buf, u8 len) |
| { |
| struct i2c_msg msg = { |
| .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len |
| }; |
| if (i2c_transfer(priv->i2c, &msg, 1) != 1) { |
| printk(KERN_WARNING "MT2266 I2C write failed (len=%i)\n",(int)len); |
| return -EREMOTEIO; |
| } |
| return 0; |
| } |
| |
| // Initialisation sequences |
| static u8 mt2266_init1[] = { REG_TUNE, 0x00, 0x00, 0x28, |
| 0x00, 0x52, 0x99, 0x3f }; |
| |
| static u8 mt2266_init2[] = { |
| 0x17, 0x6d, 0x71, 0x61, 0xc0, 0xbf, 0xff, 0xdc, 0x00, 0x0a, 0xd4, |
| 0x03, 0x64, 0x64, 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14, |
| 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x7f, 0x5e, 0x3f, 0xff, 0xff, |
| 0xff, 0x00, 0x77, 0x0f, 0x2d |
| }; |
| |
| static u8 mt2266_init_8mhz[] = { REG_BANDWIDTH, 0x22, 0x22, 0x22, 0x22, |
| 0x22, 0x22, 0x22, 0x22 }; |
| |
| static u8 mt2266_init_7mhz[] = { REG_BANDWIDTH, 0x32, 0x32, 0x32, 0x32, |
| 0x32, 0x32, 0x32, 0x32 }; |
| |
| static u8 mt2266_init_6mhz[] = { REG_BANDWIDTH, 0xa7, 0xa7, 0xa7, 0xa7, |
| 0xa7, 0xa7, 0xa7, 0xa7 }; |
| |
| static u8 mt2266_uhf[] = { 0x1d, 0xdc, 0x00, 0x0a, 0xd4, 0x03, 0x64, 0x64, |
| 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14 }; |
| |
| static u8 mt2266_vhf[] = { 0x1d, 0xfe, 0x00, 0x00, 0xb4, 0x03, 0xa5, 0xa5, |
| 0xa5, 0xa5, 0x82, 0xaa, 0xf1, 0x17, 0x80, 0x1f }; |
| |
| #define FREF 30000 // Quartz oscillator 30 MHz |
| |
| static int mt2266_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) |
| { |
| struct mt2266_priv *priv; |
| int ret=0; |
| u32 freq; |
| u32 tune; |
| u8 lnaband; |
| u8 b[10]; |
| int i; |
| u8 band; |
| |
| priv = fe->tuner_priv; |
| |
| freq = params->frequency / 1000; // Hz -> kHz |
| if (freq < 470000 && freq > 230000) |
| return -EINVAL; /* Gap between VHF and UHF bands */ |
| priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0; |
| priv->frequency = freq * 1000; |
| |
| tune = 2 * freq * (8192/16) / (FREF/16); |
| band = (freq < 300000) ? MT2266_VHF : MT2266_UHF; |
| if (band == MT2266_VHF) |
| tune *= 2; |
| |
| switch (params->u.ofdm.bandwidth) { |
| case BANDWIDTH_6_MHZ: |
| mt2266_writeregs(priv, mt2266_init_6mhz, |
| sizeof(mt2266_init_6mhz)); |
| break; |
| case BANDWIDTH_7_MHZ: |
| mt2266_writeregs(priv, mt2266_init_7mhz, |
| sizeof(mt2266_init_7mhz)); |
| break; |
| case BANDWIDTH_8_MHZ: |
| default: |
| mt2266_writeregs(priv, mt2266_init_8mhz, |
| sizeof(mt2266_init_8mhz)); |
| break; |
| } |
| |
| if (band == MT2266_VHF && priv->band == MT2266_UHF) { |
| dprintk("Switch from UHF to VHF"); |
| mt2266_writereg(priv, 0x05, 0x04); |
| mt2266_writereg(priv, 0x19, 0x61); |
| mt2266_writeregs(priv, mt2266_vhf, sizeof(mt2266_vhf)); |
| } else if (band == MT2266_UHF && priv->band == MT2266_VHF) { |
| dprintk("Switch from VHF to UHF"); |
| mt2266_writereg(priv, 0x05, 0x52); |
| mt2266_writereg(priv, 0x19, 0x61); |
| mt2266_writeregs(priv, mt2266_uhf, sizeof(mt2266_uhf)); |
| } |
| msleep(10); |
| |
| if (freq <= 495000) |
| lnaband = 0xEE; |
| else if (freq <= 525000) |
| lnaband = 0xDD; |
| else if (freq <= 550000) |
| lnaband = 0xCC; |
| else if (freq <= 580000) |
| lnaband = 0xBB; |
| else if (freq <= 605000) |
| lnaband = 0xAA; |
| else if (freq <= 630000) |
| lnaband = 0x99; |
| else if (freq <= 655000) |
| lnaband = 0x88; |
| else if (freq <= 685000) |
| lnaband = 0x77; |
| else if (freq <= 710000) |
| lnaband = 0x66; |
| else if (freq <= 735000) |
| lnaband = 0x55; |
| else if (freq <= 765000) |
| lnaband = 0x44; |
| else if (freq <= 802000) |
| lnaband = 0x33; |
| else if (freq <= 840000) |
| lnaband = 0x22; |
| else |
| lnaband = 0x11; |
| |
| b[0] = REG_TUNE; |
| b[1] = (tune >> 8) & 0x1F; |
| b[2] = tune & 0xFF; |
| b[3] = tune >> 13; |
| mt2266_writeregs(priv,b,4); |
| |
| dprintk("set_parms: tune=%d band=%d %s", |
| (int) tune, (int) lnaband, |
| (band == MT2266_UHF) ? "UHF" : "VHF"); |
| dprintk("set_parms: [1..3]: %2x %2x %2x", |
| (int) b[1], (int) b[2], (int)b[3]); |
| |
| if (band == MT2266_UHF) { |
| b[0] = 0x05; |
| b[1] = (priv->band == MT2266_VHF) ? 0x52 : 0x62; |
| b[2] = lnaband; |
| mt2266_writeregs(priv, b, 3); |
| } |
| |
| /* Wait for pll lock or timeout */ |
| i = 0; |
| do { |
| mt2266_readreg(priv,REG_LOCK,b); |
| if (b[0] & 0x40) |
| break; |
| msleep(10); |
| i++; |
| } while (i<10); |
| dprintk("Lock when i=%i",(int)i); |
| |
| if (band == MT2266_UHF && priv->band == MT2266_VHF) |
| mt2266_writereg(priv, 0x05, 0x62); |
| |
| priv->band = band; |
| |
| return ret; |
| } |
| |
| static void mt2266_calibrate(struct mt2266_priv *priv) |
| { |
| mt2266_writereg(priv, 0x11, 0x03); |
| mt2266_writereg(priv, 0x11, 0x01); |
| mt2266_writeregs(priv, mt2266_init1, sizeof(mt2266_init1)); |
| mt2266_writeregs(priv, mt2266_init2, sizeof(mt2266_init2)); |
| mt2266_writereg(priv, 0x33, 0x5e); |
| mt2266_writereg(priv, 0x10, 0x10); |
| mt2266_writereg(priv, 0x10, 0x00); |
| mt2266_writeregs(priv, mt2266_init_8mhz, sizeof(mt2266_init_8mhz)); |
| msleep(25); |
| mt2266_writereg(priv, 0x17, 0x6d); |
| mt2266_writereg(priv, 0x1c, 0x00); |
| msleep(75); |
| mt2266_writereg(priv, 0x17, 0x6d); |
| mt2266_writereg(priv, 0x1c, 0xff); |
| } |
| |
| static int mt2266_get_frequency(struct dvb_frontend *fe, u32 *frequency) |
| { |
| struct mt2266_priv *priv = fe->tuner_priv; |
| *frequency = priv->frequency; |
| return 0; |
| } |
| |
| static int mt2266_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) |
| { |
| struct mt2266_priv *priv = fe->tuner_priv; |
| *bandwidth = priv->bandwidth; |
| return 0; |
| } |
| |
| static int mt2266_init(struct dvb_frontend *fe) |
| { |
| int ret; |
| struct mt2266_priv *priv = fe->tuner_priv; |
| ret = mt2266_writereg(priv, 0x17, 0x6d); |
| if (ret < 0) |
| return ret; |
| ret = mt2266_writereg(priv, 0x1c, 0xff); |
| if (ret < 0) |
| return ret; |
| return 0; |
| } |
| |
| static int mt2266_sleep(struct dvb_frontend *fe) |
| { |
| struct mt2266_priv *priv = fe->tuner_priv; |
| mt2266_writereg(priv, 0x17, 0x6d); |
| mt2266_writereg(priv, 0x1c, 0x00); |
| return 0; |
| } |
| |
| static int mt2266_release(struct dvb_frontend *fe) |
| { |
| kfree(fe->tuner_priv); |
| fe->tuner_priv = NULL; |
| return 0; |
| } |
| |
| static const struct dvb_tuner_ops mt2266_tuner_ops = { |
| .info = { |
| .name = "Microtune MT2266", |
| .frequency_min = 174000000, |
| .frequency_max = 862000000, |
| .frequency_step = 50000, |
| }, |
| .release = mt2266_release, |
| .init = mt2266_init, |
| .sleep = mt2266_sleep, |
| .set_params = mt2266_set_params, |
| .get_frequency = mt2266_get_frequency, |
| .get_bandwidth = mt2266_get_bandwidth |
| }; |
| |
| struct dvb_frontend * mt2266_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2266_config *cfg) |
| { |
| struct mt2266_priv *priv = NULL; |
| u8 id = 0; |
| |
| priv = kzalloc(sizeof(struct mt2266_priv), GFP_KERNEL); |
| if (priv == NULL) |
| return NULL; |
| |
| priv->cfg = cfg; |
| priv->i2c = i2c; |
| priv->band = MT2266_UHF; |
| |
| if (mt2266_readreg(priv, 0, &id)) { |
| kfree(priv); |
| return NULL; |
| } |
| if (id != PART_REV) { |
| kfree(priv); |
| return NULL; |
| } |
| printk(KERN_INFO "MT2266: successfully identified\n"); |
| memcpy(&fe->ops.tuner_ops, &mt2266_tuner_ops, sizeof(struct dvb_tuner_ops)); |
| |
| fe->tuner_priv = priv; |
| mt2266_calibrate(priv); |
| return fe; |
| } |
| EXPORT_SYMBOL(mt2266_attach); |
| |
| MODULE_AUTHOR("Olivier DANET"); |
| MODULE_DESCRIPTION("Microtune MT2266 silicon tuner driver"); |
| MODULE_LICENSE("GPL"); |