| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * A code-rewriter that enables instruction single-stepping. |
| * Derived from iLib's single-stepping code. |
| */ |
| |
| #ifndef __tilegx__ /* Hardware support for single step unavailable. */ |
| |
| /* These functions are only used on the TILE platform */ |
| #include <linux/slab.h> |
| #include <linux/thread_info.h> |
| #include <linux/uaccess.h> |
| #include <linux/mman.h> |
| #include <linux/types.h> |
| #include <linux/err.h> |
| #include <asm/cacheflush.h> |
| #include <asm/opcode-tile.h> |
| #include <asm/opcode_constants.h> |
| #include <arch/abi.h> |
| |
| #define signExtend17(val) sign_extend((val), 17) |
| #define TILE_X1_MASK (0xffffffffULL << 31) |
| |
| int unaligned_printk; |
| |
| static int __init setup_unaligned_printk(char *str) |
| { |
| long val; |
| if (strict_strtol(str, 0, &val) != 0) |
| return 0; |
| unaligned_printk = val; |
| pr_info("Printk for each unaligned data accesses is %s\n", |
| unaligned_printk ? "enabled" : "disabled"); |
| return 1; |
| } |
| __setup("unaligned_printk=", setup_unaligned_printk); |
| |
| unsigned int unaligned_fixup_count; |
| |
| enum mem_op { |
| MEMOP_NONE, |
| MEMOP_LOAD, |
| MEMOP_STORE, |
| MEMOP_LOAD_POSTINCR, |
| MEMOP_STORE_POSTINCR |
| }; |
| |
| static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset) |
| { |
| tile_bundle_bits result; |
| |
| /* mask out the old offset */ |
| tile_bundle_bits mask = create_BrOff_X1(-1); |
| result = n & (~mask); |
| |
| /* or in the new offset */ |
| result |= create_BrOff_X1(offset); |
| |
| return result; |
| } |
| |
| static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src) |
| { |
| tile_bundle_bits result; |
| tile_bundle_bits op; |
| |
| result = n & (~TILE_X1_MASK); |
| |
| op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) | |
| create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) | |
| create_Dest_X1(dest) | |
| create_SrcB_X1(TREG_ZERO) | |
| create_SrcA_X1(src) ; |
| |
| result |= op; |
| return result; |
| } |
| |
| static inline tile_bundle_bits nop_X1(tile_bundle_bits n) |
| { |
| return move_X1(n, TREG_ZERO, TREG_ZERO); |
| } |
| |
| static inline tile_bundle_bits addi_X1( |
| tile_bundle_bits n, int dest, int src, int imm) |
| { |
| n &= ~TILE_X1_MASK; |
| |
| n |= (create_SrcA_X1(src) | |
| create_Dest_X1(dest) | |
| create_Imm8_X1(imm) | |
| create_S_X1(0) | |
| create_Opcode_X1(IMM_0_OPCODE_X1) | |
| create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1)); |
| |
| return n; |
| } |
| |
| static tile_bundle_bits rewrite_load_store_unaligned( |
| struct single_step_state *state, |
| tile_bundle_bits bundle, |
| struct pt_regs *regs, |
| enum mem_op mem_op, |
| int size, int sign_ext) |
| { |
| unsigned char __user *addr; |
| int val_reg, addr_reg, err, val; |
| |
| /* Get address and value registers */ |
| if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { |
| addr_reg = get_SrcA_Y2(bundle); |
| val_reg = get_SrcBDest_Y2(bundle); |
| } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { |
| addr_reg = get_SrcA_X1(bundle); |
| val_reg = get_Dest_X1(bundle); |
| } else { |
| addr_reg = get_SrcA_X1(bundle); |
| val_reg = get_SrcB_X1(bundle); |
| } |
| |
| /* |
| * If registers are not GPRs, don't try to handle it. |
| * |
| * FIXME: we could handle non-GPR loads by getting the real value |
| * from memory, writing it to the single step buffer, using a |
| * temp_reg to hold a pointer to that memory, then executing that |
| * instruction and resetting temp_reg. For non-GPR stores, it's a |
| * little trickier; we could use the single step buffer for that |
| * too, but we'd have to add some more state bits so that we could |
| * call back in here to copy that value to the real target. For |
| * now, we just handle the simple case. |
| */ |
| if ((val_reg >= PTREGS_NR_GPRS && |
| (val_reg != TREG_ZERO || |
| mem_op == MEMOP_LOAD || |
| mem_op == MEMOP_LOAD_POSTINCR)) || |
| addr_reg >= PTREGS_NR_GPRS) |
| return bundle; |
| |
| /* If it's aligned, don't handle it specially */ |
| addr = (void __user *)regs->regs[addr_reg]; |
| if (((unsigned long)addr % size) == 0) |
| return bundle; |
| |
| #ifndef __LITTLE_ENDIAN |
| # error We assume little-endian representation with copy_xx_user size 2 here |
| #endif |
| /* Handle unaligned load/store */ |
| if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { |
| unsigned short val_16; |
| switch (size) { |
| case 2: |
| err = copy_from_user(&val_16, addr, sizeof(val_16)); |
| val = sign_ext ? ((short)val_16) : val_16; |
| break; |
| case 4: |
| err = copy_from_user(&val, addr, sizeof(val)); |
| break; |
| default: |
| BUG(); |
| } |
| if (err == 0) { |
| state->update_reg = val_reg; |
| state->update_value = val; |
| state->update = 1; |
| } |
| } else { |
| val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg]; |
| err = copy_to_user(addr, &val, size); |
| } |
| |
| if (err) { |
| siginfo_t info = { |
| .si_signo = SIGSEGV, |
| .si_code = SEGV_MAPERR, |
| .si_addr = addr |
| }; |
| force_sig_info(info.si_signo, &info, current); |
| return (tile_bundle_bits) 0; |
| } |
| |
| if (unaligned_fixup == 0) { |
| siginfo_t info = { |
| .si_signo = SIGBUS, |
| .si_code = BUS_ADRALN, |
| .si_addr = addr |
| }; |
| force_sig_info(info.si_signo, &info, current); |
| return (tile_bundle_bits) 0; |
| } |
| |
| if (unaligned_printk || unaligned_fixup_count == 0) { |
| pr_info("Process %d/%s: PC %#lx: Fixup of" |
| " unaligned %s at %#lx.\n", |
| current->pid, current->comm, regs->pc, |
| (mem_op == MEMOP_LOAD || |
| mem_op == MEMOP_LOAD_POSTINCR) ? |
| "load" : "store", |
| (unsigned long)addr); |
| if (!unaligned_printk) { |
| #define P pr_info |
| P("\n"); |
| P("Unaligned fixups in the kernel will slow your application considerably.\n"); |
| P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n"); |
| P("which requests the kernel show all unaligned fixups, or write a \"0\"\n"); |
| P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n"); |
| P("access will become a SIGBUS you can debug. No further warnings will be\n"); |
| P("shown so as to avoid additional slowdown, but you can track the number\n"); |
| P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n"); |
| P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n"); |
| P("\n"); |
| #undef P |
| } |
| } |
| ++unaligned_fixup_count; |
| |
| if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { |
| /* Convert the Y2 instruction to a prefetch. */ |
| bundle &= ~(create_SrcBDest_Y2(-1) | |
| create_Opcode_Y2(-1)); |
| bundle |= (create_SrcBDest_Y2(TREG_ZERO) | |
| create_Opcode_Y2(LW_OPCODE_Y2)); |
| /* Replace the load postincr with an addi */ |
| } else if (mem_op == MEMOP_LOAD_POSTINCR) { |
| bundle = addi_X1(bundle, addr_reg, addr_reg, |
| get_Imm8_X1(bundle)); |
| /* Replace the store postincr with an addi */ |
| } else if (mem_op == MEMOP_STORE_POSTINCR) { |
| bundle = addi_X1(bundle, addr_reg, addr_reg, |
| get_Dest_Imm8_X1(bundle)); |
| } else { |
| /* Convert the X1 instruction to a nop. */ |
| bundle &= ~(create_Opcode_X1(-1) | |
| create_UnShOpcodeExtension_X1(-1) | |
| create_UnOpcodeExtension_X1(-1)); |
| bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) | |
| create_UnShOpcodeExtension_X1( |
| UN_0_SHUN_0_OPCODE_X1) | |
| create_UnOpcodeExtension_X1( |
| NOP_UN_0_SHUN_0_OPCODE_X1)); |
| } |
| |
| return bundle; |
| } |
| |
| /** |
| * single_step_once() - entry point when single stepping has been triggered. |
| * @regs: The machine register state |
| * |
| * When we arrive at this routine via a trampoline, the single step |
| * engine copies the executing bundle to the single step buffer. |
| * If the instruction is a condition branch, then the target is |
| * reset to one past the next instruction. If the instruction |
| * sets the lr, then that is noted. If the instruction is a jump |
| * or call, then the new target pc is preserved and the current |
| * bundle instruction set to null. |
| * |
| * The necessary post-single-step rewriting information is stored in |
| * single_step_state-> We use data segment values because the |
| * stack will be rewound when we run the rewritten single-stepped |
| * instruction. |
| */ |
| void single_step_once(struct pt_regs *regs) |
| { |
| extern tile_bundle_bits __single_step_ill_insn; |
| extern tile_bundle_bits __single_step_j_insn; |
| extern tile_bundle_bits __single_step_addli_insn; |
| extern tile_bundle_bits __single_step_auli_insn; |
| struct thread_info *info = (void *)current_thread_info(); |
| struct single_step_state *state = info->step_state; |
| int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); |
| tile_bundle_bits __user *buffer, *pc; |
| tile_bundle_bits bundle; |
| int temp_reg; |
| int target_reg = TREG_LR; |
| int err; |
| enum mem_op mem_op = MEMOP_NONE; |
| int size = 0, sign_ext = 0; /* happy compiler */ |
| |
| asm( |
| " .pushsection .rodata.single_step\n" |
| " .align 8\n" |
| " .globl __single_step_ill_insn\n" |
| "__single_step_ill_insn:\n" |
| " ill\n" |
| " .globl __single_step_addli_insn\n" |
| "__single_step_addli_insn:\n" |
| " { nop; addli r0, zero, 0 }\n" |
| " .globl __single_step_auli_insn\n" |
| "__single_step_auli_insn:\n" |
| " { nop; auli r0, r0, 0 }\n" |
| " .globl __single_step_j_insn\n" |
| "__single_step_j_insn:\n" |
| " j .\n" |
| " .popsection\n" |
| ); |
| |
| if (state == NULL) { |
| /* allocate a page of writable, executable memory */ |
| state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL); |
| if (state == NULL) { |
| pr_err("Out of kernel memory trying to single-step\n"); |
| return; |
| } |
| |
| /* allocate a cache line of writable, executable memory */ |
| down_write(¤t->mm->mmap_sem); |
| buffer = (void __user *) do_mmap(NULL, 0, 64, |
| PROT_EXEC | PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, |
| 0); |
| up_write(¤t->mm->mmap_sem); |
| |
| if (IS_ERR((void __force *)buffer)) { |
| kfree(state); |
| pr_err("Out of kernel pages trying to single-step\n"); |
| return; |
| } |
| |
| state->buffer = buffer; |
| state->is_enabled = 0; |
| |
| info->step_state = state; |
| |
| /* Validate our stored instruction patterns */ |
| BUG_ON(get_Opcode_X1(__single_step_addli_insn) != |
| ADDLI_OPCODE_X1); |
| BUG_ON(get_Opcode_X1(__single_step_auli_insn) != |
| AULI_OPCODE_X1); |
| BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO); |
| BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0); |
| BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0); |
| } |
| |
| /* |
| * If we are returning from a syscall, we still haven't hit the |
| * "ill" for the swint1 instruction. So back the PC up to be |
| * pointing at the swint1, but we'll actually return directly |
| * back to the "ill" so we come back in via SIGILL as if we |
| * had "executed" the swint1 without ever being in kernel space. |
| */ |
| if (regs->faultnum == INT_SWINT_1) |
| regs->pc -= 8; |
| |
| pc = (tile_bundle_bits __user *)(regs->pc); |
| if (get_user(bundle, pc) != 0) { |
| pr_err("Couldn't read instruction at %p trying to step\n", pc); |
| return; |
| } |
| |
| /* We'll follow the instruction with 2 ill op bundles */ |
| state->orig_pc = (unsigned long)pc; |
| state->next_pc = (unsigned long)(pc + 1); |
| state->branch_next_pc = 0; |
| state->update = 0; |
| |
| if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) { |
| /* two wide, check for control flow */ |
| int opcode = get_Opcode_X1(bundle); |
| |
| switch (opcode) { |
| /* branches */ |
| case BRANCH_OPCODE_X1: |
| { |
| int32_t offset = signExtend17(get_BrOff_X1(bundle)); |
| |
| /* |
| * For branches, we use a rewriting trick to let the |
| * hardware evaluate whether the branch is taken or |
| * untaken. We record the target offset and then |
| * rewrite the branch instruction to target 1 insn |
| * ahead if the branch is taken. We then follow the |
| * rewritten branch with two bundles, each containing |
| * an "ill" instruction. The supervisor examines the |
| * pc after the single step code is executed, and if |
| * the pc is the first ill instruction, then the |
| * branch (if any) was not taken. If the pc is the |
| * second ill instruction, then the branch was |
| * taken. The new pc is computed for these cases, and |
| * inserted into the registers for the thread. If |
| * the pc is the start of the single step code, then |
| * an exception or interrupt was taken before the |
| * code started processing, and the same "original" |
| * pc is restored. This change, different from the |
| * original implementation, has the advantage of |
| * executing a single user instruction. |
| */ |
| state->branch_next_pc = (unsigned long)(pc + offset); |
| |
| /* rewrite branch offset to go forward one bundle */ |
| bundle = set_BrOff_X1(bundle, 2); |
| } |
| break; |
| |
| /* jumps */ |
| case JALB_OPCODE_X1: |
| case JALF_OPCODE_X1: |
| state->update = 1; |
| state->next_pc = |
| (unsigned long) (pc + get_JOffLong_X1(bundle)); |
| break; |
| |
| case JB_OPCODE_X1: |
| case JF_OPCODE_X1: |
| state->next_pc = |
| (unsigned long) (pc + get_JOffLong_X1(bundle)); |
| bundle = nop_X1(bundle); |
| break; |
| |
| case SPECIAL_0_OPCODE_X1: |
| switch (get_RRROpcodeExtension_X1(bundle)) { |
| /* jump-register */ |
| case JALRP_SPECIAL_0_OPCODE_X1: |
| case JALR_SPECIAL_0_OPCODE_X1: |
| state->update = 1; |
| state->next_pc = |
| regs->regs[get_SrcA_X1(bundle)]; |
| break; |
| |
| case JRP_SPECIAL_0_OPCODE_X1: |
| case JR_SPECIAL_0_OPCODE_X1: |
| state->next_pc = |
| regs->regs[get_SrcA_X1(bundle)]; |
| bundle = nop_X1(bundle); |
| break; |
| |
| case LNK_SPECIAL_0_OPCODE_X1: |
| state->update = 1; |
| target_reg = get_Dest_X1(bundle); |
| break; |
| |
| /* stores */ |
| case SH_SPECIAL_0_OPCODE_X1: |
| mem_op = MEMOP_STORE; |
| size = 2; |
| break; |
| |
| case SW_SPECIAL_0_OPCODE_X1: |
| mem_op = MEMOP_STORE; |
| size = 4; |
| break; |
| } |
| break; |
| |
| /* loads and iret */ |
| case SHUN_0_OPCODE_X1: |
| if (get_UnShOpcodeExtension_X1(bundle) == |
| UN_0_SHUN_0_OPCODE_X1) { |
| switch (get_UnOpcodeExtension_X1(bundle)) { |
| case LH_UN_0_SHUN_0_OPCODE_X1: |
| mem_op = MEMOP_LOAD; |
| size = 2; |
| sign_ext = 1; |
| break; |
| |
| case LH_U_UN_0_SHUN_0_OPCODE_X1: |
| mem_op = MEMOP_LOAD; |
| size = 2; |
| sign_ext = 0; |
| break; |
| |
| case LW_UN_0_SHUN_0_OPCODE_X1: |
| mem_op = MEMOP_LOAD; |
| size = 4; |
| break; |
| |
| case IRET_UN_0_SHUN_0_OPCODE_X1: |
| { |
| unsigned long ex0_0 = __insn_mfspr( |
| SPR_EX_CONTEXT_0_0); |
| unsigned long ex0_1 = __insn_mfspr( |
| SPR_EX_CONTEXT_0_1); |
| /* |
| * Special-case it if we're iret'ing |
| * to PL0 again. Otherwise just let |
| * it run and it will generate SIGILL. |
| */ |
| if (EX1_PL(ex0_1) == USER_PL) { |
| state->next_pc = ex0_0; |
| regs->ex1 = ex0_1; |
| bundle = nop_X1(bundle); |
| } |
| } |
| } |
| } |
| break; |
| |
| #if CHIP_HAS_WH64() |
| /* postincrement operations */ |
| case IMM_0_OPCODE_X1: |
| switch (get_ImmOpcodeExtension_X1(bundle)) { |
| case LWADD_IMM_0_OPCODE_X1: |
| mem_op = MEMOP_LOAD_POSTINCR; |
| size = 4; |
| break; |
| |
| case LHADD_IMM_0_OPCODE_X1: |
| mem_op = MEMOP_LOAD_POSTINCR; |
| size = 2; |
| sign_ext = 1; |
| break; |
| |
| case LHADD_U_IMM_0_OPCODE_X1: |
| mem_op = MEMOP_LOAD_POSTINCR; |
| size = 2; |
| sign_ext = 0; |
| break; |
| |
| case SWADD_IMM_0_OPCODE_X1: |
| mem_op = MEMOP_STORE_POSTINCR; |
| size = 4; |
| break; |
| |
| case SHADD_IMM_0_OPCODE_X1: |
| mem_op = MEMOP_STORE_POSTINCR; |
| size = 2; |
| break; |
| |
| default: |
| break; |
| } |
| break; |
| #endif /* CHIP_HAS_WH64() */ |
| } |
| |
| if (state->update) { |
| /* |
| * Get an available register. We start with a |
| * bitmask with 1's for available registers. |
| * We truncate to the low 32 registers since |
| * we are guaranteed to have set bits in the |
| * low 32 bits, then use ctz to pick the first. |
| */ |
| u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) | |
| (1ULL << get_SrcA_X0(bundle)) | |
| (1ULL << get_SrcB_X0(bundle)) | |
| (1ULL << target_reg)); |
| temp_reg = __builtin_ctz(mask); |
| state->update_reg = temp_reg; |
| state->update_value = regs->regs[temp_reg]; |
| regs->regs[temp_reg] = (unsigned long) (pc+1); |
| regs->flags |= PT_FLAGS_RESTORE_REGS; |
| bundle = move_X1(bundle, target_reg, temp_reg); |
| } |
| } else { |
| int opcode = get_Opcode_Y2(bundle); |
| |
| switch (opcode) { |
| /* loads */ |
| case LH_OPCODE_Y2: |
| mem_op = MEMOP_LOAD; |
| size = 2; |
| sign_ext = 1; |
| break; |
| |
| case LH_U_OPCODE_Y2: |
| mem_op = MEMOP_LOAD; |
| size = 2; |
| sign_ext = 0; |
| break; |
| |
| case LW_OPCODE_Y2: |
| mem_op = MEMOP_LOAD; |
| size = 4; |
| break; |
| |
| /* stores */ |
| case SH_OPCODE_Y2: |
| mem_op = MEMOP_STORE; |
| size = 2; |
| break; |
| |
| case SW_OPCODE_Y2: |
| mem_op = MEMOP_STORE; |
| size = 4; |
| break; |
| } |
| } |
| |
| /* |
| * Check if we need to rewrite an unaligned load/store. |
| * Returning zero is a special value meaning we need to SIGSEGV. |
| */ |
| if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) { |
| bundle = rewrite_load_store_unaligned(state, bundle, regs, |
| mem_op, size, sign_ext); |
| if (bundle == 0) |
| return; |
| } |
| |
| /* write the bundle to our execution area */ |
| buffer = state->buffer; |
| err = __put_user(bundle, buffer++); |
| |
| /* |
| * If we're really single-stepping, we take an INT_ILL after. |
| * If we're just handling an unaligned access, we can just |
| * jump directly back to where we were in user code. |
| */ |
| if (is_single_step) { |
| err |= __put_user(__single_step_ill_insn, buffer++); |
| err |= __put_user(__single_step_ill_insn, buffer++); |
| } else { |
| long delta; |
| |
| if (state->update) { |
| /* We have some state to update; do it inline */ |
| int ha16; |
| bundle = __single_step_addli_insn; |
| bundle |= create_Dest_X1(state->update_reg); |
| bundle |= create_Imm16_X1(state->update_value); |
| err |= __put_user(bundle, buffer++); |
| bundle = __single_step_auli_insn; |
| bundle |= create_Dest_X1(state->update_reg); |
| bundle |= create_SrcA_X1(state->update_reg); |
| ha16 = (state->update_value + 0x8000) >> 16; |
| bundle |= create_Imm16_X1(ha16); |
| err |= __put_user(bundle, buffer++); |
| state->update = 0; |
| } |
| |
| /* End with a jump back to the next instruction */ |
| delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) - |
| (unsigned long)buffer) >> |
| TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES; |
| bundle = __single_step_j_insn; |
| bundle |= create_JOffLong_X1(delta); |
| err |= __put_user(bundle, buffer++); |
| } |
| |
| if (err) { |
| pr_err("Fault when writing to single-step buffer\n"); |
| return; |
| } |
| |
| /* |
| * Flush the buffer. |
| * We do a local flush only, since this is a thread-specific buffer. |
| */ |
| __flush_icache_range((unsigned long)state->buffer, |
| (unsigned long)buffer); |
| |
| /* Indicate enabled */ |
| state->is_enabled = is_single_step; |
| regs->pc = (unsigned long)state->buffer; |
| |
| /* Fault immediately if we are coming back from a syscall. */ |
| if (regs->faultnum == INT_SWINT_1) |
| regs->pc += 8; |
| } |
| |
| #else |
| #include <linux/smp.h> |
| #include <linux/ptrace.h> |
| #include <arch/spr_def.h> |
| |
| static DEFINE_PER_CPU(unsigned long, ss_saved_pc); |
| |
| |
| /* |
| * Called directly on the occasion of an interrupt. |
| * |
| * If the process doesn't have single step set, then we use this as an |
| * opportunity to turn single step off. |
| * |
| * It has been mentioned that we could conditionally turn off single stepping |
| * on each entry into the kernel and rely on single_step_once to turn it |
| * on for the processes that matter (as we already do), but this |
| * implementation is somewhat more efficient in that we muck with registers |
| * once on a bum interrupt rather than on every entry into the kernel. |
| * |
| * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred, |
| * so we have to run through this process again before we can say that an |
| * instruction has executed. |
| * |
| * swint will set CANCELED, but it's a legitimate instruction. Fortunately |
| * it changes the PC. If it hasn't changed, then we know that the interrupt |
| * wasn't generated by swint and we'll need to run this process again before |
| * we can say an instruction has executed. |
| * |
| * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get |
| * on with our lives. |
| */ |
| |
| void gx_singlestep_handle(struct pt_regs *regs, int fault_num) |
| { |
| unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc); |
| struct thread_info *info = (void *)current_thread_info(); |
| int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); |
| unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K); |
| |
| if (is_single_step == 0) { |
| __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0); |
| |
| } else if ((*ss_pc != regs->pc) || |
| (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) { |
| |
| ptrace_notify(SIGTRAP); |
| control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK; |
| control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK; |
| __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control); |
| } |
| } |
| |
| |
| /* |
| * Called from need_singlestep. Set up the control registers and the enable |
| * register, then return back. |
| */ |
| |
| void single_step_once(struct pt_regs *regs) |
| { |
| unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc); |
| unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K); |
| |
| *ss_pc = regs->pc; |
| control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK; |
| control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK; |
| __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control); |
| __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL); |
| } |
| |
| #endif /* !__tilegx__ */ |