blob: 0ffaf2c77a19fa7715af800f43f5fe90ba215fc3 [file] [log] [blame]
/*
* NES, SNES, N64, MultiSystem, PSX gamepad driver for Linux
*
* Copyright (c) 1999-2004 Vojtech Pavlik <vojtech@suse.cz>
* Copyright (c) 2004 Peter Nelson <rufus-kernel@hackish.org>
*
* Based on the work of:
* Andree Borrmann John Dahlstrom
* David Kuder Nathan Hand
* Raphael Assenat
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Should you need to contact me, the author, you can do so either by
* e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
* Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/parport.h>
#include <linux/input.h>
#include <linux/mutex.h>
#include <linux/slab.h>
MODULE_AUTHOR("Vojtech Pavlik <vojtech@ucw.cz>");
MODULE_DESCRIPTION("NES, SNES, N64, MultiSystem, PSX gamepad driver");
MODULE_LICENSE("GPL");
#define GC_MAX_PORTS 3
#define GC_MAX_DEVICES 5
struct gc_config {
int args[GC_MAX_DEVICES + 1];
unsigned int nargs;
};
static struct gc_config gc_cfg[GC_MAX_PORTS] __initdata;
module_param_array_named(map, gc_cfg[0].args, int, &gc_cfg[0].nargs, 0);
MODULE_PARM_DESC(map, "Describes first set of devices (<parport#>,<pad1>,<pad2>,..<pad5>)");
module_param_array_named(map2, gc_cfg[1].args, int, &gc_cfg[1].nargs, 0);
MODULE_PARM_DESC(map2, "Describes second set of devices");
module_param_array_named(map3, gc_cfg[2].args, int, &gc_cfg[2].nargs, 0);
MODULE_PARM_DESC(map3, "Describes third set of devices");
/* see also gs_psx_delay parameter in PSX support section */
enum gc_type {
GC_NONE = 0,
GC_SNES,
GC_NES,
GC_NES4,
GC_MULTI,
GC_MULTI2,
GC_N64,
GC_PSX,
GC_DDR,
GC_SNESMOUSE,
GC_MAX
};
#define GC_REFRESH_TIME HZ/100
struct gc_pad {
struct input_dev *dev;
enum gc_type type;
char phys[32];
};
struct gc {
struct pardevice *pd;
struct gc_pad pads[GC_MAX_DEVICES];
struct timer_list timer;
int pad_count[GC_MAX];
int used;
struct mutex mutex;
};
struct gc_subdev {
unsigned int idx;
};
static struct gc *gc_base[3];
static const int gc_status_bit[] = { 0x40, 0x80, 0x20, 0x10, 0x08 };
static const char *gc_names[] = {
NULL, "SNES pad", "NES pad", "NES FourPort", "Multisystem joystick",
"Multisystem 2-button joystick", "N64 controller", "PSX controller",
"PSX DDR controller", "SNES mouse"
};
/*
* N64 support.
*/
static const unsigned char gc_n64_bytes[] = { 0, 1, 13, 15, 14, 12, 10, 11, 2, 3 };
static const short gc_n64_btn[] = {
BTN_A, BTN_B, BTN_C, BTN_X, BTN_Y, BTN_Z,
BTN_TL, BTN_TR, BTN_TRIGGER, BTN_START
};
#define GC_N64_LENGTH 32 /* N64 bit length, not including stop bit */
#define GC_N64_STOP_LENGTH 5 /* Length of encoded stop bit */
#define GC_N64_CMD_00 0x11111111UL
#define GC_N64_CMD_01 0xd1111111UL
#define GC_N64_CMD_03 0xdd111111UL
#define GC_N64_CMD_1b 0xdd1dd111UL
#define GC_N64_CMD_c0 0x111111ddUL
#define GC_N64_CMD_80 0x1111111dUL
#define GC_N64_STOP_BIT 0x1d /* Encoded stop bit */
#define GC_N64_REQUEST_DATA GC_N64_CMD_01 /* the request data command */
#define GC_N64_DELAY 133 /* delay between transmit request, and response ready (us) */
#define GC_N64_DWS 3 /* delay between write segments (required for sound playback because of ISA DMA) */
/* GC_N64_DWS > 24 is known to fail */
#define GC_N64_POWER_W 0xe2 /* power during write (transmit request) */
#define GC_N64_POWER_R 0xfd /* power during read */
#define GC_N64_OUT 0x1d /* output bits to the 4 pads */
/* Reading the main axes of any N64 pad is known to fail if the corresponding bit */
/* in GC_N64_OUT is pulled low on the output port (by any routine) for more */
/* than 123 us */
#define GC_N64_CLOCK 0x02 /* clock bits for read */
/*
* Used for rumble code.
*/
/* Send encoded command */
static void gc_n64_send_command(struct gc *gc, unsigned long cmd,
unsigned char target)
{
struct parport *port = gc->pd->port;
int i;
for (i = 0; i < GC_N64_LENGTH; i++) {
unsigned char data = (cmd >> i) & 1 ? target : 0;
parport_write_data(port, GC_N64_POWER_W | data);
udelay(GC_N64_DWS);
}
}
/* Send stop bit */
static void gc_n64_send_stop_bit(struct gc *gc, unsigned char target)
{
struct parport *port = gc->pd->port;
int i;
for (i = 0; i < GC_N64_STOP_LENGTH; i++) {
unsigned char data = (GC_N64_STOP_BIT >> i) & 1 ? target : 0;
parport_write_data(port, GC_N64_POWER_W | data);
udelay(GC_N64_DWS);
}
}
/*
* gc_n64_read_packet() reads an N64 packet.
* Each pad uses one bit per byte. So all pads connected to this port
* are read in parallel.
*/
static void gc_n64_read_packet(struct gc *gc, unsigned char *data)
{
int i;
unsigned long flags;
/*
* Request the pad to transmit data
*/
local_irq_save(flags);
gc_n64_send_command(gc, GC_N64_REQUEST_DATA, GC_N64_OUT);
gc_n64_send_stop_bit(gc, GC_N64_OUT);
local_irq_restore(flags);
/*
* Wait for the pad response to be loaded into the 33-bit register
* of the adapter.
*/
udelay(GC_N64_DELAY);
/*
* Grab data (ignoring the last bit, which is a stop bit)
*/
for (i = 0; i < GC_N64_LENGTH; i++) {
parport_write_data(gc->pd->port, GC_N64_POWER_R);
udelay(2);
data[i] = parport_read_status(gc->pd->port);
parport_write_data(gc->pd->port, GC_N64_POWER_R | GC_N64_CLOCK);
}
/*
* We must wait 200 ms here for the controller to reinitialize before
* the next read request. No worries as long as gc_read is polled less
* frequently than this.
*/
}
static void gc_n64_process_packet(struct gc *gc)
{
unsigned char data[GC_N64_LENGTH];
struct input_dev *dev;
int i, j, s;
signed char x, y;
gc_n64_read_packet(gc, data);
for (i = 0; i < GC_MAX_DEVICES; i++) {
if (gc->pads[i].type != GC_N64)
continue;
dev = gc->pads[i].dev;
s = gc_status_bit[i];
if (s & ~(data[8] | data[9])) {
x = y = 0;
for (j = 0; j < 8; j++) {
if (data[23 - j] & s)
x |= 1 << j;
if (data[31 - j] & s)
y |= 1 << j;
}
input_report_abs(dev, ABS_X, x);
input_report_abs(dev, ABS_Y, -y);
input_report_abs(dev, ABS_HAT0X,
!(s & data[6]) - !(s & data[7]));
input_report_abs(dev, ABS_HAT0Y,
!(s & data[4]) - !(s & data[5]));
for (j = 0; j < 10; j++)
input_report_key(dev, gc_n64_btn[j],
s & data[gc_n64_bytes[j]]);
input_sync(dev);
}
}
}
static int gc_n64_play_effect(struct input_dev *dev, void *data,
struct ff_effect *effect)
{
int i;
unsigned long flags;
struct gc *gc = input_get_drvdata(dev);
struct gc_subdev *sdev = data;
unsigned char target = 1 << sdev->idx; /* select desired pin */
if (effect->type == FF_RUMBLE) {
struct ff_rumble_effect *rumble = &effect->u.rumble;
unsigned int cmd =
rumble->strong_magnitude || rumble->weak_magnitude ?
GC_N64_CMD_01 : GC_N64_CMD_00;
local_irq_save(flags);
/* Init Rumble - 0x03, 0x80, 0x01, (34)0x80 */
gc_n64_send_command(gc, GC_N64_CMD_03, target);
gc_n64_send_command(gc, GC_N64_CMD_80, target);
gc_n64_send_command(gc, GC_N64_CMD_01, target);
for (i = 0; i < 32; i++)
gc_n64_send_command(gc, GC_N64_CMD_80, target);
gc_n64_send_stop_bit(gc, target);
udelay(GC_N64_DELAY);
/* Now start or stop it - 0x03, 0xc0, 0zx1b, (32)0x01/0x00 */
gc_n64_send_command(gc, GC_N64_CMD_03, target);
gc_n64_send_command(gc, GC_N64_CMD_c0, target);
gc_n64_send_command(gc, GC_N64_CMD_1b, target);
for (i = 0; i < 32; i++)
gc_n64_send_command(gc, cmd, target);
gc_n64_send_stop_bit(gc, target);
local_irq_restore(flags);
}
return 0;
}
static int __init gc_n64_init_ff(struct input_dev *dev, int i)
{
struct gc_subdev *sdev;
int err;
sdev = kmalloc(sizeof(*sdev), GFP_KERNEL);
if (!sdev)
return -ENOMEM;
sdev->idx = i;
input_set_capability(dev, EV_FF, FF_RUMBLE);
err = input_ff_create_memless(dev, sdev, gc_n64_play_effect);
if (err) {
kfree(sdev);
return err;
}
return 0;
}
/*
* NES/SNES support.
*/
#define GC_NES_DELAY 6 /* Delay between bits - 6us */
#define GC_NES_LENGTH 8 /* The NES pads use 8 bits of data */
#define GC_SNES_LENGTH 12 /* The SNES true length is 16, but the
last 4 bits are unused */
#define GC_SNESMOUSE_LENGTH 32 /* The SNES mouse uses 32 bits, the first
16 bits are equivalent to a gamepad */
#define GC_NES_POWER 0xfc
#define GC_NES_CLOCK 0x01
#define GC_NES_LATCH 0x02
static const unsigned char gc_nes_bytes[] = { 0, 1, 2, 3 };
static const unsigned char gc_snes_bytes[] = { 8, 0, 2, 3, 9, 1, 10, 11 };
static const short gc_snes_btn[] = {
BTN_A, BTN_B, BTN_SELECT, BTN_START, BTN_X, BTN_Y, BTN_TL, BTN_TR
};
/*
* gc_nes_read_packet() reads a NES/SNES packet.
* Each pad uses one bit per byte. So all pads connected to
* this port are read in parallel.
*/
static void gc_nes_read_packet(struct gc *gc, int length, unsigned char *data)
{
int i;
parport_write_data(gc->pd->port, GC_NES_POWER | GC_NES_CLOCK | GC_NES_LATCH);
udelay(GC_NES_DELAY * 2);
parport_write_data(gc->pd->port, GC_NES_POWER | GC_NES_CLOCK);
for (i = 0; i < length; i++) {
udelay(GC_NES_DELAY);
parport_write_data(gc->pd->port, GC_NES_POWER);
data[i] = parport_read_status(gc->pd->port) ^ 0x7f;
udelay(GC_NES_DELAY);
parport_write_data(gc->pd->port, GC_NES_POWER | GC_NES_CLOCK);
}
}
static void gc_nes_process_packet(struct gc *gc)
{
unsigned char data[GC_SNESMOUSE_LENGTH];
struct gc_pad *pad;
struct input_dev *dev;
int i, j, s, len;
char x_rel, y_rel;
len = gc->pad_count[GC_SNESMOUSE] ? GC_SNESMOUSE_LENGTH :
(gc->pad_count[GC_SNES] ? GC_SNES_LENGTH : GC_NES_LENGTH);
gc_nes_read_packet(gc, len, data);
for (i = 0; i < GC_MAX_DEVICES; i++) {
pad = &gc->pads[i];
dev = pad->dev;
s = gc_status_bit[i];
switch (pad->type) {
case GC_NES:
input_report_abs(dev, ABS_X, !(s & data[6]) - !(s & data[7]));
input_report_abs(dev, ABS_Y, !(s & data[4]) - !(s & data[5]));
for (j = 0; j < 4; j++)
input_report_key(dev, gc_snes_btn[j],
s & data[gc_nes_bytes[j]]);
input_sync(dev);
break;
case GC_SNES:
input_report_abs(dev, ABS_X, !(s & data[6]) - !(s & data[7]));
input_report_abs(dev, ABS_Y, !(s & data[4]) - !(s & data[5]));
for (j = 0; j < 8; j++)
input_report_key(dev, gc_snes_btn[j],
s & data[gc_snes_bytes[j]]);
input_sync(dev);
break;
case GC_SNESMOUSE:
/*
* The 4 unused bits from SNES controllers appear
* to be ID bits so use them to make sure we are
* dealing with a mouse.
* gamepad is connected. This is important since
* my SNES gamepad sends 1's for bits 16-31, which
* cause the mouse pointer to quickly move to the
* upper left corner of the screen.
*/
if (!(s & data[12]) && !(s & data[13]) &&
!(s & data[14]) && (s & data[15])) {
input_report_key(dev, BTN_LEFT, s & data[9]);
input_report_key(dev, BTN_RIGHT, s & data[8]);
x_rel = y_rel = 0;
for (j = 0; j < 7; j++) {
x_rel <<= 1;
if (data[25 + j] & s)
x_rel |= 1;
y_rel <<= 1;
if (data[17 + j] & s)
y_rel |= 1;
}
if (x_rel) {
if (data[24] & s)
x_rel = -x_rel;
input_report_rel(dev, REL_X, x_rel);
}
if (y_rel) {
if (data[16] & s)
y_rel = -y_rel;
input_report_rel(dev, REL_Y, y_rel);
}
input_sync(dev);
}
break;
default:
break;
}
}
}
/*
* Multisystem joystick support
*/
#define GC_MULTI_LENGTH 5 /* Multi system joystick packet length is 5 */
#define GC_MULTI2_LENGTH 6 /* One more bit for one more button */
/*
* gc_multi_read_packet() reads a Multisystem joystick packet.
*/
static void gc_multi_read_packet(struct gc *gc, int length, unsigned char *data)
{
int i;
for (i = 0; i < length; i++) {
parport_write_data(gc->pd->port, ~(1 << i));
data[i] = parport_read_status(gc->pd->port) ^ 0x7f;
}
}
static void gc_multi_process_packet(struct gc *gc)
{
unsigned char data[GC_MULTI2_LENGTH];
int data_len = gc->pad_count[GC_MULTI2] ? GC_MULTI2_LENGTH : GC_MULTI_LENGTH;
struct gc_pad *pad;
struct input_dev *dev;
int i, s;
gc_multi_read_packet(gc, data_len, data);
for (i = 0; i < GC_MAX_DEVICES; i++) {
pad = &gc->pads[i];
dev = pad->dev;
s = gc_status_bit[i];
switch (pad->type) {
case GC_MULTI2:
input_report_key(dev, BTN_THUMB, s & data[5]);
/* fall through */
case GC_MULTI:
input_report_abs(dev, ABS_X,
!(s & data[2]) - !(s & data[3]));
input_report_abs(dev, ABS_Y,
!(s & data[0]) - !(s & data[1]));
input_report_key(dev, BTN_TRIGGER, s & data[4]);
input_sync(dev);
break;
default:
break;
}
}
}
/*
* PSX support
*
* See documentation at:
* http://www.dim.com/~mackys/psxmemcard/ps-eng2.txt
* http://www.gamesx.com/controldata/psxcont/psxcont.htm
* ftp://milano.usal.es/pablo/
*
*/
#define GC_PSX_DELAY 25 /* 25 usec */
#define GC_PSX_LENGTH 8 /* talk to the controller in bits */
#define GC_PSX_BYTES 6 /* the maximum number of bytes to read off the controller */
#define GC_PSX_MOUSE 1 /* Mouse */
#define GC_PSX_NEGCON 2 /* NegCon */
#define GC_PSX_NORMAL 4 /* Digital / Analog or Rumble in Digital mode */
#define GC_PSX_ANALOG 5 /* Analog in Analog mode / Rumble in Green mode */
#define GC_PSX_RUMBLE 7 /* Rumble in Red mode */
#define GC_PSX_CLOCK 0x04 /* Pin 4 */
#define GC_PSX_COMMAND 0x01 /* Pin 2 */
#define GC_PSX_POWER 0xf8 /* Pins 5-9 */
#define GC_PSX_SELECT 0x02 /* Pin 3 */
#define GC_PSX_ID(x) ((x) >> 4) /* High nibble is device type */
#define GC_PSX_LEN(x) (((x) & 0xf) << 1) /* Low nibble is length in bytes/2 */
static int gc_psx_delay = GC_PSX_DELAY;
module_param_named(psx_delay, gc_psx_delay, uint, 0);
MODULE_PARM_DESC(psx_delay, "Delay when accessing Sony PSX controller (usecs)");
static const short gc_psx_abs[] = {
ABS_X, ABS_Y, ABS_RX, ABS_RY, ABS_HAT0X, ABS_HAT0Y
};
static const short gc_psx_btn[] = {
BTN_TL, BTN_TR, BTN_TL2, BTN_TR2, BTN_A, BTN_B, BTN_X, BTN_Y,
BTN_START, BTN_SELECT, BTN_THUMBL, BTN_THUMBR
};
static const short gc_psx_ddr_btn[] = { BTN_0, BTN_1, BTN_2, BTN_3 };
/*
* gc_psx_command() writes 8bit command and reads 8bit data from
* the psx pad.
*/
static void gc_psx_command(struct gc *gc, int b, unsigned char *data)
{
struct parport *port = gc->pd->port;
int i, j, cmd, read;
memset(data, 0, GC_MAX_DEVICES);
for (i = 0; i < GC_PSX_LENGTH; i++, b >>= 1) {
cmd = (b & 1) ? GC_PSX_COMMAND : 0;
parport_write_data(port, cmd | GC_PSX_POWER);
udelay(gc_psx_delay);
read = parport_read_status(port) ^ 0x80;
for (j = 0; j < GC_MAX_DEVICES; j++) {
struct gc_pad *pad = &gc->pads[j];
if (pad->type == GC_PSX || pad->type == GC_DDR)
data[j] |= (read & gc_status_bit[j]) ? (1 << i) : 0;
}
parport_write_data(gc->pd->port, cmd | GC_PSX_CLOCK | GC_PSX_POWER);
udelay(gc_psx_delay);
}
}
/*
* gc_psx_read_packet() reads a whole psx packet and returns
* device identifier code.
*/
static void gc_psx_read_packet(struct gc *gc,
unsigned char data[GC_MAX_DEVICES][GC_PSX_BYTES],
unsigned char id[GC_MAX_DEVICES])
{
int i, j, max_len = 0;
unsigned long flags;
unsigned char data2[GC_MAX_DEVICES];
/* Select pad */
parport_write_data(gc->pd->port, GC_PSX_CLOCK | GC_PSX_SELECT | GC_PSX_POWER);
udelay(gc_psx_delay);
/* Deselect, begin command */
parport_write_data(gc->pd->port, GC_PSX_CLOCK | GC_PSX_POWER);
udelay(gc_psx_delay);
local_irq_save(flags);
gc_psx_command(gc, 0x01, data2); /* Access pad */
gc_psx_command(gc, 0x42, id); /* Get device ids */
gc_psx_command(gc, 0, data2); /* Dump status */
/* Find the longest pad */
for (i = 0; i < GC_MAX_DEVICES; i++) {
struct gc_pad *pad = &gc->pads[i];
if ((pad->type == GC_PSX || pad->type == GC_DDR) &&
GC_PSX_LEN(id[i]) > max_len &&
GC_PSX_LEN(id[i]) <= GC_PSX_BYTES) {
max_len = GC_PSX_LEN(id[i]);
}
}
/* Read in all the data */
for (i = 0; i < max_len; i++) {
gc_psx_command(gc, 0, data2);
for (j = 0; j < GC_MAX_DEVICES; j++)
data[j][i] = data2[j];
}
local_irq_restore(flags);
parport_write_data(gc->pd->port, GC_PSX_CLOCK | GC_PSX_SELECT | GC_PSX_POWER);
/* Set id's to the real value */
for (i = 0; i < GC_MAX_DEVICES; i++)
id[i] = GC_PSX_ID(id[i]);
}
static void gc_psx_report_one(struct gc_pad *pad, unsigned char psx_type,
unsigned char *data)
{
struct input_dev *dev = pad->dev;
int i;
switch (psx_type) {
case GC_PSX_RUMBLE:
input_report_key(dev, BTN_THUMBL, ~data[0] & 0x04);
input_report_key(dev, BTN_THUMBR, ~data[0] & 0x02);
case GC_PSX_NEGCON:
case GC_PSX_ANALOG:
if (pad->type == GC_DDR) {
for (i = 0; i < 4; i++)
input_report_key(dev, gc_psx_ddr_btn[i],
~data[0] & (0x10 << i));
} else {
for (i = 0; i < 4; i++)
input_report_abs(dev, gc_psx_abs[i + 2],
data[i + 2]);
input_report_abs(dev, ABS_X,
!!(data[0] & 0x80) * 128 + !(data[0] & 0x20) * 127);
input_report_abs(dev, ABS_Y,
!!(data[0] & 0x10) * 128 + !(data[0] & 0x40) * 127);
}
for (i = 0; i < 8; i++)
input_report_key(dev, gc_psx_btn[i], ~data[1] & (1 << i));
input_report_key(dev, BTN_START, ~data[0] & 0x08);
input_report_key(dev, BTN_SELECT, ~data[0] & 0x01);
input_sync(dev);
break;
case GC_PSX_NORMAL:
if (pad->type == GC_DDR) {
for (i = 0; i < 4; i++)
input_report_key(dev, gc_psx_ddr_btn[i],
~data[0] & (0x10 << i));
} else {
input_report_abs(dev, ABS_X,
!!(data[0] & 0x80) * 128 + !(data[0] & 0x20) * 127);
input_report_abs(dev, ABS_Y,
!!(data[0] & 0x10) * 128 + !(data[0] & 0x40) * 127);
/*
* For some reason if the extra axes are left unset
* they drift.
* for (i = 0; i < 4; i++)
input_report_abs(dev, gc_psx_abs[i + 2], 128);
* This needs to be debugged properly,
* maybe fuzz processing needs to be done
* in input_sync()
* --vojtech
*/
}
for (i = 0; i < 8; i++)
input_report_key(dev, gc_psx_btn[i], ~data[1] & (1 << i));
input_report_key(dev, BTN_START, ~data[0] & 0x08);
input_report_key(dev, BTN_SELECT, ~data[0] & 0x01);
input_sync(dev);
break;
default: /* not a pad, ignore */
break;
}
}
static void gc_psx_process_packet(struct gc *gc)
{
unsigned char data[GC_MAX_DEVICES][GC_PSX_BYTES];
unsigned char id[GC_MAX_DEVICES];
struct gc_pad *pad;
int i;
gc_psx_read_packet(gc, data, id);
for (i = 0; i < GC_MAX_DEVICES; i++) {
pad = &gc->pads[i];
if (pad->type == GC_PSX || pad->type == GC_DDR)
gc_psx_report_one(pad, id[i], data[i]);
}
}
/*
* gc_timer() initiates reads of console pads data.
*/
static void gc_timer(unsigned long private)
{
struct gc *gc = (void *) private;
/*
* N64 pads - must be read first, any read confuses them for 200 us
*/
if (gc->pad_count[GC_N64])
gc_n64_process_packet(gc);
/*
* NES and SNES pads or mouse
*/
if (gc->pad_count[GC_NES] ||
gc->pad_count[GC_SNES] ||
gc->pad_count[GC_SNESMOUSE]) {
gc_nes_process_packet(gc);
}
/*
* Multi and Multi2 joysticks
*/
if (gc->pad_count[GC_MULTI] || gc->pad_count[GC_MULTI2])
gc_multi_process_packet(gc);
/*
* PSX controllers
*/
if (gc->pad_count[GC_PSX] || gc->pad_count[GC_DDR])
gc_psx_process_packet(gc);
mod_timer(&gc->timer, jiffies + GC_REFRESH_TIME);
}
static int gc_open(struct input_dev *dev)
{
struct gc *gc = input_get_drvdata(dev);
int err;
err = mutex_lock_interruptible(&gc->mutex);
if (err)
return err;
if (!gc->used++) {
parport_claim(gc->pd);
parport_write_control(gc->pd->port, 0x04);
mod_timer(&gc->timer, jiffies + GC_REFRESH_TIME);
}
mutex_unlock(&gc->mutex);
return 0;
}
static void gc_close(struct input_dev *dev)
{
struct gc *gc = input_get_drvdata(dev);
mutex_lock(&gc->mutex);
if (!--gc->used) {
del_timer_sync(&gc->timer);
parport_write_control(gc->pd->port, 0x00);
parport_release(gc->pd);
}
mutex_unlock(&gc->mutex);
}
static int __init gc_setup_pad(struct gc *gc, int idx, int pad_type)
{
struct gc_pad *pad = &gc->pads[idx];
struct input_dev *input_dev;
int i;
int err;
if (pad_type < 1 || pad_type >= GC_MAX) {
pr_err("Pad type %d unknown\n", pad_type);
return -EINVAL;
}
pad->dev = input_dev = input_allocate_device();
if (!input_dev) {
pr_err("Not enough memory for input device\n");
return -ENOMEM;
}
pad->type = pad_type;
snprintf(pad->phys, sizeof(pad->phys),
"%s/input%d", gc->pd->port->name, idx);
input_dev->name = gc_names[pad_type];
input_dev->phys = pad->phys;
input_dev->id.bustype = BUS_PARPORT;
input_dev->id.vendor = 0x0001;
input_dev->id.product = pad_type;
input_dev->id.version = 0x0100;
input_set_drvdata(input_dev, gc);
input_dev->open = gc_open;
input_dev->close = gc_close;
if (pad_type != GC_SNESMOUSE) {
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
for (i = 0; i < 2; i++)
input_set_abs_params(input_dev, ABS_X + i, -1, 1, 0, 0);
} else
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);
gc->pad_count[pad_type]++;
switch (pad_type) {
case GC_N64:
for (i = 0; i < 10; i++)
__set_bit(gc_n64_btn[i], input_dev->keybit);
for (i = 0; i < 2; i++) {
input_set_abs_params(input_dev, ABS_X + i, -127, 126, 0, 2);
input_set_abs_params(input_dev, ABS_HAT0X + i, -1, 1, 0, 0);
}
err = gc_n64_init_ff(input_dev, idx);
if (err) {
pr_warning("Failed to initiate rumble for N64 device %d\n", idx);
goto err_free_dev;
}
break;
case GC_SNESMOUSE:
__set_bit(BTN_LEFT, input_dev->keybit);
__set_bit(BTN_RIGHT, input_dev->keybit);
__set_bit(REL_X, input_dev->relbit);
__set_bit(REL_Y, input_dev->relbit);
break;
case GC_SNES:
for (i = 4; i < 8; i++)
__set_bit(gc_snes_btn[i], input_dev->keybit);
case GC_NES:
for (i = 0; i < 4; i++)
__set_bit(gc_snes_btn[i], input_dev->keybit);
break;
case GC_MULTI2:
__set_bit(BTN_THUMB, input_dev->keybit);
case GC_MULTI:
__set_bit(BTN_TRIGGER, input_dev->keybit);
break;
case GC_PSX:
for (i = 0; i < 6; i++)
input_set_abs_params(input_dev,
gc_psx_abs[i], 4, 252, 0, 2);
for (i = 0; i < 12; i++)
__set_bit(gc_psx_btn[i], input_dev->keybit);
break;
case GC_DDR:
for (i = 0; i < 4; i++)
__set_bit(gc_psx_ddr_btn[i], input_dev->keybit);
for (i = 0; i < 12; i++)
__set_bit(gc_psx_btn[i], input_dev->keybit);
break;
}
err = input_register_device(pad->dev);
if (err)
goto err_free_dev;
return 0;
err_free_dev:
input_free_device(pad->dev);
pad->dev = NULL;
return err;
}
static struct gc __init *gc_probe(int parport, int *pads, int n_pads)
{
struct gc *gc;
struct parport *pp;
struct pardevice *pd;
int i;
int count = 0;
int err;
pp = parport_find_number(parport);
if (!pp) {
pr_err("no such parport %d\n", parport);
err = -EINVAL;
goto err_out;
}
pd = parport_register_device(pp, "gamecon", NULL, NULL, NULL, PARPORT_DEV_EXCL, NULL);
if (!pd) {
pr_err("parport busy already - lp.o loaded?\n");
err = -EBUSY;
goto err_put_pp;
}
gc = kzalloc(sizeof(struct gc), GFP_KERNEL);
if (!gc) {
pr_err("Not enough memory\n");
err = -ENOMEM;
goto err_unreg_pardev;
}
mutex_init(&gc->mutex);
gc->pd = pd;
setup_timer(&gc->timer, gc_timer, (long) gc);
for (i = 0; i < n_pads && i < GC_MAX_DEVICES; i++) {
if (!pads[i])
continue;
err = gc_setup_pad(gc, i, pads[i]);
if (err)
goto err_unreg_devs;
count++;
}
if (count == 0) {
pr_err("No valid devices specified\n");
err = -EINVAL;
goto err_free_gc;
}
parport_put_port(pp);
return gc;
err_unreg_devs:
while (--i >= 0)
if (gc->pads[i].dev)
input_unregister_device(gc->pads[i].dev);
err_free_gc:
kfree(gc);
err_unreg_pardev:
parport_unregister_device(pd);
err_put_pp:
parport_put_port(pp);
err_out:
return ERR_PTR(err);
}
static void gc_remove(struct gc *gc)
{
int i;
for (i = 0; i < GC_MAX_DEVICES; i++)
if (gc->pads[i].dev)
input_unregister_device(gc->pads[i].dev);
parport_unregister_device(gc->pd);
kfree(gc);
}
static int __init gc_init(void)
{
int i;
int have_dev = 0;
int err = 0;
for (i = 0; i < GC_MAX_PORTS; i++) {
if (gc_cfg[i].nargs == 0 || gc_cfg[i].args[0] < 0)
continue;
if (gc_cfg[i].nargs < 2) {
pr_err("at least one device must be specified\n");
err = -EINVAL;
break;
}
gc_base[i] = gc_probe(gc_cfg[i].args[0],
gc_cfg[i].args + 1, gc_cfg[i].nargs - 1);
if (IS_ERR(gc_base[i])) {
err = PTR_ERR(gc_base[i]);
break;
}
have_dev = 1;
}
if (err) {
while (--i >= 0)
if (gc_base[i])
gc_remove(gc_base[i]);
return err;
}
return have_dev ? 0 : -ENODEV;
}
static void __exit gc_exit(void)
{
int i;
for (i = 0; i < GC_MAX_PORTS; i++)
if (gc_base[i])
gc_remove(gc_base[i]);
}
module_init(gc_init);
module_exit(gc_exit);