| /* sun4m_smp.c: Sparc SUN4M SMP support. |
| * |
| * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) |
| */ |
| |
| #include <asm/head.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/profile.h> |
| #include <linux/delay.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/irq_regs.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/atomic.h> |
| |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/oplib.h> |
| #include <asm/cpudata.h> |
| |
| #include "irq.h" |
| |
| #define IRQ_CROSS_CALL 15 |
| |
| extern ctxd_t *srmmu_ctx_table_phys; |
| |
| extern volatile unsigned long cpu_callin_map[NR_CPUS]; |
| extern unsigned char boot_cpu_id; |
| |
| extern cpumask_t smp_commenced_mask; |
| |
| extern int __smp4m_processor_id(void); |
| |
| /*#define SMP_DEBUG*/ |
| |
| #ifdef SMP_DEBUG |
| #define SMP_PRINTK(x) printk x |
| #else |
| #define SMP_PRINTK(x) |
| #endif |
| |
| static inline unsigned long |
| swap_ulong(volatile unsigned long *ptr, unsigned long val) |
| { |
| __asm__ __volatile__("swap [%1], %0\n\t" : |
| "=&r" (val), "=&r" (ptr) : |
| "0" (val), "1" (ptr)); |
| return val; |
| } |
| |
| static void smp_setup_percpu_timer(void); |
| extern void cpu_probe(void); |
| |
| void __cpuinit smp4m_callin(void) |
| { |
| int cpuid = hard_smp_processor_id(); |
| |
| local_flush_cache_all(); |
| local_flush_tlb_all(); |
| |
| notify_cpu_starting(cpuid); |
| |
| /* Get our local ticker going. */ |
| smp_setup_percpu_timer(); |
| |
| calibrate_delay(); |
| smp_store_cpu_info(cpuid); |
| |
| local_flush_cache_all(); |
| local_flush_tlb_all(); |
| |
| /* |
| * Unblock the master CPU _only_ when the scheduler state |
| * of all secondary CPUs will be up-to-date, so after |
| * the SMP initialization the master will be just allowed |
| * to call the scheduler code. |
| */ |
| /* Allow master to continue. */ |
| swap_ulong(&cpu_callin_map[cpuid], 1); |
| |
| /* XXX: What's up with all the flushes? */ |
| local_flush_cache_all(); |
| local_flush_tlb_all(); |
| |
| cpu_probe(); |
| |
| /* Fix idle thread fields. */ |
| __asm__ __volatile__("ld [%0], %%g6\n\t" |
| : : "r" (¤t_set[cpuid]) |
| : "memory" /* paranoid */); |
| |
| /* Attach to the address space of init_task. */ |
| atomic_inc(&init_mm.mm_count); |
| current->active_mm = &init_mm; |
| |
| while (!cpu_isset(cpuid, smp_commenced_mask)) |
| mb(); |
| |
| local_irq_enable(); |
| |
| set_cpu_online(cpuid, true); |
| } |
| |
| /* |
| * Cycle through the processors asking the PROM to start each one. |
| */ |
| |
| extern struct linux_prom_registers smp_penguin_ctable; |
| extern unsigned long trapbase_cpu1[]; |
| extern unsigned long trapbase_cpu2[]; |
| extern unsigned long trapbase_cpu3[]; |
| |
| void __init smp4m_boot_cpus(void) |
| { |
| smp_setup_percpu_timer(); |
| local_flush_cache_all(); |
| } |
| |
| int __cpuinit smp4m_boot_one_cpu(int i) |
| { |
| extern unsigned long sun4m_cpu_startup; |
| unsigned long *entry = &sun4m_cpu_startup; |
| struct task_struct *p; |
| int timeout; |
| int cpu_node; |
| |
| cpu_find_by_mid(i, &cpu_node); |
| |
| /* Cook up an idler for this guy. */ |
| p = fork_idle(i); |
| current_set[i] = task_thread_info(p); |
| /* See trampoline.S for details... */ |
| entry += ((i-1) * 3); |
| |
| /* |
| * Initialize the contexts table |
| * Since the call to prom_startcpu() trashes the structure, |
| * we need to re-initialize it for each cpu |
| */ |
| smp_penguin_ctable.which_io = 0; |
| smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; |
| smp_penguin_ctable.reg_size = 0; |
| |
| /* whirrr, whirrr, whirrrrrrrrr... */ |
| printk("Starting CPU %d at %p\n", i, entry); |
| local_flush_cache_all(); |
| prom_startcpu(cpu_node, |
| &smp_penguin_ctable, 0, (char *)entry); |
| |
| /* wheee... it's going... */ |
| for(timeout = 0; timeout < 10000; timeout++) { |
| if(cpu_callin_map[i]) |
| break; |
| udelay(200); |
| } |
| |
| if (!(cpu_callin_map[i])) { |
| printk("Processor %d is stuck.\n", i); |
| return -ENODEV; |
| } |
| |
| local_flush_cache_all(); |
| return 0; |
| } |
| |
| void __init smp4m_smp_done(void) |
| { |
| int i, first; |
| int *prev; |
| |
| /* setup cpu list for irq rotation */ |
| first = 0; |
| prev = &first; |
| for_each_online_cpu(i) { |
| *prev = i; |
| prev = &cpu_data(i).next; |
| } |
| *prev = first; |
| local_flush_cache_all(); |
| |
| /* Free unneeded trap tables */ |
| if (!cpu_isset(1, cpu_present_map)) { |
| ClearPageReserved(virt_to_page(trapbase_cpu1)); |
| init_page_count(virt_to_page(trapbase_cpu1)); |
| free_page((unsigned long)trapbase_cpu1); |
| totalram_pages++; |
| num_physpages++; |
| } |
| if (!cpu_isset(2, cpu_present_map)) { |
| ClearPageReserved(virt_to_page(trapbase_cpu2)); |
| init_page_count(virt_to_page(trapbase_cpu2)); |
| free_page((unsigned long)trapbase_cpu2); |
| totalram_pages++; |
| num_physpages++; |
| } |
| if (!cpu_isset(3, cpu_present_map)) { |
| ClearPageReserved(virt_to_page(trapbase_cpu3)); |
| init_page_count(virt_to_page(trapbase_cpu3)); |
| free_page((unsigned long)trapbase_cpu3); |
| totalram_pages++; |
| num_physpages++; |
| } |
| |
| /* Ok, they are spinning and ready to go. */ |
| } |
| |
| /* At each hardware IRQ, we get this called to forward IRQ reception |
| * to the next processor. The caller must disable the IRQ level being |
| * serviced globally so that there are no double interrupts received. |
| * |
| * XXX See sparc64 irq.c. |
| */ |
| void smp4m_irq_rotate(int cpu) |
| { |
| int next = cpu_data(cpu).next; |
| if (next != cpu) |
| set_irq_udt(next); |
| } |
| |
| static struct smp_funcall { |
| smpfunc_t func; |
| unsigned long arg1; |
| unsigned long arg2; |
| unsigned long arg3; |
| unsigned long arg4; |
| unsigned long arg5; |
| unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */ |
| unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */ |
| } ccall_info; |
| |
| static DEFINE_SPINLOCK(cross_call_lock); |
| |
| /* Cross calls must be serialized, at least currently. */ |
| static void smp4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1, |
| unsigned long arg2, unsigned long arg3, |
| unsigned long arg4) |
| { |
| register int ncpus = SUN4M_NCPUS; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cross_call_lock, flags); |
| |
| /* Init function glue. */ |
| ccall_info.func = func; |
| ccall_info.arg1 = arg1; |
| ccall_info.arg2 = arg2; |
| ccall_info.arg3 = arg3; |
| ccall_info.arg4 = arg4; |
| ccall_info.arg5 = 0; |
| |
| /* Init receive/complete mapping, plus fire the IPI's off. */ |
| { |
| register int i; |
| |
| cpu_clear(smp_processor_id(), mask); |
| cpus_and(mask, cpu_online_map, mask); |
| for(i = 0; i < ncpus; i++) { |
| if (cpu_isset(i, mask)) { |
| ccall_info.processors_in[i] = 0; |
| ccall_info.processors_out[i] = 0; |
| set_cpu_int(i, IRQ_CROSS_CALL); |
| } else { |
| ccall_info.processors_in[i] = 1; |
| ccall_info.processors_out[i] = 1; |
| } |
| } |
| } |
| |
| { |
| register int i; |
| |
| i = 0; |
| do { |
| if (!cpu_isset(i, mask)) |
| continue; |
| while(!ccall_info.processors_in[i]) |
| barrier(); |
| } while(++i < ncpus); |
| |
| i = 0; |
| do { |
| if (!cpu_isset(i, mask)) |
| continue; |
| while(!ccall_info.processors_out[i]) |
| barrier(); |
| } while(++i < ncpus); |
| } |
| |
| spin_unlock_irqrestore(&cross_call_lock, flags); |
| } |
| |
| /* Running cross calls. */ |
| void smp4m_cross_call_irq(void) |
| { |
| int i = smp_processor_id(); |
| |
| ccall_info.processors_in[i] = 1; |
| ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, |
| ccall_info.arg4, ccall_info.arg5); |
| ccall_info.processors_out[i] = 1; |
| } |
| |
| extern void sun4m_clear_profile_irq(int cpu); |
| |
| void smp4m_percpu_timer_interrupt(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs; |
| int cpu = smp_processor_id(); |
| |
| old_regs = set_irq_regs(regs); |
| |
| sun4m_clear_profile_irq(cpu); |
| |
| profile_tick(CPU_PROFILING); |
| |
| if(!--prof_counter(cpu)) { |
| int user = user_mode(regs); |
| |
| irq_enter(); |
| update_process_times(user); |
| irq_exit(); |
| |
| prof_counter(cpu) = prof_multiplier(cpu); |
| } |
| set_irq_regs(old_regs); |
| } |
| |
| extern unsigned int lvl14_resolution; |
| |
| static void __cpuinit smp_setup_percpu_timer(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| prof_counter(cpu) = prof_multiplier(cpu) = 1; |
| load_profile_irq(cpu, lvl14_resolution); |
| |
| if(cpu == boot_cpu_id) |
| enable_pil_irq(14); |
| } |
| |
| static void __init smp4m_blackbox_id(unsigned *addr) |
| { |
| int rd = *addr & 0x3e000000; |
| int rs1 = rd >> 11; |
| |
| addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ |
| addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */ |
| addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */ |
| } |
| |
| static void __init smp4m_blackbox_current(unsigned *addr) |
| { |
| int rd = *addr & 0x3e000000; |
| int rs1 = rd >> 11; |
| |
| addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ |
| addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */ |
| addr[4] = 0x8008200c | rd | rs1; /* and reg, 0xc, reg */ |
| } |
| |
| void __init sun4m_init_smp(void) |
| { |
| BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id); |
| BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current); |
| BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM); |
| } |