| /* $Id: fault.c,v 1.122 2001/11/17 07:19:26 davem Exp $ |
| * fault.c: Page fault handlers for the Sparc. |
| * |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| */ |
| |
| #include <asm/head.h> |
| |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/threads.h> |
| #include <linux/kernel.h> |
| #include <linux/signal.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| |
| #include <asm/system.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/memreg.h> |
| #include <asm/openprom.h> |
| #include <asm/oplib.h> |
| #include <asm/smp.h> |
| #include <asm/traps.h> |
| #include <asm/kdebug.h> |
| #include <asm/uaccess.h> |
| |
| extern int prom_node_root; |
| |
| /* At boot time we determine these two values necessary for setting |
| * up the segment maps and page table entries (pte's). |
| */ |
| |
| int num_segmaps, num_contexts; |
| int invalid_segment; |
| |
| /* various Virtual Address Cache parameters we find at boot time... */ |
| |
| int vac_size, vac_linesize, vac_do_hw_vac_flushes; |
| int vac_entries_per_context, vac_entries_per_segment; |
| int vac_entries_per_page; |
| |
| /* Nice, simple, prom library does all the sweating for us. ;) */ |
| int prom_probe_memory (void) |
| { |
| register struct linux_mlist_v0 *mlist; |
| register unsigned long bytes, base_paddr, tally; |
| register int i; |
| |
| i = 0; |
| mlist= *prom_meminfo()->v0_available; |
| bytes = tally = mlist->num_bytes; |
| base_paddr = (unsigned long) mlist->start_adr; |
| |
| sp_banks[0].base_addr = base_paddr; |
| sp_banks[0].num_bytes = bytes; |
| |
| while (mlist->theres_more != (void *) 0){ |
| i++; |
| mlist = mlist->theres_more; |
| bytes = mlist->num_bytes; |
| tally += bytes; |
| if (i > SPARC_PHYS_BANKS-1) { |
| printk ("The machine has more banks than " |
| "this kernel can support\n" |
| "Increase the SPARC_PHYS_BANKS " |
| "setting (currently %d)\n", |
| SPARC_PHYS_BANKS); |
| i = SPARC_PHYS_BANKS-1; |
| break; |
| } |
| |
| sp_banks[i].base_addr = (unsigned long) mlist->start_adr; |
| sp_banks[i].num_bytes = mlist->num_bytes; |
| } |
| |
| i++; |
| sp_banks[i].base_addr = 0xdeadbeef; |
| sp_banks[i].num_bytes = 0; |
| |
| /* Now mask all bank sizes on a page boundary, it is all we can |
| * use anyways. |
| */ |
| for(i=0; sp_banks[i].num_bytes != 0; i++) |
| sp_banks[i].num_bytes &= PAGE_MASK; |
| |
| return tally; |
| } |
| |
| /* Traverse the memory lists in the prom to see how much physical we |
| * have. |
| */ |
| unsigned long |
| probe_memory(void) |
| { |
| int total; |
| |
| total = prom_probe_memory(); |
| |
| /* Oh man, much nicer, keep the dirt in promlib. */ |
| return total; |
| } |
| |
| extern void sun4c_complete_all_stores(void); |
| |
| /* Whee, a level 15 NMI interrupt memory error. Let's have fun... */ |
| asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr, |
| unsigned long svaddr, unsigned long aerr, |
| unsigned long avaddr) |
| { |
| sun4c_complete_all_stores(); |
| printk("FAULT: NMI received\n"); |
| printk("SREGS: Synchronous Error %08lx\n", serr); |
| printk(" Synchronous Vaddr %08lx\n", svaddr); |
| printk(" Asynchronous Error %08lx\n", aerr); |
| printk(" Asynchronous Vaddr %08lx\n", avaddr); |
| if (sun4c_memerr_reg) |
| printk(" Memory Parity Error %08lx\n", *sun4c_memerr_reg); |
| printk("REGISTER DUMP:\n"); |
| show_regs(regs); |
| prom_halt(); |
| } |
| |
| static void unhandled_fault(unsigned long, struct task_struct *, |
| struct pt_regs *) __attribute__ ((noreturn)); |
| |
| static void unhandled_fault(unsigned long address, struct task_struct *tsk, |
| struct pt_regs *regs) |
| { |
| if((unsigned long) address < PAGE_SIZE) { |
| printk(KERN_ALERT |
| "Unable to handle kernel NULL pointer dereference\n"); |
| } else { |
| printk(KERN_ALERT "Unable to handle kernel paging request " |
| "at virtual address %08lx\n", address); |
| } |
| printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n", |
| (tsk->mm ? tsk->mm->context : tsk->active_mm->context)); |
| printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n", |
| (tsk->mm ? (unsigned long) tsk->mm->pgd : |
| (unsigned long) tsk->active_mm->pgd)); |
| die_if_kernel("Oops", regs); |
| } |
| |
| asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc, |
| unsigned long address) |
| { |
| struct pt_regs regs; |
| unsigned long g2; |
| unsigned int insn; |
| int i; |
| |
| i = search_extables_range(ret_pc, &g2); |
| switch (i) { |
| case 3: |
| /* load & store will be handled by fixup */ |
| return 3; |
| |
| case 1: |
| /* store will be handled by fixup, load will bump out */ |
| /* for _to_ macros */ |
| insn = *((unsigned int *) pc); |
| if ((insn >> 21) & 1) |
| return 1; |
| break; |
| |
| case 2: |
| /* load will be handled by fixup, store will bump out */ |
| /* for _from_ macros */ |
| insn = *((unsigned int *) pc); |
| if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15) |
| return 2; |
| break; |
| |
| default: |
| break; |
| }; |
| |
| memset(®s, 0, sizeof (regs)); |
| regs.pc = pc; |
| regs.npc = pc + 4; |
| __asm__ __volatile__( |
| "rd %%psr, %0\n\t" |
| "nop\n\t" |
| "nop\n\t" |
| "nop\n" : "=r" (regs.psr)); |
| unhandled_fault(address, current, ®s); |
| |
| /* Not reached */ |
| return 0; |
| } |
| |
| extern unsigned long safe_compute_effective_address(struct pt_regs *, |
| unsigned int); |
| |
| static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault) |
| { |
| unsigned int insn; |
| |
| if (text_fault) |
| return regs->pc; |
| |
| if (regs->psr & PSR_PS) { |
| insn = *(unsigned int *) regs->pc; |
| } else { |
| __get_user(insn, (unsigned int *) regs->pc); |
| } |
| |
| return safe_compute_effective_address(regs, insn); |
| } |
| |
| asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write, |
| unsigned long address) |
| { |
| struct vm_area_struct *vma; |
| struct task_struct *tsk = current; |
| struct mm_struct *mm = tsk->mm; |
| unsigned int fixup; |
| unsigned long g2; |
| siginfo_t info; |
| int from_user = !(regs->psr & PSR_PS); |
| |
| if(text_fault) |
| address = regs->pc; |
| |
| /* |
| * We fault-in kernel-space virtual memory on-demand. The |
| * 'reference' page table is init_mm.pgd. |
| * |
| * NOTE! We MUST NOT take any locks for this case. We may |
| * be in an interrupt or a critical region, and should |
| * only copy the information from the master page table, |
| * nothing more. |
| */ |
| if (!ARCH_SUN4C_SUN4 && address >= TASK_SIZE) |
| goto vmalloc_fault; |
| |
| info.si_code = SEGV_MAPERR; |
| |
| /* |
| * If we're in an interrupt or have no user |
| * context, we must not take the fault.. |
| */ |
| if (in_atomic() || !mm) |
| goto no_context; |
| |
| down_read(&mm->mmap_sem); |
| |
| /* |
| * The kernel referencing a bad kernel pointer can lock up |
| * a sun4c machine completely, so we must attempt recovery. |
| */ |
| if(!from_user && address >= PAGE_OFFSET) |
| goto bad_area; |
| |
| vma = find_vma(mm, address); |
| if(!vma) |
| goto bad_area; |
| if(vma->vm_start <= address) |
| goto good_area; |
| if(!(vma->vm_flags & VM_GROWSDOWN)) |
| goto bad_area; |
| if(expand_stack(vma, address)) |
| goto bad_area; |
| /* |
| * Ok, we have a good vm_area for this memory access, so |
| * we can handle it.. |
| */ |
| good_area: |
| info.si_code = SEGV_ACCERR; |
| if(write) { |
| if(!(vma->vm_flags & VM_WRITE)) |
| goto bad_area; |
| } else { |
| /* Allow reads even for write-only mappings */ |
| if(!(vma->vm_flags & (VM_READ | VM_EXEC))) |
| goto bad_area; |
| } |
| |
| /* |
| * If for any reason at all we couldn't handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| switch (handle_mm_fault(mm, vma, address, write)) { |
| case VM_FAULT_SIGBUS: |
| goto do_sigbus; |
| case VM_FAULT_OOM: |
| goto out_of_memory; |
| case VM_FAULT_MAJOR: |
| current->maj_flt++; |
| break; |
| case VM_FAULT_MINOR: |
| default: |
| current->min_flt++; |
| break; |
| } |
| up_read(&mm->mmap_sem); |
| return; |
| |
| /* |
| * Something tried to access memory that isn't in our memory map.. |
| * Fix it, but check if it's kernel or user first.. |
| */ |
| bad_area: |
| up_read(&mm->mmap_sem); |
| |
| bad_area_nosemaphore: |
| /* User mode accesses just cause a SIGSEGV */ |
| if(from_user) { |
| #if 0 |
| printk("Fault whee %s [%d]: segfaults at %08lx pc=%08lx\n", |
| tsk->comm, tsk->pid, address, regs->pc); |
| #endif |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* info.si_code set above to make clear whether |
| this was a SEGV_MAPERR or SEGV_ACCERR fault. */ |
| info.si_addr = (void __user *)compute_si_addr(regs, text_fault); |
| info.si_trapno = 0; |
| force_sig_info (SIGSEGV, &info, tsk); |
| return; |
| } |
| |
| /* Is this in ex_table? */ |
| no_context: |
| g2 = regs->u_regs[UREG_G2]; |
| if (!from_user && (fixup = search_extables_range(regs->pc, &g2))) { |
| if (fixup > 10) { /* Values below are reserved for other things */ |
| extern const unsigned __memset_start[]; |
| extern const unsigned __memset_end[]; |
| extern const unsigned __csum_partial_copy_start[]; |
| extern const unsigned __csum_partial_copy_end[]; |
| |
| #ifdef DEBUG_EXCEPTIONS |
| printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address); |
| printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n", |
| regs->pc, fixup, g2); |
| #endif |
| if ((regs->pc >= (unsigned long)__memset_start && |
| regs->pc < (unsigned long)__memset_end) || |
| (regs->pc >= (unsigned long)__csum_partial_copy_start && |
| regs->pc < (unsigned long)__csum_partial_copy_end)) { |
| regs->u_regs[UREG_I4] = address; |
| regs->u_regs[UREG_I5] = regs->pc; |
| } |
| regs->u_regs[UREG_G2] = g2; |
| regs->pc = fixup; |
| regs->npc = regs->pc + 4; |
| return; |
| } |
| } |
| |
| unhandled_fault (address, tsk, regs); |
| do_exit(SIGKILL); |
| |
| /* |
| * We ran out of memory, or some other thing happened to us that made |
| * us unable to handle the page fault gracefully. |
| */ |
| out_of_memory: |
| up_read(&mm->mmap_sem); |
| printk("VM: killing process %s\n", tsk->comm); |
| if (from_user) |
| do_exit(SIGKILL); |
| goto no_context; |
| |
| do_sigbus: |
| up_read(&mm->mmap_sem); |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRERR; |
| info.si_addr = (void __user *) compute_si_addr(regs, text_fault); |
| info.si_trapno = 0; |
| force_sig_info (SIGBUS, &info, tsk); |
| if (!from_user) |
| goto no_context; |
| |
| vmalloc_fault: |
| { |
| /* |
| * Synchronize this task's top level page-table |
| * with the 'reference' page table. |
| */ |
| int offset = pgd_index(address); |
| pgd_t *pgd, *pgd_k; |
| pmd_t *pmd, *pmd_k; |
| |
| pgd = tsk->active_mm->pgd + offset; |
| pgd_k = init_mm.pgd + offset; |
| |
| if (!pgd_present(*pgd)) { |
| if (!pgd_present(*pgd_k)) |
| goto bad_area_nosemaphore; |
| pgd_val(*pgd) = pgd_val(*pgd_k); |
| return; |
| } |
| |
| pmd = pmd_offset(pgd, address); |
| pmd_k = pmd_offset(pgd_k, address); |
| |
| if (pmd_present(*pmd) || !pmd_present(*pmd_k)) |
| goto bad_area_nosemaphore; |
| *pmd = *pmd_k; |
| return; |
| } |
| } |
| |
| asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write, |
| unsigned long address) |
| { |
| extern void sun4c_update_mmu_cache(struct vm_area_struct *, |
| unsigned long,pte_t); |
| extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long); |
| struct task_struct *tsk = current; |
| struct mm_struct *mm = tsk->mm; |
| pgd_t *pgdp; |
| pte_t *ptep; |
| |
| if (text_fault) { |
| address = regs->pc; |
| } else if (!write && |
| !(regs->psr & PSR_PS)) { |
| unsigned int insn, __user *ip; |
| |
| ip = (unsigned int __user *)regs->pc; |
| if (!get_user(insn, ip)) { |
| if ((insn & 0xc1680000) == 0xc0680000) |
| write = 1; |
| } |
| } |
| |
| if (!mm) { |
| /* We are oopsing. */ |
| do_sparc_fault(regs, text_fault, write, address); |
| BUG(); /* P3 Oops already, you bitch */ |
| } |
| |
| pgdp = pgd_offset(mm, address); |
| ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address); |
| |
| if (pgd_val(*pgdp)) { |
| if (write) { |
| if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) |
| == (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) { |
| unsigned long flags; |
| |
| *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED | |
| _SUN4C_PAGE_MODIFIED | |
| _SUN4C_PAGE_VALID | |
| _SUN4C_PAGE_DIRTY); |
| |
| local_irq_save(flags); |
| if (sun4c_get_segmap(address) != invalid_segment) { |
| sun4c_put_pte(address, pte_val(*ptep)); |
| local_irq_restore(flags); |
| return; |
| } |
| local_irq_restore(flags); |
| } |
| } else { |
| if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) |
| == (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) { |
| unsigned long flags; |
| |
| *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED | |
| _SUN4C_PAGE_VALID); |
| |
| local_irq_save(flags); |
| if (sun4c_get_segmap(address) != invalid_segment) { |
| sun4c_put_pte(address, pte_val(*ptep)); |
| local_irq_restore(flags); |
| return; |
| } |
| local_irq_restore(flags); |
| } |
| } |
| } |
| |
| /* This conditional is 'interesting'. */ |
| if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE)) |
| && (pte_val(*ptep) & _SUN4C_PAGE_VALID)) |
| /* Note: It is safe to not grab the MMAP semaphore here because |
| * we know that update_mmu_cache() will not sleep for |
| * any reason (at least not in the current implementation) |
| * and therefore there is no danger of another thread getting |
| * on the CPU and doing a shrink_mmap() on this vma. |
| */ |
| sun4c_update_mmu_cache (find_vma(current->mm, address), address, |
| *ptep); |
| else |
| do_sparc_fault(regs, text_fault, write, address); |
| } |
| |
| /* This always deals with user addresses. */ |
| inline void force_user_fault(unsigned long address, int write) |
| { |
| struct vm_area_struct *vma; |
| struct task_struct *tsk = current; |
| struct mm_struct *mm = tsk->mm; |
| siginfo_t info; |
| |
| info.si_code = SEGV_MAPERR; |
| |
| #if 0 |
| printk("wf<pid=%d,wr=%d,addr=%08lx>\n", |
| tsk->pid, write, address); |
| #endif |
| down_read(&mm->mmap_sem); |
| vma = find_vma(mm, address); |
| if(!vma) |
| goto bad_area; |
| if(vma->vm_start <= address) |
| goto good_area; |
| if(!(vma->vm_flags & VM_GROWSDOWN)) |
| goto bad_area; |
| if(expand_stack(vma, address)) |
| goto bad_area; |
| good_area: |
| info.si_code = SEGV_ACCERR; |
| if(write) { |
| if(!(vma->vm_flags & VM_WRITE)) |
| goto bad_area; |
| } else { |
| if(!(vma->vm_flags & (VM_READ | VM_EXEC))) |
| goto bad_area; |
| } |
| switch (handle_mm_fault(mm, vma, address, write)) { |
| case VM_FAULT_SIGBUS: |
| case VM_FAULT_OOM: |
| goto do_sigbus; |
| } |
| up_read(&mm->mmap_sem); |
| return; |
| bad_area: |
| up_read(&mm->mmap_sem); |
| #if 0 |
| printk("Window whee %s [%d]: segfaults at %08lx\n", |
| tsk->comm, tsk->pid, address); |
| #endif |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* info.si_code set above to make clear whether |
| this was a SEGV_MAPERR or SEGV_ACCERR fault. */ |
| info.si_addr = (void __user *) address; |
| info.si_trapno = 0; |
| force_sig_info (SIGSEGV, &info, tsk); |
| return; |
| |
| do_sigbus: |
| up_read(&mm->mmap_sem); |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRERR; |
| info.si_addr = (void __user *) address; |
| info.si_trapno = 0; |
| force_sig_info (SIGBUS, &info, tsk); |
| } |
| |
| void window_overflow_fault(void) |
| { |
| unsigned long sp; |
| |
| sp = current_thread_info()->rwbuf_stkptrs[0]; |
| if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK)) |
| force_user_fault(sp + 0x38, 1); |
| force_user_fault(sp, 1); |
| } |
| |
| void window_underflow_fault(unsigned long sp) |
| { |
| if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK)) |
| force_user_fault(sp + 0x38, 0); |
| force_user_fault(sp, 0); |
| } |
| |
| void window_ret_fault(struct pt_regs *regs) |
| { |
| unsigned long sp; |
| |
| sp = regs->u_regs[UREG_FP]; |
| if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK)) |
| force_user_fault(sp + 0x38, 0); |
| force_user_fault(sp, 0); |
| } |