| /* |
| * linux/kernel/workqueue.c |
| * |
| * Generic mechanism for defining kernel helper threads for running |
| * arbitrary tasks in process context. |
| * |
| * Started by Ingo Molnar, Copyright (C) 2002 |
| * |
| * Derived from the taskqueue/keventd code by: |
| * |
| * David Woodhouse <dwmw2@infradead.org> |
| * Andrew Morton <andrewm@uow.edu.au> |
| * Kai Petzke <wpp@marie.physik.tu-berlin.de> |
| * Theodore Ts'o <tytso@mit.edu> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| #include <linux/completion.h> |
| #include <linux/workqueue.h> |
| #include <linux/slab.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/kthread.h> |
| |
| /* |
| * The per-CPU workqueue (if single thread, we always use cpu 0's). |
| * |
| * The sequence counters are for flush_scheduled_work(). It wants to wait |
| * until until all currently-scheduled works are completed, but it doesn't |
| * want to be livelocked by new, incoming ones. So it waits until |
| * remove_sequence is >= the insert_sequence which pertained when |
| * flush_scheduled_work() was called. |
| */ |
| struct cpu_workqueue_struct { |
| |
| spinlock_t lock; |
| |
| long remove_sequence; /* Least-recently added (next to run) */ |
| long insert_sequence; /* Next to add */ |
| |
| struct list_head worklist; |
| wait_queue_head_t more_work; |
| wait_queue_head_t work_done; |
| |
| struct workqueue_struct *wq; |
| task_t *thread; |
| |
| int run_depth; /* Detect run_workqueue() recursion depth */ |
| } ____cacheline_aligned; |
| |
| /* |
| * The externally visible workqueue abstraction is an array of |
| * per-CPU workqueues: |
| */ |
| struct workqueue_struct { |
| struct cpu_workqueue_struct cpu_wq[NR_CPUS]; |
| const char *name; |
| struct list_head list; /* Empty if single thread */ |
| }; |
| |
| /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove |
| threads to each one as cpus come/go. */ |
| static DEFINE_SPINLOCK(workqueue_lock); |
| static LIST_HEAD(workqueues); |
| |
| /* If it's single threaded, it isn't in the list of workqueues. */ |
| static inline int is_single_threaded(struct workqueue_struct *wq) |
| { |
| return list_empty(&wq->list); |
| } |
| |
| /* Preempt must be disabled. */ |
| static void __queue_work(struct cpu_workqueue_struct *cwq, |
| struct work_struct *work) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cwq->lock, flags); |
| work->wq_data = cwq; |
| list_add_tail(&work->entry, &cwq->worklist); |
| cwq->insert_sequence++; |
| wake_up(&cwq->more_work); |
| spin_unlock_irqrestore(&cwq->lock, flags); |
| } |
| |
| /* |
| * Queue work on a workqueue. Return non-zero if it was successfully |
| * added. |
| * |
| * We queue the work to the CPU it was submitted, but there is no |
| * guarantee that it will be processed by that CPU. |
| */ |
| int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work) |
| { |
| int ret = 0, cpu = get_cpu(); |
| |
| if (!test_and_set_bit(0, &work->pending)) { |
| if (unlikely(is_single_threaded(wq))) |
| cpu = 0; |
| BUG_ON(!list_empty(&work->entry)); |
| __queue_work(wq->cpu_wq + cpu, work); |
| ret = 1; |
| } |
| put_cpu(); |
| return ret; |
| } |
| |
| static void delayed_work_timer_fn(unsigned long __data) |
| { |
| struct work_struct *work = (struct work_struct *)__data; |
| struct workqueue_struct *wq = work->wq_data; |
| int cpu = smp_processor_id(); |
| |
| if (unlikely(is_single_threaded(wq))) |
| cpu = 0; |
| |
| __queue_work(wq->cpu_wq + cpu, work); |
| } |
| |
| int fastcall queue_delayed_work(struct workqueue_struct *wq, |
| struct work_struct *work, unsigned long delay) |
| { |
| int ret = 0; |
| struct timer_list *timer = &work->timer; |
| |
| if (!test_and_set_bit(0, &work->pending)) { |
| BUG_ON(timer_pending(timer)); |
| BUG_ON(!list_empty(&work->entry)); |
| |
| /* This stores wq for the moment, for the timer_fn */ |
| work->wq_data = wq; |
| timer->expires = jiffies + delay; |
| timer->data = (unsigned long)work; |
| timer->function = delayed_work_timer_fn; |
| add_timer(timer); |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| static inline void run_workqueue(struct cpu_workqueue_struct *cwq) |
| { |
| unsigned long flags; |
| |
| /* |
| * Keep taking off work from the queue until |
| * done. |
| */ |
| spin_lock_irqsave(&cwq->lock, flags); |
| cwq->run_depth++; |
| if (cwq->run_depth > 3) { |
| /* morton gets to eat his hat */ |
| printk("%s: recursion depth exceeded: %d\n", |
| __FUNCTION__, cwq->run_depth); |
| dump_stack(); |
| } |
| while (!list_empty(&cwq->worklist)) { |
| struct work_struct *work = list_entry(cwq->worklist.next, |
| struct work_struct, entry); |
| void (*f) (void *) = work->func; |
| void *data = work->data; |
| |
| list_del_init(cwq->worklist.next); |
| spin_unlock_irqrestore(&cwq->lock, flags); |
| |
| BUG_ON(work->wq_data != cwq); |
| clear_bit(0, &work->pending); |
| f(data); |
| |
| spin_lock_irqsave(&cwq->lock, flags); |
| cwq->remove_sequence++; |
| wake_up(&cwq->work_done); |
| } |
| cwq->run_depth--; |
| spin_unlock_irqrestore(&cwq->lock, flags); |
| } |
| |
| static int worker_thread(void *__cwq) |
| { |
| struct cpu_workqueue_struct *cwq = __cwq; |
| DECLARE_WAITQUEUE(wait, current); |
| struct k_sigaction sa; |
| sigset_t blocked; |
| |
| current->flags |= PF_NOFREEZE; |
| |
| set_user_nice(current, -5); |
| |
| /* Block and flush all signals */ |
| sigfillset(&blocked); |
| sigprocmask(SIG_BLOCK, &blocked, NULL); |
| flush_signals(current); |
| |
| /* SIG_IGN makes children autoreap: see do_notify_parent(). */ |
| sa.sa.sa_handler = SIG_IGN; |
| sa.sa.sa_flags = 0; |
| siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD)); |
| do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0); |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| while (!kthread_should_stop()) { |
| add_wait_queue(&cwq->more_work, &wait); |
| if (list_empty(&cwq->worklist)) |
| schedule(); |
| else |
| __set_current_state(TASK_RUNNING); |
| remove_wait_queue(&cwq->more_work, &wait); |
| |
| if (!list_empty(&cwq->worklist)) |
| run_workqueue(cwq); |
| set_current_state(TASK_INTERRUPTIBLE); |
| } |
| __set_current_state(TASK_RUNNING); |
| return 0; |
| } |
| |
| static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) |
| { |
| if (cwq->thread == current) { |
| /* |
| * Probably keventd trying to flush its own queue. So simply run |
| * it by hand rather than deadlocking. |
| */ |
| run_workqueue(cwq); |
| } else { |
| DEFINE_WAIT(wait); |
| long sequence_needed; |
| |
| spin_lock_irq(&cwq->lock); |
| sequence_needed = cwq->insert_sequence; |
| |
| while (sequence_needed - cwq->remove_sequence > 0) { |
| prepare_to_wait(&cwq->work_done, &wait, |
| TASK_UNINTERRUPTIBLE); |
| spin_unlock_irq(&cwq->lock); |
| schedule(); |
| spin_lock_irq(&cwq->lock); |
| } |
| finish_wait(&cwq->work_done, &wait); |
| spin_unlock_irq(&cwq->lock); |
| } |
| } |
| |
| /* |
| * flush_workqueue - ensure that any scheduled work has run to completion. |
| * |
| * Forces execution of the workqueue and blocks until its completion. |
| * This is typically used in driver shutdown handlers. |
| * |
| * This function will sample each workqueue's current insert_sequence number and |
| * will sleep until the head sequence is greater than or equal to that. This |
| * means that we sleep until all works which were queued on entry have been |
| * handled, but we are not livelocked by new incoming ones. |
| * |
| * This function used to run the workqueues itself. Now we just wait for the |
| * helper threads to do it. |
| */ |
| void fastcall flush_workqueue(struct workqueue_struct *wq) |
| { |
| might_sleep(); |
| |
| if (is_single_threaded(wq)) { |
| /* Always use cpu 0's area. */ |
| flush_cpu_workqueue(wq->cpu_wq + 0); |
| } else { |
| int cpu; |
| |
| lock_cpu_hotplug(); |
| for_each_online_cpu(cpu) |
| flush_cpu_workqueue(wq->cpu_wq + cpu); |
| unlock_cpu_hotplug(); |
| } |
| } |
| |
| static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq, |
| int cpu) |
| { |
| struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu; |
| struct task_struct *p; |
| |
| spin_lock_init(&cwq->lock); |
| cwq->wq = wq; |
| cwq->thread = NULL; |
| cwq->insert_sequence = 0; |
| cwq->remove_sequence = 0; |
| INIT_LIST_HEAD(&cwq->worklist); |
| init_waitqueue_head(&cwq->more_work); |
| init_waitqueue_head(&cwq->work_done); |
| |
| if (is_single_threaded(wq)) |
| p = kthread_create(worker_thread, cwq, "%s", wq->name); |
| else |
| p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu); |
| if (IS_ERR(p)) |
| return NULL; |
| cwq->thread = p; |
| return p; |
| } |
| |
| struct workqueue_struct *__create_workqueue(const char *name, |
| int singlethread) |
| { |
| int cpu, destroy = 0; |
| struct workqueue_struct *wq; |
| struct task_struct *p; |
| |
| wq = kzalloc(sizeof(*wq), GFP_KERNEL); |
| if (!wq) |
| return NULL; |
| |
| wq->name = name; |
| /* We don't need the distraction of CPUs appearing and vanishing. */ |
| lock_cpu_hotplug(); |
| if (singlethread) { |
| INIT_LIST_HEAD(&wq->list); |
| p = create_workqueue_thread(wq, 0); |
| if (!p) |
| destroy = 1; |
| else |
| wake_up_process(p); |
| } else { |
| spin_lock(&workqueue_lock); |
| list_add(&wq->list, &workqueues); |
| spin_unlock(&workqueue_lock); |
| for_each_online_cpu(cpu) { |
| p = create_workqueue_thread(wq, cpu); |
| if (p) { |
| kthread_bind(p, cpu); |
| wake_up_process(p); |
| } else |
| destroy = 1; |
| } |
| } |
| unlock_cpu_hotplug(); |
| |
| /* |
| * Was there any error during startup? If yes then clean up: |
| */ |
| if (destroy) { |
| destroy_workqueue(wq); |
| wq = NULL; |
| } |
| return wq; |
| } |
| |
| static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu) |
| { |
| struct cpu_workqueue_struct *cwq; |
| unsigned long flags; |
| struct task_struct *p; |
| |
| cwq = wq->cpu_wq + cpu; |
| spin_lock_irqsave(&cwq->lock, flags); |
| p = cwq->thread; |
| cwq->thread = NULL; |
| spin_unlock_irqrestore(&cwq->lock, flags); |
| if (p) |
| kthread_stop(p); |
| } |
| |
| void destroy_workqueue(struct workqueue_struct *wq) |
| { |
| int cpu; |
| |
| flush_workqueue(wq); |
| |
| /* We don't need the distraction of CPUs appearing and vanishing. */ |
| lock_cpu_hotplug(); |
| if (is_single_threaded(wq)) |
| cleanup_workqueue_thread(wq, 0); |
| else { |
| for_each_online_cpu(cpu) |
| cleanup_workqueue_thread(wq, cpu); |
| spin_lock(&workqueue_lock); |
| list_del(&wq->list); |
| spin_unlock(&workqueue_lock); |
| } |
| unlock_cpu_hotplug(); |
| kfree(wq); |
| } |
| |
| static struct workqueue_struct *keventd_wq; |
| |
| int fastcall schedule_work(struct work_struct *work) |
| { |
| return queue_work(keventd_wq, work); |
| } |
| |
| int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay) |
| { |
| return queue_delayed_work(keventd_wq, work, delay); |
| } |
| |
| int schedule_delayed_work_on(int cpu, |
| struct work_struct *work, unsigned long delay) |
| { |
| int ret = 0; |
| struct timer_list *timer = &work->timer; |
| |
| if (!test_and_set_bit(0, &work->pending)) { |
| BUG_ON(timer_pending(timer)); |
| BUG_ON(!list_empty(&work->entry)); |
| /* This stores keventd_wq for the moment, for the timer_fn */ |
| work->wq_data = keventd_wq; |
| timer->expires = jiffies + delay; |
| timer->data = (unsigned long)work; |
| timer->function = delayed_work_timer_fn; |
| add_timer_on(timer, cpu); |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| void flush_scheduled_work(void) |
| { |
| flush_workqueue(keventd_wq); |
| } |
| |
| /** |
| * cancel_rearming_delayed_workqueue - reliably kill off a delayed |
| * work whose handler rearms the delayed work. |
| * @wq: the controlling workqueue structure |
| * @work: the delayed work struct |
| */ |
| void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq, |
| struct work_struct *work) |
| { |
| while (!cancel_delayed_work(work)) |
| flush_workqueue(wq); |
| } |
| EXPORT_SYMBOL(cancel_rearming_delayed_workqueue); |
| |
| /** |
| * cancel_rearming_delayed_work - reliably kill off a delayed keventd |
| * work whose handler rearms the delayed work. |
| * @work: the delayed work struct |
| */ |
| void cancel_rearming_delayed_work(struct work_struct *work) |
| { |
| cancel_rearming_delayed_workqueue(keventd_wq, work); |
| } |
| EXPORT_SYMBOL(cancel_rearming_delayed_work); |
| |
| int keventd_up(void) |
| { |
| return keventd_wq != NULL; |
| } |
| |
| int current_is_keventd(void) |
| { |
| struct cpu_workqueue_struct *cwq; |
| int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */ |
| int ret = 0; |
| |
| BUG_ON(!keventd_wq); |
| |
| cwq = keventd_wq->cpu_wq + cpu; |
| if (current == cwq->thread) |
| ret = 1; |
| |
| return ret; |
| |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* Take the work from this (downed) CPU. */ |
| static void take_over_work(struct workqueue_struct *wq, unsigned int cpu) |
| { |
| struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu; |
| LIST_HEAD(list); |
| struct work_struct *work; |
| |
| spin_lock_irq(&cwq->lock); |
| list_splice_init(&cwq->worklist, &list); |
| |
| while (!list_empty(&list)) { |
| printk("Taking work for %s\n", wq->name); |
| work = list_entry(list.next,struct work_struct,entry); |
| list_del(&work->entry); |
| __queue_work(wq->cpu_wq + smp_processor_id(), work); |
| } |
| spin_unlock_irq(&cwq->lock); |
| } |
| |
| /* We're holding the cpucontrol mutex here */ |
| static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| unsigned int hotcpu = (unsigned long)hcpu; |
| struct workqueue_struct *wq; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| /* Create a new workqueue thread for it. */ |
| list_for_each_entry(wq, &workqueues, list) { |
| if (!create_workqueue_thread(wq, hotcpu)) { |
| printk("workqueue for %i failed\n", hotcpu); |
| return NOTIFY_BAD; |
| } |
| } |
| break; |
| |
| case CPU_ONLINE: |
| /* Kick off worker threads. */ |
| list_for_each_entry(wq, &workqueues, list) { |
| kthread_bind(wq->cpu_wq[hotcpu].thread, hotcpu); |
| wake_up_process(wq->cpu_wq[hotcpu].thread); |
| } |
| break; |
| |
| case CPU_UP_CANCELED: |
| list_for_each_entry(wq, &workqueues, list) { |
| /* Unbind so it can run. */ |
| kthread_bind(wq->cpu_wq[hotcpu].thread, |
| smp_processor_id()); |
| cleanup_workqueue_thread(wq, hotcpu); |
| } |
| break; |
| |
| case CPU_DEAD: |
| list_for_each_entry(wq, &workqueues, list) |
| cleanup_workqueue_thread(wq, hotcpu); |
| list_for_each_entry(wq, &workqueues, list) |
| take_over_work(wq, hotcpu); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| #endif |
| |
| void init_workqueues(void) |
| { |
| hotcpu_notifier(workqueue_cpu_callback, 0); |
| keventd_wq = create_workqueue("events"); |
| BUG_ON(!keventd_wq); |
| } |
| |
| EXPORT_SYMBOL_GPL(__create_workqueue); |
| EXPORT_SYMBOL_GPL(queue_work); |
| EXPORT_SYMBOL_GPL(queue_delayed_work); |
| EXPORT_SYMBOL_GPL(flush_workqueue); |
| EXPORT_SYMBOL_GPL(destroy_workqueue); |
| |
| EXPORT_SYMBOL(schedule_work); |
| EXPORT_SYMBOL(schedule_delayed_work); |
| EXPORT_SYMBOL(schedule_delayed_work_on); |
| EXPORT_SYMBOL(flush_scheduled_work); |