| /* auditsc.c -- System-call auditing support |
| * Handles all system-call specific auditing features. |
| * |
| * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| * |
| * Many of the ideas implemented here are from Stephen C. Tweedie, |
| * especially the idea of avoiding a copy by using getname. |
| * |
| * The method for actual interception of syscall entry and exit (not in |
| * this file -- see entry.S) is based on a GPL'd patch written by |
| * okir@suse.de and Copyright 2003 SuSE Linux AG. |
| * |
| */ |
| |
| #include <linux/init.h> |
| #include <asm/atomic.h> |
| #include <asm/types.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/mount.h> |
| #include <linux/socket.h> |
| #include <linux/audit.h> |
| #include <linux/personality.h> |
| #include <linux/time.h> |
| #include <linux/kthread.h> |
| #include <linux/netlink.h> |
| #include <linux/compiler.h> |
| #include <asm/unistd.h> |
| |
| /* 0 = no checking |
| 1 = put_count checking |
| 2 = verbose put_count checking |
| */ |
| #define AUDIT_DEBUG 0 |
| |
| /* No syscall auditing will take place unless audit_enabled != 0. */ |
| extern int audit_enabled; |
| |
| /* AUDIT_NAMES is the number of slots we reserve in the audit_context |
| * for saving names from getname(). */ |
| #define AUDIT_NAMES 20 |
| |
| /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the |
| * audit_context from being used for nameless inodes from |
| * path_lookup. */ |
| #define AUDIT_NAMES_RESERVED 7 |
| |
| /* At task start time, the audit_state is set in the audit_context using |
| a per-task filter. At syscall entry, the audit_state is augmented by |
| the syscall filter. */ |
| enum audit_state { |
| AUDIT_DISABLED, /* Do not create per-task audit_context. |
| * No syscall-specific audit records can |
| * be generated. */ |
| AUDIT_SETUP_CONTEXT, /* Create the per-task audit_context, |
| * but don't necessarily fill it in at |
| * syscall entry time (i.e., filter |
| * instead). */ |
| AUDIT_BUILD_CONTEXT, /* Create the per-task audit_context, |
| * and always fill it in at syscall |
| * entry time. This makes a full |
| * syscall record available if some |
| * other part of the kernel decides it |
| * should be recorded. */ |
| AUDIT_RECORD_CONTEXT /* Create the per-task audit_context, |
| * always fill it in at syscall entry |
| * time, and always write out the audit |
| * record at syscall exit time. */ |
| }; |
| |
| /* When fs/namei.c:getname() is called, we store the pointer in name and |
| * we don't let putname() free it (instead we free all of the saved |
| * pointers at syscall exit time). |
| * |
| * Further, in fs/namei.c:path_lookup() we store the inode and device. */ |
| struct audit_names { |
| const char *name; |
| unsigned long ino; |
| dev_t dev; |
| umode_t mode; |
| uid_t uid; |
| gid_t gid; |
| dev_t rdev; |
| unsigned flags; |
| }; |
| |
| struct audit_aux_data { |
| struct audit_aux_data *next; |
| int type; |
| }; |
| |
| #define AUDIT_AUX_IPCPERM 0 |
| |
| struct audit_aux_data_ipcctl { |
| struct audit_aux_data d; |
| struct ipc_perm p; |
| unsigned long qbytes; |
| uid_t uid; |
| gid_t gid; |
| mode_t mode; |
| }; |
| |
| struct audit_aux_data_socketcall { |
| struct audit_aux_data d; |
| int nargs; |
| unsigned long args[0]; |
| }; |
| |
| struct audit_aux_data_sockaddr { |
| struct audit_aux_data d; |
| int len; |
| char a[0]; |
| }; |
| |
| struct audit_aux_data_path { |
| struct audit_aux_data d; |
| struct dentry *dentry; |
| struct vfsmount *mnt; |
| }; |
| |
| /* The per-task audit context. */ |
| struct audit_context { |
| int in_syscall; /* 1 if task is in a syscall */ |
| enum audit_state state; |
| unsigned int serial; /* serial number for record */ |
| struct timespec ctime; /* time of syscall entry */ |
| uid_t loginuid; /* login uid (identity) */ |
| int major; /* syscall number */ |
| unsigned long argv[4]; /* syscall arguments */ |
| int return_valid; /* return code is valid */ |
| long return_code;/* syscall return code */ |
| int auditable; /* 1 if record should be written */ |
| int name_count; |
| struct audit_names names[AUDIT_NAMES]; |
| struct dentry * pwd; |
| struct vfsmount * pwdmnt; |
| struct audit_context *previous; /* For nested syscalls */ |
| struct audit_aux_data *aux; |
| |
| /* Save things to print about task_struct */ |
| pid_t pid; |
| uid_t uid, euid, suid, fsuid; |
| gid_t gid, egid, sgid, fsgid; |
| unsigned long personality; |
| int arch; |
| |
| #if AUDIT_DEBUG |
| int put_count; |
| int ino_count; |
| #endif |
| }; |
| |
| /* Public API */ |
| /* There are three lists of rules -- one to search at task creation |
| * time, one to search at syscall entry time, and another to search at |
| * syscall exit time. */ |
| static struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { |
| LIST_HEAD_INIT(audit_filter_list[0]), |
| LIST_HEAD_INIT(audit_filter_list[1]), |
| LIST_HEAD_INIT(audit_filter_list[2]), |
| LIST_HEAD_INIT(audit_filter_list[3]), |
| LIST_HEAD_INIT(audit_filter_list[4]), |
| #if AUDIT_NR_FILTERS != 5 |
| #error Fix audit_filter_list initialiser |
| #endif |
| }; |
| |
| struct audit_entry { |
| struct list_head list; |
| struct rcu_head rcu; |
| struct audit_rule rule; |
| }; |
| |
| extern int audit_pid; |
| |
| /* Copy rule from user-space to kernel-space. Called from |
| * audit_add_rule during AUDIT_ADD. */ |
| static inline int audit_copy_rule(struct audit_rule *d, struct audit_rule *s) |
| { |
| int i; |
| |
| if (s->action != AUDIT_NEVER |
| && s->action != AUDIT_POSSIBLE |
| && s->action != AUDIT_ALWAYS) |
| return -1; |
| if (s->field_count < 0 || s->field_count > AUDIT_MAX_FIELDS) |
| return -1; |
| if ((s->flags & ~AUDIT_FILTER_PREPEND) >= AUDIT_NR_FILTERS) |
| return -1; |
| |
| d->flags = s->flags; |
| d->action = s->action; |
| d->field_count = s->field_count; |
| for (i = 0; i < d->field_count; i++) { |
| d->fields[i] = s->fields[i]; |
| d->values[i] = s->values[i]; |
| } |
| for (i = 0; i < AUDIT_BITMASK_SIZE; i++) d->mask[i] = s->mask[i]; |
| return 0; |
| } |
| |
| /* Check to see if two rules are identical. It is called from |
| * audit_add_rule during AUDIT_ADD and |
| * audit_del_rule during AUDIT_DEL. */ |
| static inline int audit_compare_rule(struct audit_rule *a, struct audit_rule *b) |
| { |
| int i; |
| |
| if (a->flags != b->flags) |
| return 1; |
| |
| if (a->action != b->action) |
| return 1; |
| |
| if (a->field_count != b->field_count) |
| return 1; |
| |
| for (i = 0; i < a->field_count; i++) { |
| if (a->fields[i] != b->fields[i] |
| || a->values[i] != b->values[i]) |
| return 1; |
| } |
| |
| for (i = 0; i < AUDIT_BITMASK_SIZE; i++) |
| if (a->mask[i] != b->mask[i]) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Note that audit_add_rule and audit_del_rule are called via |
| * audit_receive() in audit.c, and are protected by |
| * audit_netlink_sem. */ |
| static inline int audit_add_rule(struct audit_rule *rule, |
| struct list_head *list) |
| { |
| struct audit_entry *entry; |
| |
| /* Do not use the _rcu iterator here, since this is the only |
| * addition routine. */ |
| list_for_each_entry(entry, list, list) { |
| if (!audit_compare_rule(rule, &entry->rule)) { |
| return -EEXIST; |
| } |
| } |
| |
| if (!(entry = kmalloc(sizeof(*entry), GFP_KERNEL))) |
| return -ENOMEM; |
| if (audit_copy_rule(&entry->rule, rule)) { |
| kfree(entry); |
| return -EINVAL; |
| } |
| |
| if (entry->rule.flags & AUDIT_FILTER_PREPEND) { |
| entry->rule.flags &= ~AUDIT_FILTER_PREPEND; |
| list_add_rcu(&entry->list, list); |
| } else { |
| list_add_tail_rcu(&entry->list, list); |
| } |
| |
| return 0; |
| } |
| |
| static inline void audit_free_rule(struct rcu_head *head) |
| { |
| struct audit_entry *e = container_of(head, struct audit_entry, rcu); |
| kfree(e); |
| } |
| |
| /* Note that audit_add_rule and audit_del_rule are called via |
| * audit_receive() in audit.c, and are protected by |
| * audit_netlink_sem. */ |
| static inline int audit_del_rule(struct audit_rule *rule, |
| struct list_head *list) |
| { |
| struct audit_entry *e; |
| |
| /* Do not use the _rcu iterator here, since this is the only |
| * deletion routine. */ |
| list_for_each_entry(e, list, list) { |
| if (!audit_compare_rule(rule, &e->rule)) { |
| list_del_rcu(&e->list); |
| call_rcu(&e->rcu, audit_free_rule); |
| return 0; |
| } |
| } |
| return -ENOENT; /* No matching rule */ |
| } |
| |
| static int audit_list_rules(void *_dest) |
| { |
| int pid, seq; |
| int *dest = _dest; |
| struct audit_entry *entry; |
| int i; |
| |
| pid = dest[0]; |
| seq = dest[1]; |
| kfree(dest); |
| |
| down(&audit_netlink_sem); |
| |
| /* The *_rcu iterators not needed here because we are |
| always called with audit_netlink_sem held. */ |
| for (i=0; i<AUDIT_NR_FILTERS; i++) { |
| list_for_each_entry(entry, &audit_filter_list[i], list) |
| audit_send_reply(pid, seq, AUDIT_LIST, 0, 1, |
| &entry->rule, sizeof(entry->rule)); |
| } |
| audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0); |
| |
| up(&audit_netlink_sem); |
| return 0; |
| } |
| |
| int audit_receive_filter(int type, int pid, int uid, int seq, void *data, |
| uid_t loginuid) |
| { |
| struct task_struct *tsk; |
| int *dest; |
| int err = 0; |
| unsigned listnr; |
| |
| switch (type) { |
| case AUDIT_LIST: |
| /* We can't just spew out the rules here because we might fill |
| * the available socket buffer space and deadlock waiting for |
| * auditctl to read from it... which isn't ever going to |
| * happen if we're actually running in the context of auditctl |
| * trying to _send_ the stuff */ |
| |
| dest = kmalloc(2 * sizeof(int), GFP_KERNEL); |
| if (!dest) |
| return -ENOMEM; |
| dest[0] = pid; |
| dest[1] = seq; |
| |
| tsk = kthread_run(audit_list_rules, dest, "audit_list_rules"); |
| if (IS_ERR(tsk)) { |
| kfree(dest); |
| err = PTR_ERR(tsk); |
| } |
| break; |
| case AUDIT_ADD: |
| listnr =((struct audit_rule *)data)->flags & ~AUDIT_FILTER_PREPEND; |
| if (listnr >= AUDIT_NR_FILTERS) |
| return -EINVAL; |
| |
| err = audit_add_rule(data, &audit_filter_list[listnr]); |
| if (!err) |
| audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, |
| "auid=%u added an audit rule\n", loginuid); |
| break; |
| case AUDIT_DEL: |
| listnr =((struct audit_rule *)data)->flags & ~AUDIT_FILTER_PREPEND; |
| if (listnr >= AUDIT_NR_FILTERS) |
| return -EINVAL; |
| |
| err = audit_del_rule(data, &audit_filter_list[listnr]); |
| if (!err) |
| audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, |
| "auid=%u removed an audit rule\n", loginuid); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| /* Compare a task_struct with an audit_rule. Return 1 on match, 0 |
| * otherwise. */ |
| static int audit_filter_rules(struct task_struct *tsk, |
| struct audit_rule *rule, |
| struct audit_context *ctx, |
| enum audit_state *state) |
| { |
| int i, j; |
| |
| for (i = 0; i < rule->field_count; i++) { |
| u32 field = rule->fields[i] & ~AUDIT_NEGATE; |
| u32 value = rule->values[i]; |
| int result = 0; |
| |
| switch (field) { |
| case AUDIT_PID: |
| result = (tsk->pid == value); |
| break; |
| case AUDIT_UID: |
| result = (tsk->uid == value); |
| break; |
| case AUDIT_EUID: |
| result = (tsk->euid == value); |
| break; |
| case AUDIT_SUID: |
| result = (tsk->suid == value); |
| break; |
| case AUDIT_FSUID: |
| result = (tsk->fsuid == value); |
| break; |
| case AUDIT_GID: |
| result = (tsk->gid == value); |
| break; |
| case AUDIT_EGID: |
| result = (tsk->egid == value); |
| break; |
| case AUDIT_SGID: |
| result = (tsk->sgid == value); |
| break; |
| case AUDIT_FSGID: |
| result = (tsk->fsgid == value); |
| break; |
| case AUDIT_PERS: |
| result = (tsk->personality == value); |
| break; |
| case AUDIT_ARCH: |
| if (ctx) |
| result = (ctx->arch == value); |
| break; |
| |
| case AUDIT_EXIT: |
| if (ctx && ctx->return_valid) |
| result = (ctx->return_code == value); |
| break; |
| case AUDIT_SUCCESS: |
| if (ctx && ctx->return_valid) { |
| if (value) |
| result = (ctx->return_valid == AUDITSC_SUCCESS); |
| else |
| result = (ctx->return_valid == AUDITSC_FAILURE); |
| } |
| break; |
| case AUDIT_DEVMAJOR: |
| if (ctx) { |
| for (j = 0; j < ctx->name_count; j++) { |
| if (MAJOR(ctx->names[j].dev)==value) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_DEVMINOR: |
| if (ctx) { |
| for (j = 0; j < ctx->name_count; j++) { |
| if (MINOR(ctx->names[j].dev)==value) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_INODE: |
| if (ctx) { |
| for (j = 0; j < ctx->name_count; j++) { |
| if (ctx->names[j].ino == value) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_LOGINUID: |
| result = 0; |
| if (ctx) |
| result = (ctx->loginuid == value); |
| break; |
| case AUDIT_ARG0: |
| case AUDIT_ARG1: |
| case AUDIT_ARG2: |
| case AUDIT_ARG3: |
| if (ctx) |
| result = (ctx->argv[field-AUDIT_ARG0]==value); |
| break; |
| } |
| |
| if (rule->fields[i] & AUDIT_NEGATE) |
| result = !result; |
| if (!result) |
| return 0; |
| } |
| switch (rule->action) { |
| case AUDIT_NEVER: *state = AUDIT_DISABLED; break; |
| case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT; break; |
| case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; |
| } |
| return 1; |
| } |
| |
| /* At process creation time, we can determine if system-call auditing is |
| * completely disabled for this task. Since we only have the task |
| * structure at this point, we can only check uid and gid. |
| */ |
| static enum audit_state audit_filter_task(struct task_struct *tsk) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { |
| if (audit_filter_rules(tsk, &e->rule, NULL, &state)) { |
| rcu_read_unlock(); |
| return state; |
| } |
| } |
| rcu_read_unlock(); |
| return AUDIT_BUILD_CONTEXT; |
| } |
| |
| /* At syscall entry and exit time, this filter is called if the |
| * audit_state is not low enough that auditing cannot take place, but is |
| * also not high enough that we already know we have to write an audit |
| * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). |
| */ |
| static enum audit_state audit_filter_syscall(struct task_struct *tsk, |
| struct audit_context *ctx, |
| struct list_head *list) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| if (audit_pid && tsk->tgid == audit_pid) |
| return AUDIT_DISABLED; |
| |
| rcu_read_lock(); |
| if (!list_empty(list)) { |
| int word = AUDIT_WORD(ctx->major); |
| int bit = AUDIT_BIT(ctx->major); |
| |
| list_for_each_entry_rcu(e, list, list) { |
| if ((e->rule.mask[word] & bit) == bit |
| && audit_filter_rules(tsk, &e->rule, ctx, &state)) { |
| rcu_read_unlock(); |
| return state; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| return AUDIT_BUILD_CONTEXT; |
| } |
| |
| static int audit_filter_user_rules(struct netlink_skb_parms *cb, |
| struct audit_rule *rule, |
| enum audit_state *state) |
| { |
| int i; |
| |
| for (i = 0; i < rule->field_count; i++) { |
| u32 field = rule->fields[i] & ~AUDIT_NEGATE; |
| u32 value = rule->values[i]; |
| int result = 0; |
| |
| switch (field) { |
| case AUDIT_PID: |
| result = (cb->creds.pid == value); |
| break; |
| case AUDIT_UID: |
| result = (cb->creds.uid == value); |
| break; |
| case AUDIT_GID: |
| result = (cb->creds.gid == value); |
| break; |
| case AUDIT_LOGINUID: |
| result = (cb->loginuid == value); |
| break; |
| } |
| |
| if (rule->fields[i] & AUDIT_NEGATE) |
| result = !result; |
| if (!result) |
| return 0; |
| } |
| switch (rule->action) { |
| case AUDIT_NEVER: *state = AUDIT_DISABLED; break; |
| case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT; break; |
| case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; |
| } |
| return 1; |
| } |
| |
| int audit_filter_user(struct netlink_skb_parms *cb, int type) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| int ret = 1; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { |
| if (audit_filter_user_rules(cb, &e->rule, &state)) { |
| if (state == AUDIT_DISABLED) |
| ret = 0; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return ret; /* Audit by default */ |
| } |
| |
| /* This should be called with task_lock() held. */ |
| static inline struct audit_context *audit_get_context(struct task_struct *tsk, |
| int return_valid, |
| int return_code) |
| { |
| struct audit_context *context = tsk->audit_context; |
| |
| if (likely(!context)) |
| return NULL; |
| context->return_valid = return_valid; |
| context->return_code = return_code; |
| |
| if (context->in_syscall && !context->auditable) { |
| enum audit_state state; |
| state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); |
| if (state == AUDIT_RECORD_CONTEXT) |
| context->auditable = 1; |
| } |
| |
| context->pid = tsk->pid; |
| context->uid = tsk->uid; |
| context->gid = tsk->gid; |
| context->euid = tsk->euid; |
| context->suid = tsk->suid; |
| context->fsuid = tsk->fsuid; |
| context->egid = tsk->egid; |
| context->sgid = tsk->sgid; |
| context->fsgid = tsk->fsgid; |
| context->personality = tsk->personality; |
| tsk->audit_context = NULL; |
| return context; |
| } |
| |
| static inline void audit_free_names(struct audit_context *context) |
| { |
| int i; |
| |
| #if AUDIT_DEBUG == 2 |
| if (context->auditable |
| ||context->put_count + context->ino_count != context->name_count) { |
| printk(KERN_ERR "audit.c:%d(:%d): major=%d in_syscall=%d" |
| " name_count=%d put_count=%d" |
| " ino_count=%d [NOT freeing]\n", |
| __LINE__, |
| context->serial, context->major, context->in_syscall, |
| context->name_count, context->put_count, |
| context->ino_count); |
| for (i = 0; i < context->name_count; i++) |
| printk(KERN_ERR "names[%d] = %p = %s\n", i, |
| context->names[i].name, |
| context->names[i].name); |
| dump_stack(); |
| return; |
| } |
| #endif |
| #if AUDIT_DEBUG |
| context->put_count = 0; |
| context->ino_count = 0; |
| #endif |
| |
| for (i = 0; i < context->name_count; i++) |
| if (context->names[i].name) |
| __putname(context->names[i].name); |
| context->name_count = 0; |
| if (context->pwd) |
| dput(context->pwd); |
| if (context->pwdmnt) |
| mntput(context->pwdmnt); |
| context->pwd = NULL; |
| context->pwdmnt = NULL; |
| } |
| |
| static inline void audit_free_aux(struct audit_context *context) |
| { |
| struct audit_aux_data *aux; |
| |
| while ((aux = context->aux)) { |
| if (aux->type == AUDIT_AVC_PATH) { |
| struct audit_aux_data_path *axi = (void *)aux; |
| dput(axi->dentry); |
| mntput(axi->mnt); |
| } |
| context->aux = aux->next; |
| kfree(aux); |
| } |
| } |
| |
| static inline void audit_zero_context(struct audit_context *context, |
| enum audit_state state) |
| { |
| uid_t loginuid = context->loginuid; |
| |
| memset(context, 0, sizeof(*context)); |
| context->state = state; |
| context->loginuid = loginuid; |
| } |
| |
| static inline struct audit_context *audit_alloc_context(enum audit_state state) |
| { |
| struct audit_context *context; |
| |
| if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) |
| return NULL; |
| audit_zero_context(context, state); |
| return context; |
| } |
| |
| /* Filter on the task information and allocate a per-task audit context |
| * if necessary. Doing so turns on system call auditing for the |
| * specified task. This is called from copy_process, so no lock is |
| * needed. */ |
| int audit_alloc(struct task_struct *tsk) |
| { |
| struct audit_context *context; |
| enum audit_state state; |
| |
| if (likely(!audit_enabled)) |
| return 0; /* Return if not auditing. */ |
| |
| state = audit_filter_task(tsk); |
| if (likely(state == AUDIT_DISABLED)) |
| return 0; |
| |
| if (!(context = audit_alloc_context(state))) { |
| audit_log_lost("out of memory in audit_alloc"); |
| return -ENOMEM; |
| } |
| |
| /* Preserve login uid */ |
| context->loginuid = -1; |
| if (current->audit_context) |
| context->loginuid = current->audit_context->loginuid; |
| |
| tsk->audit_context = context; |
| set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); |
| return 0; |
| } |
| |
| static inline void audit_free_context(struct audit_context *context) |
| { |
| struct audit_context *previous; |
| int count = 0; |
| |
| do { |
| previous = context->previous; |
| if (previous || (count && count < 10)) { |
| ++count; |
| printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" |
| " freeing multiple contexts (%d)\n", |
| context->serial, context->major, |
| context->name_count, count); |
| } |
| audit_free_names(context); |
| audit_free_aux(context); |
| kfree(context); |
| context = previous; |
| } while (context); |
| if (count >= 10) |
| printk(KERN_ERR "audit: freed %d contexts\n", count); |
| } |
| |
| static void audit_log_task_info(struct audit_buffer *ab) |
| { |
| char name[sizeof(current->comm)]; |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| |
| get_task_comm(name, current); |
| audit_log_format(ab, " comm="); |
| audit_log_untrustedstring(ab, name); |
| |
| if (!mm) |
| return; |
| |
| down_read(&mm->mmap_sem); |
| vma = mm->mmap; |
| while (vma) { |
| if ((vma->vm_flags & VM_EXECUTABLE) && |
| vma->vm_file) { |
| audit_log_d_path(ab, "exe=", |
| vma->vm_file->f_dentry, |
| vma->vm_file->f_vfsmnt); |
| break; |
| } |
| vma = vma->vm_next; |
| } |
| up_read(&mm->mmap_sem); |
| } |
| |
| static void audit_log_exit(struct audit_context *context, unsigned int gfp_mask) |
| { |
| int i; |
| struct audit_buffer *ab; |
| struct audit_aux_data *aux; |
| |
| ab = audit_log_start(context, gfp_mask, AUDIT_SYSCALL); |
| if (!ab) |
| return; /* audit_panic has been called */ |
| audit_log_format(ab, "arch=%x syscall=%d", |
| context->arch, context->major); |
| if (context->personality != PER_LINUX) |
| audit_log_format(ab, " per=%lx", context->personality); |
| if (context->return_valid) |
| audit_log_format(ab, " success=%s exit=%ld", |
| (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", |
| context->return_code); |
| audit_log_format(ab, |
| " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" |
| " pid=%d auid=%u uid=%u gid=%u" |
| " euid=%u suid=%u fsuid=%u" |
| " egid=%u sgid=%u fsgid=%u", |
| context->argv[0], |
| context->argv[1], |
| context->argv[2], |
| context->argv[3], |
| context->name_count, |
| context->pid, |
| context->loginuid, |
| context->uid, |
| context->gid, |
| context->euid, context->suid, context->fsuid, |
| context->egid, context->sgid, context->fsgid); |
| audit_log_task_info(ab); |
| audit_log_end(ab); |
| |
| for (aux = context->aux; aux; aux = aux->next) { |
| |
| ab = audit_log_start(context, GFP_KERNEL, aux->type); |
| if (!ab) |
| continue; /* audit_panic has been called */ |
| |
| switch (aux->type) { |
| case AUDIT_IPC: { |
| struct audit_aux_data_ipcctl *axi = (void *)aux; |
| audit_log_format(ab, |
| " qbytes=%lx iuid=%u igid=%u mode=%x", |
| axi->qbytes, axi->uid, axi->gid, axi->mode); |
| break; } |
| |
| case AUDIT_SOCKETCALL: { |
| int i; |
| struct audit_aux_data_socketcall *axs = (void *)aux; |
| audit_log_format(ab, "nargs=%d", axs->nargs); |
| for (i=0; i<axs->nargs; i++) |
| audit_log_format(ab, " a%d=%lx", i, axs->args[i]); |
| break; } |
| |
| case AUDIT_SOCKADDR: { |
| struct audit_aux_data_sockaddr *axs = (void *)aux; |
| |
| audit_log_format(ab, "saddr="); |
| audit_log_hex(ab, axs->a, axs->len); |
| break; } |
| |
| case AUDIT_AVC_PATH: { |
| struct audit_aux_data_path *axi = (void *)aux; |
| audit_log_d_path(ab, "path=", axi->dentry, axi->mnt); |
| break; } |
| |
| } |
| audit_log_end(ab); |
| } |
| |
| if (context->pwd && context->pwdmnt) { |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); |
| if (ab) { |
| audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt); |
| audit_log_end(ab); |
| } |
| } |
| for (i = 0; i < context->name_count; i++) { |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); |
| if (!ab) |
| continue; /* audit_panic has been called */ |
| |
| audit_log_format(ab, "item=%d", i); |
| if (context->names[i].name) { |
| audit_log_format(ab, " name="); |
| audit_log_untrustedstring(ab, context->names[i].name); |
| } |
| audit_log_format(ab, " flags=%x\n", context->names[i].flags); |
| |
| if (context->names[i].ino != (unsigned long)-1) |
| audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#o" |
| " ouid=%u ogid=%u rdev=%02x:%02x", |
| context->names[i].ino, |
| MAJOR(context->names[i].dev), |
| MINOR(context->names[i].dev), |
| context->names[i].mode, |
| context->names[i].uid, |
| context->names[i].gid, |
| MAJOR(context->names[i].rdev), |
| MINOR(context->names[i].rdev)); |
| audit_log_end(ab); |
| } |
| } |
| |
| /* Free a per-task audit context. Called from copy_process and |
| * __put_task_struct. */ |
| void audit_free(struct task_struct *tsk) |
| { |
| struct audit_context *context; |
| |
| task_lock(tsk); |
| context = audit_get_context(tsk, 0, 0); |
| task_unlock(tsk); |
| |
| if (likely(!context)) |
| return; |
| |
| /* Check for system calls that do not go through the exit |
| * function (e.g., exit_group), then free context block. |
| * We use GFP_ATOMIC here because we might be doing this |
| * in the context of the idle thread */ |
| if (context->in_syscall && context->auditable) |
| audit_log_exit(context, GFP_ATOMIC); |
| |
| audit_free_context(context); |
| } |
| |
| /* Fill in audit context at syscall entry. This only happens if the |
| * audit context was created when the task was created and the state or |
| * filters demand the audit context be built. If the state from the |
| * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, |
| * then the record will be written at syscall exit time (otherwise, it |
| * will only be written if another part of the kernel requests that it |
| * be written). */ |
| void audit_syscall_entry(struct task_struct *tsk, int arch, int major, |
| unsigned long a1, unsigned long a2, |
| unsigned long a3, unsigned long a4) |
| { |
| struct audit_context *context = tsk->audit_context; |
| enum audit_state state; |
| |
| BUG_ON(!context); |
| |
| /* This happens only on certain architectures that make system |
| * calls in kernel_thread via the entry.S interface, instead of |
| * with direct calls. (If you are porting to a new |
| * architecture, hitting this condition can indicate that you |
| * got the _exit/_leave calls backward in entry.S.) |
| * |
| * i386 no |
| * x86_64 no |
| * ppc64 yes (see arch/ppc64/kernel/misc.S) |
| * |
| * This also happens with vm86 emulation in a non-nested manner |
| * (entries without exits), so this case must be caught. |
| */ |
| if (context->in_syscall) { |
| struct audit_context *newctx; |
| |
| #if defined(__NR_vm86) && defined(__NR_vm86old) |
| /* vm86 mode should only be entered once */ |
| if (major == __NR_vm86 || major == __NR_vm86old) |
| return; |
| #endif |
| #if AUDIT_DEBUG |
| printk(KERN_ERR |
| "audit(:%d) pid=%d in syscall=%d;" |
| " entering syscall=%d\n", |
| context->serial, tsk->pid, context->major, major); |
| #endif |
| newctx = audit_alloc_context(context->state); |
| if (newctx) { |
| newctx->previous = context; |
| context = newctx; |
| tsk->audit_context = newctx; |
| } else { |
| /* If we can't alloc a new context, the best we |
| * can do is to leak memory (any pending putname |
| * will be lost). The only other alternative is |
| * to abandon auditing. */ |
| audit_zero_context(context, context->state); |
| } |
| } |
| BUG_ON(context->in_syscall || context->name_count); |
| |
| if (!audit_enabled) |
| return; |
| |
| context->arch = arch; |
| context->major = major; |
| context->argv[0] = a1; |
| context->argv[1] = a2; |
| context->argv[2] = a3; |
| context->argv[3] = a4; |
| |
| state = context->state; |
| if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT) |
| state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); |
| if (likely(state == AUDIT_DISABLED)) |
| return; |
| |
| context->serial = 0; |
| context->ctime = CURRENT_TIME; |
| context->in_syscall = 1; |
| context->auditable = !!(state == AUDIT_RECORD_CONTEXT); |
| } |
| |
| /* Tear down after system call. If the audit context has been marked as |
| * auditable (either because of the AUDIT_RECORD_CONTEXT state from |
| * filtering, or because some other part of the kernel write an audit |
| * message), then write out the syscall information. In call cases, |
| * free the names stored from getname(). */ |
| void audit_syscall_exit(struct task_struct *tsk, int valid, long return_code) |
| { |
| struct audit_context *context; |
| |
| get_task_struct(tsk); |
| task_lock(tsk); |
| context = audit_get_context(tsk, valid, return_code); |
| task_unlock(tsk); |
| |
| /* Not having a context here is ok, since the parent may have |
| * called __put_task_struct. */ |
| if (likely(!context)) |
| goto out; |
| |
| if (context->in_syscall && context->auditable) |
| audit_log_exit(context, GFP_KERNEL); |
| |
| context->in_syscall = 0; |
| context->auditable = 0; |
| |
| if (context->previous) { |
| struct audit_context *new_context = context->previous; |
| context->previous = NULL; |
| audit_free_context(context); |
| tsk->audit_context = new_context; |
| } else { |
| audit_free_names(context); |
| audit_free_aux(context); |
| tsk->audit_context = context; |
| } |
| out: |
| put_task_struct(tsk); |
| } |
| |
| /* Add a name to the list. Called from fs/namei.c:getname(). */ |
| void audit_getname(const char *name) |
| { |
| struct audit_context *context = current->audit_context; |
| |
| if (!context || IS_ERR(name) || !name) |
| return; |
| |
| if (!context->in_syscall) { |
| #if AUDIT_DEBUG == 2 |
| printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", |
| __FILE__, __LINE__, context->serial, name); |
| dump_stack(); |
| #endif |
| return; |
| } |
| BUG_ON(context->name_count >= AUDIT_NAMES); |
| context->names[context->name_count].name = name; |
| context->names[context->name_count].ino = (unsigned long)-1; |
| ++context->name_count; |
| if (!context->pwd) { |
| read_lock(¤t->fs->lock); |
| context->pwd = dget(current->fs->pwd); |
| context->pwdmnt = mntget(current->fs->pwdmnt); |
| read_unlock(¤t->fs->lock); |
| } |
| |
| } |
| |
| /* Intercept a putname request. Called from |
| * include/linux/fs.h:putname(). If we have stored the name from |
| * getname in the audit context, then we delay the putname until syscall |
| * exit. */ |
| void audit_putname(const char *name) |
| { |
| struct audit_context *context = current->audit_context; |
| |
| BUG_ON(!context); |
| if (!context->in_syscall) { |
| #if AUDIT_DEBUG == 2 |
| printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", |
| __FILE__, __LINE__, context->serial, name); |
| if (context->name_count) { |
| int i; |
| for (i = 0; i < context->name_count; i++) |
| printk(KERN_ERR "name[%d] = %p = %s\n", i, |
| context->names[i].name, |
| context->names[i].name); |
| } |
| #endif |
| __putname(name); |
| } |
| #if AUDIT_DEBUG |
| else { |
| ++context->put_count; |
| if (context->put_count > context->name_count) { |
| printk(KERN_ERR "%s:%d(:%d): major=%d" |
| " in_syscall=%d putname(%p) name_count=%d" |
| " put_count=%d\n", |
| __FILE__, __LINE__, |
| context->serial, context->major, |
| context->in_syscall, name, context->name_count, |
| context->put_count); |
| dump_stack(); |
| } |
| } |
| #endif |
| } |
| |
| /* Store the inode and device from a lookup. Called from |
| * fs/namei.c:path_lookup(). */ |
| void audit_inode(const char *name, const struct inode *inode, unsigned flags) |
| { |
| int idx; |
| struct audit_context *context = current->audit_context; |
| |
| if (!context->in_syscall) |
| return; |
| if (context->name_count |
| && context->names[context->name_count-1].name |
| && context->names[context->name_count-1].name == name) |
| idx = context->name_count - 1; |
| else if (context->name_count > 1 |
| && context->names[context->name_count-2].name |
| && context->names[context->name_count-2].name == name) |
| idx = context->name_count - 2; |
| else { |
| /* FIXME: how much do we care about inodes that have no |
| * associated name? */ |
| if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED) |
| return; |
| idx = context->name_count++; |
| context->names[idx].name = NULL; |
| #if AUDIT_DEBUG |
| ++context->ino_count; |
| #endif |
| } |
| context->names[idx].flags = flags; |
| context->names[idx].ino = inode->i_ino; |
| context->names[idx].dev = inode->i_sb->s_dev; |
| context->names[idx].mode = inode->i_mode; |
| context->names[idx].uid = inode->i_uid; |
| context->names[idx].gid = inode->i_gid; |
| context->names[idx].rdev = inode->i_rdev; |
| } |
| |
| void auditsc_get_stamp(struct audit_context *ctx, |
| struct timespec *t, unsigned int *serial) |
| { |
| if (!ctx->serial) |
| ctx->serial = audit_serial(); |
| t->tv_sec = ctx->ctime.tv_sec; |
| t->tv_nsec = ctx->ctime.tv_nsec; |
| *serial = ctx->serial; |
| ctx->auditable = 1; |
| } |
| |
| int audit_set_loginuid(struct task_struct *task, uid_t loginuid) |
| { |
| if (task->audit_context) { |
| struct audit_buffer *ab; |
| |
| ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); |
| if (ab) { |
| audit_log_format(ab, "login pid=%d uid=%u " |
| "old auid=%u new auid=%u", |
| task->pid, task->uid, |
| task->audit_context->loginuid, loginuid); |
| audit_log_end(ab); |
| } |
| task->audit_context->loginuid = loginuid; |
| } |
| return 0; |
| } |
| |
| uid_t audit_get_loginuid(struct audit_context *ctx) |
| { |
| return ctx ? ctx->loginuid : -1; |
| } |
| |
| int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) |
| { |
| struct audit_aux_data_ipcctl *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_KERNEL); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->qbytes = qbytes; |
| ax->uid = uid; |
| ax->gid = gid; |
| ax->mode = mode; |
| |
| ax->d.type = AUDIT_IPC; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| int audit_socketcall(int nargs, unsigned long *args) |
| { |
| struct audit_aux_data_socketcall *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->nargs = nargs; |
| memcpy(ax->args, args, nargs * sizeof(unsigned long)); |
| |
| ax->d.type = AUDIT_SOCKETCALL; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| int audit_sockaddr(int len, void *a) |
| { |
| struct audit_aux_data_sockaddr *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->len = len; |
| memcpy(ax->a, a, len); |
| |
| ax->d.type = AUDIT_SOCKADDR; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt) |
| { |
| struct audit_aux_data_path *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->dentry = dget(dentry); |
| ax->mnt = mntget(mnt); |
| |
| ax->d.type = AUDIT_AVC_PATH; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| void audit_signal_info(int sig, struct task_struct *t) |
| { |
| extern pid_t audit_sig_pid; |
| extern uid_t audit_sig_uid; |
| |
| if (unlikely(audit_pid && t->tgid == audit_pid)) { |
| if (sig == SIGTERM || sig == SIGHUP) { |
| struct audit_context *ctx = current->audit_context; |
| audit_sig_pid = current->pid; |
| if (ctx) |
| audit_sig_uid = ctx->loginuid; |
| else |
| audit_sig_uid = current->uid; |
| } |
| } |
| } |
| |