| /* smp.c: Sparc64 SMP support. |
| * |
| * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/threads.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/cache.h> |
| #include <linux/jiffies.h> |
| #include <linux/profile.h> |
| #include <linux/bootmem.h> |
| |
| #include <asm/head.h> |
| #include <asm/ptrace.h> |
| #include <asm/atomic.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cpudata.h> |
| |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/oplib.h> |
| #include <asm/uaccess.h> |
| #include <asm/timer.h> |
| #include <asm/starfire.h> |
| #include <asm/tlb.h> |
| |
| extern int linux_num_cpus; |
| extern void calibrate_delay(void); |
| |
| /* Please don't make this stuff initdata!!! --DaveM */ |
| static unsigned char boot_cpu_id; |
| |
| cpumask_t cpu_online_map = CPU_MASK_NONE; |
| cpumask_t phys_cpu_present_map = CPU_MASK_NONE; |
| static cpumask_t smp_commenced_mask; |
| static cpumask_t cpu_callout_map; |
| |
| void smp_info(struct seq_file *m) |
| { |
| int i; |
| |
| seq_printf(m, "State:\n"); |
| for (i = 0; i < NR_CPUS; i++) { |
| if (cpu_online(i)) |
| seq_printf(m, |
| "CPU%d:\t\tonline\n", i); |
| } |
| } |
| |
| void smp_bogo(struct seq_file *m) |
| { |
| int i; |
| |
| for (i = 0; i < NR_CPUS; i++) |
| if (cpu_online(i)) |
| seq_printf(m, |
| "Cpu%dBogo\t: %lu.%02lu\n" |
| "Cpu%dClkTck\t: %016lx\n", |
| i, cpu_data(i).udelay_val / (500000/HZ), |
| (cpu_data(i).udelay_val / (5000/HZ)) % 100, |
| i, cpu_data(i).clock_tick); |
| } |
| |
| void __init smp_store_cpu_info(int id) |
| { |
| int cpu_node; |
| |
| /* multiplier and counter set by |
| smp_setup_percpu_timer() */ |
| cpu_data(id).udelay_val = loops_per_jiffy; |
| |
| cpu_find_by_mid(id, &cpu_node); |
| cpu_data(id).clock_tick = prom_getintdefault(cpu_node, |
| "clock-frequency", 0); |
| |
| cpu_data(id).pgcache_size = 0; |
| cpu_data(id).pte_cache[0] = NULL; |
| cpu_data(id).pte_cache[1] = NULL; |
| cpu_data(id).pgd_cache = NULL; |
| cpu_data(id).idle_volume = 1; |
| } |
| |
| static void smp_setup_percpu_timer(void); |
| |
| static volatile unsigned long callin_flag = 0; |
| |
| extern void inherit_locked_prom_mappings(int save_p); |
| |
| static inline void cpu_setup_percpu_base(unsigned long cpu_id) |
| { |
| __asm__ __volatile__("mov %0, %%g5\n\t" |
| "stxa %0, [%1] %2\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (__per_cpu_offset(cpu_id)), |
| "r" (TSB_REG), "i" (ASI_IMMU)); |
| } |
| |
| void __init smp_callin(void) |
| { |
| int cpuid = hard_smp_processor_id(); |
| |
| inherit_locked_prom_mappings(0); |
| |
| __flush_tlb_all(); |
| |
| cpu_setup_percpu_base(cpuid); |
| |
| smp_setup_percpu_timer(); |
| |
| local_irq_enable(); |
| |
| calibrate_delay(); |
| smp_store_cpu_info(cpuid); |
| callin_flag = 1; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "flush %%g6" : : : "memory"); |
| |
| /* Clear this or we will die instantly when we |
| * schedule back to this idler... |
| */ |
| clear_thread_flag(TIF_NEWCHILD); |
| |
| /* Attach to the address space of init_task. */ |
| atomic_inc(&init_mm.mm_count); |
| current->active_mm = &init_mm; |
| |
| while (!cpu_isset(cpuid, smp_commenced_mask)) |
| membar("#LoadLoad"); |
| |
| cpu_set(cpuid, cpu_online_map); |
| } |
| |
| void cpu_panic(void) |
| { |
| printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); |
| panic("SMP bolixed\n"); |
| } |
| |
| static unsigned long current_tick_offset; |
| |
| /* This tick register synchronization scheme is taken entirely from |
| * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. |
| * |
| * The only change I've made is to rework it so that the master |
| * initiates the synchonization instead of the slave. -DaveM |
| */ |
| |
| #define MASTER 0 |
| #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) |
| |
| #define NUM_ROUNDS 64 /* magic value */ |
| #define NUM_ITERS 5 /* likewise */ |
| |
| static DEFINE_SPINLOCK(itc_sync_lock); |
| static unsigned long go[SLAVE + 1]; |
| |
| #define DEBUG_TICK_SYNC 0 |
| |
| static inline long get_delta (long *rt, long *master) |
| { |
| unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; |
| unsigned long tcenter, t0, t1, tm; |
| unsigned long i; |
| |
| for (i = 0; i < NUM_ITERS; i++) { |
| t0 = tick_ops->get_tick(); |
| go[MASTER] = 1; |
| membar("#StoreLoad"); |
| while (!(tm = go[SLAVE])) |
| membar("#LoadLoad"); |
| go[SLAVE] = 0; |
| membar("#StoreStore"); |
| t1 = tick_ops->get_tick(); |
| |
| if (t1 - t0 < best_t1 - best_t0) |
| best_t0 = t0, best_t1 = t1, best_tm = tm; |
| } |
| |
| *rt = best_t1 - best_t0; |
| *master = best_tm - best_t0; |
| |
| /* average best_t0 and best_t1 without overflow: */ |
| tcenter = (best_t0/2 + best_t1/2); |
| if (best_t0 % 2 + best_t1 % 2 == 2) |
| tcenter++; |
| return tcenter - best_tm; |
| } |
| |
| void smp_synchronize_tick_client(void) |
| { |
| long i, delta, adj, adjust_latency = 0, done = 0; |
| unsigned long flags, rt, master_time_stamp, bound; |
| #if DEBUG_TICK_SYNC |
| struct { |
| long rt; /* roundtrip time */ |
| long master; /* master's timestamp */ |
| long diff; /* difference between midpoint and master's timestamp */ |
| long lat; /* estimate of itc adjustment latency */ |
| } t[NUM_ROUNDS]; |
| #endif |
| |
| go[MASTER] = 1; |
| |
| while (go[MASTER]) |
| membar("#LoadLoad"); |
| |
| local_irq_save(flags); |
| { |
| for (i = 0; i < NUM_ROUNDS; i++) { |
| delta = get_delta(&rt, &master_time_stamp); |
| if (delta == 0) { |
| done = 1; /* let's lock on to this... */ |
| bound = rt; |
| } |
| |
| if (!done) { |
| if (i > 0) { |
| adjust_latency += -delta; |
| adj = -delta + adjust_latency/4; |
| } else |
| adj = -delta; |
| |
| tick_ops->add_tick(adj, current_tick_offset); |
| } |
| #if DEBUG_TICK_SYNC |
| t[i].rt = rt; |
| t[i].master = master_time_stamp; |
| t[i].diff = delta; |
| t[i].lat = adjust_latency/4; |
| #endif |
| } |
| } |
| local_irq_restore(flags); |
| |
| #if DEBUG_TICK_SYNC |
| for (i = 0; i < NUM_ROUNDS; i++) |
| printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", |
| t[i].rt, t[i].master, t[i].diff, t[i].lat); |
| #endif |
| |
| printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles," |
| "maxerr %lu cycles)\n", smp_processor_id(), delta, rt); |
| } |
| |
| static void smp_start_sync_tick_client(int cpu); |
| |
| static void smp_synchronize_one_tick(int cpu) |
| { |
| unsigned long flags, i; |
| |
| go[MASTER] = 0; |
| |
| smp_start_sync_tick_client(cpu); |
| |
| /* wait for client to be ready */ |
| while (!go[MASTER]) |
| membar("#LoadLoad"); |
| |
| /* now let the client proceed into his loop */ |
| go[MASTER] = 0; |
| membar("#StoreLoad"); |
| |
| spin_lock_irqsave(&itc_sync_lock, flags); |
| { |
| for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { |
| while (!go[MASTER]) |
| membar("#LoadLoad"); |
| go[MASTER] = 0; |
| membar("#StoreStore"); |
| go[SLAVE] = tick_ops->get_tick(); |
| membar("#StoreLoad"); |
| } |
| } |
| spin_unlock_irqrestore(&itc_sync_lock, flags); |
| } |
| |
| extern unsigned long sparc64_cpu_startup; |
| |
| /* The OBP cpu startup callback truncates the 3rd arg cookie to |
| * 32-bits (I think) so to be safe we have it read the pointer |
| * contained here so we work on >4GB machines. -DaveM |
| */ |
| static struct thread_info *cpu_new_thread = NULL; |
| |
| static int __devinit smp_boot_one_cpu(unsigned int cpu) |
| { |
| unsigned long entry = |
| (unsigned long)(&sparc64_cpu_startup); |
| unsigned long cookie = |
| (unsigned long)(&cpu_new_thread); |
| struct task_struct *p; |
| int timeout, ret, cpu_node; |
| |
| p = fork_idle(cpu); |
| callin_flag = 0; |
| cpu_new_thread = p->thread_info; |
| cpu_set(cpu, cpu_callout_map); |
| |
| cpu_find_by_mid(cpu, &cpu_node); |
| prom_startcpu(cpu_node, entry, cookie); |
| |
| for (timeout = 0; timeout < 5000000; timeout++) { |
| if (callin_flag) |
| break; |
| udelay(100); |
| } |
| if (callin_flag) { |
| ret = 0; |
| } else { |
| printk("Processor %d is stuck.\n", cpu); |
| cpu_clear(cpu, cpu_callout_map); |
| ret = -ENODEV; |
| } |
| cpu_new_thread = NULL; |
| |
| return ret; |
| } |
| |
| static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) |
| { |
| u64 result, target; |
| int stuck, tmp; |
| |
| if (this_is_starfire) { |
| /* map to real upaid */ |
| cpu = (((cpu & 0x3c) << 1) | |
| ((cpu & 0x40) >> 4) | |
| (cpu & 0x3)); |
| } |
| |
| target = (cpu << 14) | 0x70; |
| again: |
| /* Ok, this is the real Spitfire Errata #54. |
| * One must read back from a UDB internal register |
| * after writes to the UDB interrupt dispatch, but |
| * before the membar Sync for that write. |
| * So we use the high UDB control register (ASI 0x7f, |
| * ADDR 0x20) for the dummy read. -DaveM |
| */ |
| tmp = 0x40; |
| __asm__ __volatile__( |
| "wrpr %1, %2, %%pstate\n\t" |
| "stxa %4, [%0] %3\n\t" |
| "stxa %5, [%0+%8] %3\n\t" |
| "add %0, %8, %0\n\t" |
| "stxa %6, [%0+%8] %3\n\t" |
| "membar #Sync\n\t" |
| "stxa %%g0, [%7] %3\n\t" |
| "membar #Sync\n\t" |
| "mov 0x20, %%g1\n\t" |
| "ldxa [%%g1] 0x7f, %%g0\n\t" |
| "membar #Sync" |
| : "=r" (tmp) |
| : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), |
| "r" (data0), "r" (data1), "r" (data2), "r" (target), |
| "r" (0x10), "0" (tmp) |
| : "g1"); |
| |
| /* NOTE: PSTATE_IE is still clear. */ |
| stuck = 100000; |
| do { |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (result) |
| : "i" (ASI_INTR_DISPATCH_STAT)); |
| if (result == 0) { |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| return; |
| } |
| stuck -= 1; |
| if (stuck == 0) |
| break; |
| } while (result & 0x1); |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| if (stuck == 0) { |
| printk("CPU[%d]: mondo stuckage result[%016lx]\n", |
| smp_processor_id(), result); |
| } else { |
| udelay(2); |
| goto again; |
| } |
| } |
| |
| static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) |
| { |
| u64 pstate; |
| int i; |
| |
| __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); |
| for_each_cpu_mask(i, mask) |
| spitfire_xcall_helper(data0, data1, data2, pstate, i); |
| } |
| |
| /* Cheetah now allows to send the whole 64-bytes of data in the interrupt |
| * packet, but we have no use for that. However we do take advantage of |
| * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). |
| */ |
| static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) |
| { |
| u64 pstate, ver; |
| int nack_busy_id, is_jalapeno; |
| |
| if (cpus_empty(mask)) |
| return; |
| |
| /* Unfortunately, someone at Sun had the brilliant idea to make the |
| * busy/nack fields hard-coded by ITID number for this Ultra-III |
| * derivative processor. |
| */ |
| __asm__ ("rdpr %%ver, %0" : "=r" (ver)); |
| is_jalapeno = ((ver >> 32) == 0x003e0016); |
| |
| __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); |
| |
| retry: |
| __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" |
| : : "r" (pstate), "i" (PSTATE_IE)); |
| |
| /* Setup the dispatch data registers. */ |
| __asm__ __volatile__("stxa %0, [%3] %6\n\t" |
| "stxa %1, [%4] %6\n\t" |
| "stxa %2, [%5] %6\n\t" |
| "membar #Sync\n\t" |
| : /* no outputs */ |
| : "r" (data0), "r" (data1), "r" (data2), |
| "r" (0x40), "r" (0x50), "r" (0x60), |
| "i" (ASI_INTR_W)); |
| |
| nack_busy_id = 0; |
| { |
| int i; |
| |
| for_each_cpu_mask(i, mask) { |
| u64 target = (i << 14) | 0x70; |
| |
| if (!is_jalapeno) |
| target |= (nack_busy_id << 24); |
| __asm__ __volatile__( |
| "stxa %%g0, [%0] %1\n\t" |
| "membar #Sync\n\t" |
| : /* no outputs */ |
| : "r" (target), "i" (ASI_INTR_W)); |
| nack_busy_id++; |
| } |
| } |
| |
| /* Now, poll for completion. */ |
| { |
| u64 dispatch_stat; |
| long stuck; |
| |
| stuck = 100000 * nack_busy_id; |
| do { |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (dispatch_stat) |
| : "i" (ASI_INTR_DISPATCH_STAT)); |
| if (dispatch_stat == 0UL) { |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| return; |
| } |
| if (!--stuck) |
| break; |
| } while (dispatch_stat & 0x5555555555555555UL); |
| |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| |
| if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) { |
| /* Busy bits will not clear, continue instead |
| * of freezing up on this cpu. |
| */ |
| printk("CPU[%d]: mondo stuckage result[%016lx]\n", |
| smp_processor_id(), dispatch_stat); |
| } else { |
| int i, this_busy_nack = 0; |
| |
| /* Delay some random time with interrupts enabled |
| * to prevent deadlock. |
| */ |
| udelay(2 * nack_busy_id); |
| |
| /* Clear out the mask bits for cpus which did not |
| * NACK us. |
| */ |
| for_each_cpu_mask(i, mask) { |
| u64 check_mask; |
| |
| if (is_jalapeno) |
| check_mask = (0x2UL << (2*i)); |
| else |
| check_mask = (0x2UL << |
| this_busy_nack); |
| if ((dispatch_stat & check_mask) == 0) |
| cpu_clear(i, mask); |
| this_busy_nack += 2; |
| } |
| |
| goto retry; |
| } |
| } |
| } |
| |
| /* Send cross call to all processors mentioned in MASK |
| * except self. |
| */ |
| static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask) |
| { |
| u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); |
| int this_cpu = get_cpu(); |
| |
| cpus_and(mask, mask, cpu_online_map); |
| cpu_clear(this_cpu, mask); |
| |
| if (tlb_type == spitfire) |
| spitfire_xcall_deliver(data0, data1, data2, mask); |
| else |
| cheetah_xcall_deliver(data0, data1, data2, mask); |
| /* NOTE: Caller runs local copy on master. */ |
| |
| put_cpu(); |
| } |
| |
| extern unsigned long xcall_sync_tick; |
| |
| static void smp_start_sync_tick_client(int cpu) |
| { |
| cpumask_t mask = cpumask_of_cpu(cpu); |
| |
| smp_cross_call_masked(&xcall_sync_tick, |
| 0, 0, 0, mask); |
| } |
| |
| /* Send cross call to all processors except self. */ |
| #define smp_cross_call(func, ctx, data1, data2) \ |
| smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map) |
| |
| struct call_data_struct { |
| void (*func) (void *info); |
| void *info; |
| atomic_t finished; |
| int wait; |
| }; |
| |
| static DEFINE_SPINLOCK(call_lock); |
| static struct call_data_struct *call_data; |
| |
| extern unsigned long xcall_call_function; |
| |
| /* |
| * You must not call this function with disabled interrupts or from a |
| * hardware interrupt handler or from a bottom half handler. |
| */ |
| int smp_call_function(void (*func)(void *info), void *info, |
| int nonatomic, int wait) |
| { |
| struct call_data_struct data; |
| int cpus = num_online_cpus() - 1; |
| long timeout; |
| |
| if (!cpus) |
| return 0; |
| |
| /* Can deadlock when called with interrupts disabled */ |
| WARN_ON(irqs_disabled()); |
| |
| data.func = func; |
| data.info = info; |
| atomic_set(&data.finished, 0); |
| data.wait = wait; |
| |
| spin_lock(&call_lock); |
| |
| call_data = &data; |
| |
| smp_cross_call(&xcall_call_function, 0, 0, 0); |
| |
| /* |
| * Wait for other cpus to complete function or at |
| * least snap the call data. |
| */ |
| timeout = 1000000; |
| while (atomic_read(&data.finished) != cpus) { |
| if (--timeout <= 0) |
| goto out_timeout; |
| barrier(); |
| udelay(1); |
| } |
| |
| spin_unlock(&call_lock); |
| |
| return 0; |
| |
| out_timeout: |
| spin_unlock(&call_lock); |
| printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n", |
| (long) num_online_cpus() - 1L, |
| (long) atomic_read(&data.finished)); |
| return 0; |
| } |
| |
| void smp_call_function_client(int irq, struct pt_regs *regs) |
| { |
| void (*func) (void *info) = call_data->func; |
| void *info = call_data->info; |
| |
| clear_softint(1 << irq); |
| if (call_data->wait) { |
| /* let initiator proceed only after completion */ |
| func(info); |
| atomic_inc(&call_data->finished); |
| } else { |
| /* let initiator proceed after getting data */ |
| atomic_inc(&call_data->finished); |
| func(info); |
| } |
| } |
| |
| extern unsigned long xcall_flush_tlb_mm; |
| extern unsigned long xcall_flush_tlb_pending; |
| extern unsigned long xcall_flush_tlb_kernel_range; |
| extern unsigned long xcall_flush_tlb_all_spitfire; |
| extern unsigned long xcall_flush_tlb_all_cheetah; |
| extern unsigned long xcall_report_regs; |
| extern unsigned long xcall_receive_signal; |
| |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| extern unsigned long xcall_flush_dcache_page_cheetah; |
| #endif |
| extern unsigned long xcall_flush_dcache_page_spitfire; |
| |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| extern atomic_t dcpage_flushes; |
| extern atomic_t dcpage_flushes_xcall; |
| #endif |
| |
| static __inline__ void __local_flush_dcache_page(struct page *page) |
| { |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| __flush_dcache_page(page_address(page), |
| ((tlb_type == spitfire) && |
| page_mapping(page) != NULL)); |
| #else |
| if (page_mapping(page) != NULL && |
| tlb_type == spitfire) |
| __flush_icache_page(__pa(page_address(page))); |
| #endif |
| } |
| |
| void smp_flush_dcache_page_impl(struct page *page, int cpu) |
| { |
| cpumask_t mask = cpumask_of_cpu(cpu); |
| int this_cpu = get_cpu(); |
| |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes); |
| #endif |
| if (cpu == this_cpu) { |
| __local_flush_dcache_page(page); |
| } else if (cpu_online(cpu)) { |
| void *pg_addr = page_address(page); |
| u64 data0; |
| |
| if (tlb_type == spitfire) { |
| data0 = |
| ((u64)&xcall_flush_dcache_page_spitfire); |
| if (page_mapping(page) != NULL) |
| data0 |= ((u64)1 << 32); |
| spitfire_xcall_deliver(data0, |
| __pa(pg_addr), |
| (u64) pg_addr, |
| mask); |
| } else { |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| data0 = |
| ((u64)&xcall_flush_dcache_page_cheetah); |
| cheetah_xcall_deliver(data0, |
| __pa(pg_addr), |
| 0, mask); |
| #endif |
| } |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes_xcall); |
| #endif |
| } |
| |
| put_cpu(); |
| } |
| |
| void flush_dcache_page_all(struct mm_struct *mm, struct page *page) |
| { |
| void *pg_addr = page_address(page); |
| cpumask_t mask = cpu_online_map; |
| u64 data0; |
| int this_cpu = get_cpu(); |
| |
| cpu_clear(this_cpu, mask); |
| |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes); |
| #endif |
| if (cpus_empty(mask)) |
| goto flush_self; |
| if (tlb_type == spitfire) { |
| data0 = ((u64)&xcall_flush_dcache_page_spitfire); |
| if (page_mapping(page) != NULL) |
| data0 |= ((u64)1 << 32); |
| spitfire_xcall_deliver(data0, |
| __pa(pg_addr), |
| (u64) pg_addr, |
| mask); |
| } else { |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| data0 = ((u64)&xcall_flush_dcache_page_cheetah); |
| cheetah_xcall_deliver(data0, |
| __pa(pg_addr), |
| 0, mask); |
| #endif |
| } |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes_xcall); |
| #endif |
| flush_self: |
| __local_flush_dcache_page(page); |
| |
| put_cpu(); |
| } |
| |
| void smp_receive_signal(int cpu) |
| { |
| cpumask_t mask = cpumask_of_cpu(cpu); |
| |
| if (cpu_online(cpu)) { |
| u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff); |
| |
| if (tlb_type == spitfire) |
| spitfire_xcall_deliver(data0, 0, 0, mask); |
| else |
| cheetah_xcall_deliver(data0, 0, 0, mask); |
| } |
| } |
| |
| void smp_receive_signal_client(int irq, struct pt_regs *regs) |
| { |
| /* Just return, rtrap takes care of the rest. */ |
| clear_softint(1 << irq); |
| } |
| |
| void smp_report_regs(void) |
| { |
| smp_cross_call(&xcall_report_regs, 0, 0, 0); |
| } |
| |
| void smp_flush_tlb_all(void) |
| { |
| if (tlb_type == spitfire) |
| smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0); |
| else |
| smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0); |
| __flush_tlb_all(); |
| } |
| |
| /* We know that the window frames of the user have been flushed |
| * to the stack before we get here because all callers of us |
| * are flush_tlb_*() routines, and these run after flush_cache_*() |
| * which performs the flushw. |
| * |
| * The SMP TLB coherency scheme we use works as follows: |
| * |
| * 1) mm->cpu_vm_mask is a bit mask of which cpus an address |
| * space has (potentially) executed on, this is the heuristic |
| * we use to avoid doing cross calls. |
| * |
| * Also, for flushing from kswapd and also for clones, we |
| * use cpu_vm_mask as the list of cpus to make run the TLB. |
| * |
| * 2) TLB context numbers are shared globally across all processors |
| * in the system, this allows us to play several games to avoid |
| * cross calls. |
| * |
| * One invariant is that when a cpu switches to a process, and |
| * that processes tsk->active_mm->cpu_vm_mask does not have the |
| * current cpu's bit set, that tlb context is flushed locally. |
| * |
| * If the address space is non-shared (ie. mm->count == 1) we avoid |
| * cross calls when we want to flush the currently running process's |
| * tlb state. This is done by clearing all cpu bits except the current |
| * processor's in current->active_mm->cpu_vm_mask and performing the |
| * flush locally only. This will force any subsequent cpus which run |
| * this task to flush the context from the local tlb if the process |
| * migrates to another cpu (again). |
| * |
| * 3) For shared address spaces (threads) and swapping we bite the |
| * bullet for most cases and perform the cross call (but only to |
| * the cpus listed in cpu_vm_mask). |
| * |
| * The performance gain from "optimizing" away the cross call for threads is |
| * questionable (in theory the big win for threads is the massive sharing of |
| * address space state across processors). |
| */ |
| void smp_flush_tlb_mm(struct mm_struct *mm) |
| { |
| /* |
| * This code is called from two places, dup_mmap and exit_mmap. In the |
| * former case, we really need a flush. In the later case, the callers |
| * are single threaded exec_mmap (really need a flush), multithreaded |
| * exec_mmap case (do not need to flush, since the caller gets a new |
| * context via activate_mm), and all other callers of mmput() whence |
| * the flush can be optimized since the associated threads are dead and |
| * the mm is being torn down (__exit_mm and other mmput callers) or the |
| * owning thread is dissociating itself from the mm. The |
| * (atomic_read(&mm->mm_users) == 0) check ensures real work is done |
| * for single thread exec and dup_mmap cases. An alternate check might |
| * have been (current->mm != mm). |
| * Kanoj Sarcar |
| */ |
| if (atomic_read(&mm->mm_users) == 0) |
| return; |
| |
| { |
| u32 ctx = CTX_HWBITS(mm->context); |
| int cpu = get_cpu(); |
| |
| if (atomic_read(&mm->mm_users) == 1) { |
| mm->cpu_vm_mask = cpumask_of_cpu(cpu); |
| goto local_flush_and_out; |
| } |
| |
| smp_cross_call_masked(&xcall_flush_tlb_mm, |
| ctx, 0, 0, |
| mm->cpu_vm_mask); |
| |
| local_flush_and_out: |
| __flush_tlb_mm(ctx, SECONDARY_CONTEXT); |
| |
| put_cpu(); |
| } |
| } |
| |
| void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) |
| { |
| u32 ctx = CTX_HWBITS(mm->context); |
| int cpu = get_cpu(); |
| |
| if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) { |
| mm->cpu_vm_mask = cpumask_of_cpu(cpu); |
| goto local_flush_and_out; |
| } else { |
| /* This optimization is not valid. Normally |
| * we will be holding the page_table_lock, but |
| * there is an exception which is copy_page_range() |
| * when forking. The lock is held during the individual |
| * page table updates in the parent, but not at the |
| * top level, which is where we are invoked. |
| */ |
| if (0) { |
| cpumask_t this_cpu_mask = cpumask_of_cpu(cpu); |
| |
| /* By virtue of running under the mm->page_table_lock, |
| * and mmu_context.h:switch_mm doing the same, the |
| * following operation is safe. |
| */ |
| if (cpus_equal(mm->cpu_vm_mask, this_cpu_mask)) |
| goto local_flush_and_out; |
| } |
| } |
| |
| smp_cross_call_masked(&xcall_flush_tlb_pending, |
| ctx, nr, (unsigned long) vaddrs, |
| mm->cpu_vm_mask); |
| |
| local_flush_and_out: |
| __flush_tlb_pending(ctx, nr, vaddrs); |
| |
| put_cpu(); |
| } |
| |
| void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| start &= PAGE_MASK; |
| end = PAGE_ALIGN(end); |
| if (start != end) { |
| smp_cross_call(&xcall_flush_tlb_kernel_range, |
| 0, start, end); |
| |
| __flush_tlb_kernel_range(start, end); |
| } |
| } |
| |
| /* CPU capture. */ |
| /* #define CAPTURE_DEBUG */ |
| extern unsigned long xcall_capture; |
| |
| static atomic_t smp_capture_depth = ATOMIC_INIT(0); |
| static atomic_t smp_capture_registry = ATOMIC_INIT(0); |
| static unsigned long penguins_are_doing_time; |
| |
| void smp_capture(void) |
| { |
| int result = atomic_add_ret(1, &smp_capture_depth); |
| |
| if (result == 1) { |
| int ncpus = num_online_cpus(); |
| |
| #ifdef CAPTURE_DEBUG |
| printk("CPU[%d]: Sending penguins to jail...", |
| smp_processor_id()); |
| #endif |
| penguins_are_doing_time = 1; |
| membar("#StoreStore | #LoadStore"); |
| atomic_inc(&smp_capture_registry); |
| smp_cross_call(&xcall_capture, 0, 0, 0); |
| while (atomic_read(&smp_capture_registry) != ncpus) |
| membar("#LoadLoad"); |
| #ifdef CAPTURE_DEBUG |
| printk("done\n"); |
| #endif |
| } |
| } |
| |
| void smp_release(void) |
| { |
| if (atomic_dec_and_test(&smp_capture_depth)) { |
| #ifdef CAPTURE_DEBUG |
| printk("CPU[%d]: Giving pardon to " |
| "imprisoned penguins\n", |
| smp_processor_id()); |
| #endif |
| penguins_are_doing_time = 0; |
| membar("#StoreStore | #StoreLoad"); |
| atomic_dec(&smp_capture_registry); |
| } |
| } |
| |
| /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they |
| * can service tlb flush xcalls... |
| */ |
| extern void prom_world(int); |
| extern void save_alternate_globals(unsigned long *); |
| extern void restore_alternate_globals(unsigned long *); |
| void smp_penguin_jailcell(int irq, struct pt_regs *regs) |
| { |
| unsigned long global_save[24]; |
| |
| clear_softint(1 << irq); |
| |
| preempt_disable(); |
| |
| __asm__ __volatile__("flushw"); |
| save_alternate_globals(global_save); |
| prom_world(1); |
| atomic_inc(&smp_capture_registry); |
| membar("#StoreLoad | #StoreStore"); |
| while (penguins_are_doing_time) |
| membar("#LoadLoad"); |
| restore_alternate_globals(global_save); |
| atomic_dec(&smp_capture_registry); |
| prom_world(0); |
| |
| preempt_enable(); |
| } |
| |
| extern unsigned long xcall_promstop; |
| |
| void smp_promstop_others(void) |
| { |
| smp_cross_call(&xcall_promstop, 0, 0, 0); |
| } |
| |
| #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier |
| #define prof_counter(__cpu) cpu_data(__cpu).counter |
| |
| void smp_percpu_timer_interrupt(struct pt_regs *regs) |
| { |
| unsigned long compare, tick, pstate; |
| int cpu = smp_processor_id(); |
| int user = user_mode(regs); |
| |
| /* |
| * Check for level 14 softint. |
| */ |
| { |
| unsigned long tick_mask = tick_ops->softint_mask; |
| |
| if (!(get_softint() & tick_mask)) { |
| extern void handler_irq(int, struct pt_regs *); |
| |
| handler_irq(14, regs); |
| return; |
| } |
| clear_softint(tick_mask); |
| } |
| |
| do { |
| profile_tick(CPU_PROFILING, regs); |
| if (!--prof_counter(cpu)) { |
| irq_enter(); |
| |
| if (cpu == boot_cpu_id) { |
| kstat_this_cpu.irqs[0]++; |
| timer_tick_interrupt(regs); |
| } |
| |
| update_process_times(user); |
| |
| irq_exit(); |
| |
| prof_counter(cpu) = prof_multiplier(cpu); |
| } |
| |
| /* Guarantee that the following sequences execute |
| * uninterrupted. |
| */ |
| __asm__ __volatile__("rdpr %%pstate, %0\n\t" |
| "wrpr %0, %1, %%pstate" |
| : "=r" (pstate) |
| : "i" (PSTATE_IE)); |
| |
| compare = tick_ops->add_compare(current_tick_offset); |
| tick = tick_ops->get_tick(); |
| |
| /* Restore PSTATE_IE. */ |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : /* no outputs */ |
| : "r" (pstate)); |
| } while (time_after_eq(tick, compare)); |
| } |
| |
| static void __init smp_setup_percpu_timer(void) |
| { |
| int cpu = smp_processor_id(); |
| unsigned long pstate; |
| |
| prof_counter(cpu) = prof_multiplier(cpu) = 1; |
| |
| /* Guarantee that the following sequences execute |
| * uninterrupted. |
| */ |
| __asm__ __volatile__("rdpr %%pstate, %0\n\t" |
| "wrpr %0, %1, %%pstate" |
| : "=r" (pstate) |
| : "i" (PSTATE_IE)); |
| |
| tick_ops->init_tick(current_tick_offset); |
| |
| /* Restore PSTATE_IE. */ |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : /* no outputs */ |
| : "r" (pstate)); |
| } |
| |
| void __init smp_tick_init(void) |
| { |
| boot_cpu_id = hard_smp_processor_id(); |
| current_tick_offset = timer_tick_offset; |
| |
| cpu_set(boot_cpu_id, cpu_online_map); |
| prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1; |
| } |
| |
| /* /proc/profile writes can call this, don't __init it please. */ |
| static DEFINE_SPINLOCK(prof_setup_lock); |
| |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| unsigned long flags; |
| int i; |
| |
| if ((!multiplier) || (timer_tick_offset / multiplier) < 1000) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&prof_setup_lock, flags); |
| for (i = 0; i < NR_CPUS; i++) |
| prof_multiplier(i) = multiplier; |
| current_tick_offset = (timer_tick_offset / multiplier); |
| spin_unlock_irqrestore(&prof_setup_lock, flags); |
| |
| return 0; |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| int instance, mid; |
| |
| instance = 0; |
| while (!cpu_find_by_instance(instance, NULL, &mid)) { |
| if (mid < max_cpus) |
| cpu_set(mid, phys_cpu_present_map); |
| instance++; |
| } |
| |
| if (num_possible_cpus() > max_cpus) { |
| instance = 0; |
| while (!cpu_find_by_instance(instance, NULL, &mid)) { |
| if (mid != boot_cpu_id) { |
| cpu_clear(mid, phys_cpu_present_map); |
| if (num_possible_cpus() <= max_cpus) |
| break; |
| } |
| instance++; |
| } |
| } |
| |
| smp_store_cpu_info(boot_cpu_id); |
| } |
| |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| if (hard_smp_processor_id() >= NR_CPUS) { |
| prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); |
| prom_halt(); |
| } |
| |
| current_thread_info()->cpu = hard_smp_processor_id(); |
| |
| cpu_set(smp_processor_id(), cpu_online_map); |
| cpu_set(smp_processor_id(), phys_cpu_present_map); |
| } |
| |
| int __devinit __cpu_up(unsigned int cpu) |
| { |
| int ret = smp_boot_one_cpu(cpu); |
| |
| if (!ret) { |
| cpu_set(cpu, smp_commenced_mask); |
| while (!cpu_isset(cpu, cpu_online_map)) |
| mb(); |
| if (!cpu_isset(cpu, cpu_online_map)) { |
| ret = -ENODEV; |
| } else { |
| smp_synchronize_one_tick(cpu); |
| } |
| } |
| return ret; |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| unsigned long bogosum = 0; |
| int i; |
| |
| for (i = 0; i < NR_CPUS; i++) { |
| if (cpu_online(i)) |
| bogosum += cpu_data(i).udelay_val; |
| } |
| printk("Total of %ld processors activated " |
| "(%lu.%02lu BogoMIPS).\n", |
| (long) num_online_cpus(), |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| } |
| |
| /* This needn't do anything as we do not sleep the cpu |
| * inside of the idler task, so an interrupt is not needed |
| * to get a clean fast response. |
| * |
| * XXX Reverify this assumption... -DaveM |
| * |
| * Addendum: We do want it to do something for the signal |
| * delivery case, we detect that by just seeing |
| * if we are trying to send this to an idler or not. |
| */ |
| void smp_send_reschedule(int cpu) |
| { |
| if (cpu_data(cpu).idle_volume == 0) |
| smp_receive_signal(cpu); |
| } |
| |
| /* This is a nop because we capture all other cpus |
| * anyways when making the PROM active. |
| */ |
| void smp_send_stop(void) |
| { |
| } |
| |
| unsigned long __per_cpu_base; |
| unsigned long __per_cpu_shift; |
| |
| EXPORT_SYMBOL(__per_cpu_base); |
| EXPORT_SYMBOL(__per_cpu_shift); |
| |
| void __init setup_per_cpu_areas(void) |
| { |
| unsigned long goal, size, i; |
| char *ptr; |
| /* Created by linker magic */ |
| extern char __per_cpu_start[], __per_cpu_end[]; |
| |
| /* Copy section for each CPU (we discard the original) */ |
| goal = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE); |
| |
| #ifdef CONFIG_MODULES |
| if (goal < PERCPU_ENOUGH_ROOM) |
| goal = PERCPU_ENOUGH_ROOM; |
| #endif |
| __per_cpu_shift = 0; |
| for (size = 1UL; size < goal; size <<= 1UL) |
| __per_cpu_shift++; |
| |
| /* Make sure the resulting __per_cpu_base value |
| * will fit in the 43-bit sign extended IMMU |
| * TSB register. |
| */ |
| ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE, |
| (unsigned long) __per_cpu_start); |
| |
| __per_cpu_base = ptr - __per_cpu_start; |
| |
| if ((__per_cpu_shift < PAGE_SHIFT) || |
| (__per_cpu_base & ~PAGE_MASK) || |
| (__per_cpu_base != (((long) __per_cpu_base << 20) >> 20))) { |
| prom_printf("PER_CPU: Invalid layout, " |
| "ptr[%p] shift[%lx] base[%lx]\n", |
| ptr, __per_cpu_shift, __per_cpu_base); |
| prom_halt(); |
| } |
| |
| for (i = 0; i < NR_CPUS; i++, ptr += size) |
| memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); |
| |
| /* Finally, load in the boot cpu's base value. |
| * We abuse the IMMU TSB register for trap handler |
| * entry and exit loading of %g5. That is why it |
| * has to be page aligned. |
| */ |
| cpu_setup_percpu_base(hard_smp_processor_id()); |
| } |