blob: 7f84fa5deca2864473c00d60ff07ed602235204c [file] [log] [blame]
/*
* C-Media CMI8788 driver for Asus Xonar cards
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Xonar D2/D2X
* ------------
*
* CMI8788:
*
* SPI 0 -> 1st PCM1796 (front)
* SPI 1 -> 2nd PCM1796 (surround)
* SPI 2 -> 3rd PCM1796 (center/LFE)
* SPI 4 -> 4th PCM1796 (back)
*
* GPIO 2 -> M0 of CS5381
* GPIO 3 -> M1 of CS5381
* GPIO 5 <- external power present (D2X only)
* GPIO 7 -> ALT
* GPIO 8 -> enable output to speakers
*/
/*
* Xonar DX
* --------
*
* CMI8788:
*
* I²C <-> CS4398 (front)
* <-> CS4362A (surround, center/LFE, back)
*
* GPI 0 <- external power present
*
* GPIO 0 -> enable output to speakers
* GPIO 1 -> enable front panel I/O
* GPIO 2 -> M0 of CS5361
* GPIO 3 -> M1 of CS5361
* GPIO 8 -> route input jack to line-in (0) or mic-in (1)
*
* CS4398:
*
* AD0 <- 1
* AD1 <- 1
*
* CS4362A:
*
* AD0 <- 0
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <sound/ac97_codec.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "cm9780.h"
#include "pcm1796.h"
#include "cs4398.h"
#include "cs4362a.h"
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("Asus AVx00 driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Asus,AV100},{Asus,AV200}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "card index");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "enable card");
enum {
MODEL_D2,
MODEL_D2X,
MODEL_DX,
};
static struct pci_device_id xonar_ids[] __devinitdata = {
{ OXYGEN_PCI_SUBID(0x1043, 0x8269), .driver_data = MODEL_D2 },
{ OXYGEN_PCI_SUBID(0x1043, 0x8275), .driver_data = MODEL_DX },
{ OXYGEN_PCI_SUBID(0x1043, 0x82b7), .driver_data = MODEL_D2X },
{ }
};
MODULE_DEVICE_TABLE(pci, xonar_ids);
#define GPIO_CS53x1_M_MASK 0x000c
#define GPIO_CS53x1_M_SINGLE 0x0000
#define GPIO_CS53x1_M_DOUBLE 0x0004
#define GPIO_CS53x1_M_QUAD 0x0008
#define GPIO_D2X_EXT_POWER 0x0020
#define GPIO_D2_ALT 0x0080
#define GPIO_D2_OUTPUT_ENABLE 0x0100
#define GPI_DX_EXT_POWER 0x01
#define GPIO_DX_OUTPUT_ENABLE 0x0001
#define GPIO_DX_FRONT_PANEL 0x0002
#define GPIO_DX_INPUT_ROUTE 0x0100
#define I2C_DEVICE_CS4398 0x9e /* 10011, AD1=1, AD0=1, /W=0 */
#define I2C_DEVICE_CS4362A 0x30 /* 001100, AD0=0, /W=0 */
struct xonar_data {
unsigned int anti_pop_delay;
u16 output_enable_bit;
u8 ext_power_reg;
u8 ext_power_int_reg;
u8 ext_power_bit;
u8 has_power;
};
static void pcm1796_write(struct oxygen *chip, unsigned int codec,
u8 reg, u8 value)
{
/* maps ALSA channel pair number to SPI output */
static const u8 codec_map[4] = {
0, 1, 2, 4
};
oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_2 |
OXYGEN_SPI_CLOCK_160 |
(codec_map[codec] << OXYGEN_SPI_CODEC_SHIFT) |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
(reg << 8) | value);
}
static void cs4398_write(struct oxygen *chip, u8 reg, u8 value)
{
oxygen_write_i2c(chip, I2C_DEVICE_CS4398, reg, value);
}
static void cs4362a_write(struct oxygen *chip, u8 reg, u8 value)
{
oxygen_write_i2c(chip, I2C_DEVICE_CS4362A, reg, value);
}
static void xonar_common_init(struct oxygen *chip)
{
struct xonar_data *data = chip->model_data;
if (data->ext_power_reg) {
oxygen_set_bits8(chip, data->ext_power_int_reg,
data->ext_power_bit);
chip->interrupt_mask |= OXYGEN_INT_GPIO;
data->has_power = !!(oxygen_read8(chip, data->ext_power_reg)
& data->ext_power_bit);
}
oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_CS53x1_M_MASK);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
GPIO_CS53x1_M_SINGLE, GPIO_CS53x1_M_MASK);
oxygen_ac97_set_bits(chip, 0, CM9780_JACK, CM9780_FMIC2MIC);
msleep(data->anti_pop_delay);
oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, data->output_enable_bit);
oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, data->output_enable_bit);
}
static void xonar_d2_init(struct oxygen *chip)
{
struct xonar_data *data = chip->model_data;
unsigned int i;
data->anti_pop_delay = 300;
data->output_enable_bit = GPIO_D2_OUTPUT_ENABLE;
for (i = 0; i < 4; ++i) {
pcm1796_write(chip, i, 18, PCM1796_MUTE | PCM1796_DMF_DISABLED |
PCM1796_FMT_24_LJUST | PCM1796_ATLD);
pcm1796_write(chip, i, 19, PCM1796_FLT_SHARP | PCM1796_ATS_1);
pcm1796_write(chip, i, 20, PCM1796_OS_64);
pcm1796_write(chip, i, 21, 0);
pcm1796_write(chip, i, 16, 0x0f); /* set ATL/ATR after ATLD */
pcm1796_write(chip, i, 17, 0x0f);
}
oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_D2_ALT);
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_D2_ALT);
xonar_common_init(chip);
snd_component_add(chip->card, "PCM1796");
snd_component_add(chip->card, "CS5381");
}
static void xonar_d2x_init(struct oxygen *chip)
{
struct xonar_data *data = chip->model_data;
data->ext_power_reg = OXYGEN_GPIO_DATA;
data->ext_power_int_reg = OXYGEN_GPIO_INTERRUPT_MASK;
data->ext_power_bit = GPIO_D2X_EXT_POWER;
oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_D2X_EXT_POWER);
xonar_d2_init(chip);
}
static void xonar_dx_init(struct oxygen *chip)
{
struct xonar_data *data = chip->model_data;
data->anti_pop_delay = 800;
data->output_enable_bit = GPIO_DX_OUTPUT_ENABLE;
data->ext_power_reg = OXYGEN_GPI_DATA;
data->ext_power_int_reg = OXYGEN_GPI_INTERRUPT_MASK;
data->ext_power_bit = GPI_DX_EXT_POWER;
oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS,
OXYGEN_2WIRE_LENGTH_8 |
OXYGEN_2WIRE_INTERRUPT_MASK |
OXYGEN_2WIRE_SPEED_FAST);
/* set CPEN (control port mode) and power down */
cs4398_write(chip, 8, CS4398_CPEN | CS4398_PDN);
cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN);
/* configure */
cs4398_write(chip, 2, CS4398_FM_SINGLE |
CS4398_DEM_NONE | CS4398_DIF_LJUST);
cs4398_write(chip, 3, CS4398_ATAPI_B_R | CS4398_ATAPI_A_L);
cs4398_write(chip, 4, CS4398_MUTEP_LOW | CS4398_PAMUTE);
cs4398_write(chip, 5, 0xfe);
cs4398_write(chip, 6, 0xfe);
cs4398_write(chip, 7, CS4398_RMP_DN | CS4398_RMP_UP |
CS4398_ZERO_CROSS | CS4398_SOFT_RAMP);
cs4362a_write(chip, 0x02, CS4362A_DIF_LJUST);
cs4362a_write(chip, 0x03, CS4362A_MUTEC_6 | CS4362A_AMUTE |
CS4362A_RMP_UP | CS4362A_ZERO_CROSS | CS4362A_SOFT_RAMP);
cs4362a_write(chip, 0x04, CS4362A_RMP_DN | CS4362A_DEM_NONE);
cs4362a_write(chip, 0x05, 0);
cs4362a_write(chip, 0x06, CS4362A_FM_SINGLE |
CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L);
cs4362a_write(chip, 0x07, 0x7f | CS4362A_MUTE);
cs4362a_write(chip, 0x08, 0x7f | CS4362A_MUTE);
cs4362a_write(chip, 0x09, CS4362A_FM_SINGLE |
CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L);
cs4362a_write(chip, 0x0a, 0x7f | CS4362A_MUTE);
cs4362a_write(chip, 0x0b, 0x7f | CS4362A_MUTE);
cs4362a_write(chip, 0x0c, CS4362A_FM_SINGLE |
CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L);
cs4362a_write(chip, 0x0d, 0x7f | CS4362A_MUTE);
cs4362a_write(chip, 0x0e, 0x7f | CS4362A_MUTE);
/* clear power down */
cs4398_write(chip, 8, CS4398_CPEN);
cs4362a_write(chip, 0x01, CS4362A_CPEN);
oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL,
GPIO_DX_FRONT_PANEL | GPIO_DX_INPUT_ROUTE);
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA,
GPIO_DX_FRONT_PANEL | GPIO_DX_INPUT_ROUTE);
xonar_common_init(chip);
snd_component_add(chip->card, "CS4398");
snd_component_add(chip->card, "CS4362A");
snd_component_add(chip->card, "CS5361");
}
static void xonar_cleanup(struct oxygen *chip)
{
struct xonar_data *data = chip->model_data;
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, data->output_enable_bit);
}
static void xonar_dx_cleanup(struct oxygen *chip)
{
xonar_cleanup(chip);
cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN);
oxygen_clear_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC);
}
static void set_pcm1796_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
unsigned int i;
u8 value;
value = params_rate(params) >= 96000 ? PCM1796_OS_32 : PCM1796_OS_64;
for (i = 0; i < 4; ++i)
pcm1796_write(chip, i, 20, value);
}
static void update_pcm1796_volume(struct oxygen *chip)
{
unsigned int i;
for (i = 0; i < 4; ++i) {
pcm1796_write(chip, i, 16, chip->dac_volume[i * 2]);
pcm1796_write(chip, i, 17, chip->dac_volume[i * 2 + 1]);
}
}
static void update_pcm1796_mute(struct oxygen *chip)
{
unsigned int i;
u8 value;
value = PCM1796_FMT_24_LJUST | PCM1796_ATLD;
if (chip->dac_mute)
value |= PCM1796_MUTE;
for (i = 0; i < 4; ++i)
pcm1796_write(chip, i, 18, value);
}
static void set_cs53x1_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
unsigned int value;
if (params_rate(params) <= 54000)
value = GPIO_CS53x1_M_SINGLE;
else if (params_rate(params) <= 108000)
value = GPIO_CS53x1_M_DOUBLE;
else
value = GPIO_CS53x1_M_QUAD;
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
value, GPIO_CS53x1_M_MASK);
}
static void set_cs43xx_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
u8 fm_cs4398, fm_cs4362a;
fm_cs4398 = CS4398_DEM_NONE | CS4398_DIF_LJUST;
fm_cs4362a = CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L;
if (params_rate(params) <= 50000) {
fm_cs4398 |= CS4398_FM_SINGLE;
fm_cs4362a |= CS4362A_FM_SINGLE;
} else if (params_rate(params) <= 100000) {
fm_cs4398 |= CS4398_FM_DOUBLE;
fm_cs4362a |= CS4362A_FM_DOUBLE;
} else {
fm_cs4398 |= CS4398_FM_QUAD;
fm_cs4362a |= CS4362A_FM_QUAD;
}
cs4398_write(chip, 2, fm_cs4398);
cs4362a_write(chip, 0x06, fm_cs4362a);
cs4362a_write(chip, 0x09, fm_cs4362a);
cs4362a_write(chip, 0x0c, fm_cs4362a);
}
static void update_cs4362a_volumes(struct oxygen *chip)
{
u8 mute;
mute = chip->dac_mute ? CS4362A_MUTE : 0;
cs4362a_write(chip, 7, (127 - chip->dac_volume[2]) | mute);
cs4362a_write(chip, 8, (127 - chip->dac_volume[3]) | mute);
cs4362a_write(chip, 10, (127 - chip->dac_volume[4]) | mute);
cs4362a_write(chip, 11, (127 - chip->dac_volume[5]) | mute);
cs4362a_write(chip, 13, (127 - chip->dac_volume[6]) | mute);
cs4362a_write(chip, 14, (127 - chip->dac_volume[7]) | mute);
}
static void update_cs43xx_volume(struct oxygen *chip)
{
cs4398_write(chip, 5, (127 - chip->dac_volume[0]) * 2);
cs4398_write(chip, 6, (127 - chip->dac_volume[1]) * 2);
update_cs4362a_volumes(chip);
}
static void update_cs43xx_mute(struct oxygen *chip)
{
u8 reg;
reg = CS4398_MUTEP_LOW | CS4398_PAMUTE;
if (chip->dac_mute)
reg |= CS4398_MUTE_B | CS4398_MUTE_A;
cs4398_write(chip, 4, reg);
update_cs4362a_volumes(chip);
}
static void xonar_gpio_changed(struct oxygen *chip)
{
struct xonar_data *data = chip->model_data;
u8 has_power;
has_power = !!(oxygen_read8(chip, data->ext_power_reg)
& data->ext_power_bit);
if (has_power != data->has_power) {
data->has_power = has_power;
if (has_power) {
snd_printk(KERN_NOTICE "power restored\n");
} else {
snd_printk(KERN_CRIT
"Hey! Don't unplug the power cable!\n");
/* TODO: stop PCMs */
}
}
}
static int alt_switch_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
value->value.integer.value[0] =
!!(oxygen_read16(chip, OXYGEN_GPIO_DATA) & GPIO_D2_ALT);
return 0;
}
static int alt_switch_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u16 old_bits, new_bits;
int changed;
spin_lock_irq(&chip->reg_lock);
old_bits = oxygen_read16(chip, OXYGEN_GPIO_DATA);
if (value->value.integer.value[0])
new_bits = old_bits | GPIO_D2_ALT;
else
new_bits = old_bits & ~GPIO_D2_ALT;
changed = new_bits != old_bits;
if (changed)
oxygen_write16(chip, OXYGEN_GPIO_DATA, new_bits);
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static const struct snd_kcontrol_new alt_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Loopback Switch",
.info = snd_ctl_boolean_mono_info,
.get = alt_switch_get,
.put = alt_switch_put,
};
static int front_panel_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
value->value.integer.value[0] =
!!(oxygen_read16(chip, OXYGEN_GPIO_DATA) & GPIO_DX_FRONT_PANEL);
return 0;
}
static int front_panel_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u16 old_reg, new_reg;
spin_lock_irq(&chip->reg_lock);
old_reg = oxygen_read16(chip, OXYGEN_GPIO_DATA);
if (value->value.integer.value[0])
new_reg = old_reg | GPIO_DX_FRONT_PANEL;
else
new_reg = old_reg & ~GPIO_DX_FRONT_PANEL;
oxygen_write16(chip, OXYGEN_GPIO_DATA, new_reg);
spin_unlock_irq(&chip->reg_lock);
return old_reg != new_reg;
}
static const struct snd_kcontrol_new front_panel_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Front Panel Switch",
.info = snd_ctl_boolean_mono_info,
.get = front_panel_get,
.put = front_panel_put,
};
static void xonar_dx_ac97_switch(struct oxygen *chip,
unsigned int reg, unsigned int mute)
{
if (reg == AC97_LINE) {
spin_lock_irq(&chip->reg_lock);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
mute ? GPIO_DX_INPUT_ROUTE : 0,
GPIO_DX_INPUT_ROUTE);
spin_unlock_irq(&chip->reg_lock);
}
}
static const DECLARE_TLV_DB_SCALE(pcm1796_db_scale, -12000, 50, 0);
static const DECLARE_TLV_DB_SCALE(cs4362a_db_scale, -12700, 100, 0);
static int xonar_d2_control_filter(struct snd_kcontrol_new *template)
{
if (!strncmp(template->name, "CD Capture ", 11))
/* CD in is actually connected to the video in pin */
template->private_value ^= AC97_CD ^ AC97_VIDEO;
return 0;
}
static int xonar_dx_control_filter(struct snd_kcontrol_new *template)
{
if (!strncmp(template->name, "CD Capture ", 11))
return 1; /* no CD input */
return 0;
}
static int xonar_mixer_init(struct oxygen *chip)
{
return snd_ctl_add(chip->card, snd_ctl_new1(&alt_switch, chip));
}
static int xonar_dx_mixer_init(struct oxygen *chip)
{
return snd_ctl_add(chip->card, snd_ctl_new1(&front_panel_switch, chip));
}
static const struct oxygen_model xonar_models[] = {
[MODEL_D2] = {
.shortname = "Xonar D2",
.longname = "Asus Virtuoso 200",
.chip = "AV200",
.owner = THIS_MODULE,
.init = xonar_d2_init,
.control_filter = xonar_d2_control_filter,
.mixer_init = xonar_mixer_init,
.cleanup = xonar_cleanup,
.set_dac_params = set_pcm1796_params,
.set_adc_params = set_cs53x1_params,
.update_dac_volume = update_pcm1796_volume,
.update_dac_mute = update_pcm1796_mute,
.dac_tlv = pcm1796_db_scale,
.model_data_size = sizeof(struct xonar_data),
.pcm_dev_cfg = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_2 |
CAPTURE_1_FROM_SPDIF,
.dac_channels = 8,
.dac_volume_min = 0x0f,
.dac_volume_max = 0xff,
.misc_flags = OXYGEN_MISC_MIDI,
.function_flags = OXYGEN_FUNCTION_SPI |
OXYGEN_FUNCTION_ENABLE_SPI_4_5,
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
},
[MODEL_D2X] = {
.shortname = "Xonar D2X",
.longname = "Asus Virtuoso 200",
.chip = "AV200",
.owner = THIS_MODULE,
.init = xonar_d2x_init,
.control_filter = xonar_d2_control_filter,
.mixer_init = xonar_mixer_init,
.cleanup = xonar_cleanup,
.set_dac_params = set_pcm1796_params,
.set_adc_params = set_cs53x1_params,
.update_dac_volume = update_pcm1796_volume,
.update_dac_mute = update_pcm1796_mute,
.gpio_changed = xonar_gpio_changed,
.dac_tlv = pcm1796_db_scale,
.model_data_size = sizeof(struct xonar_data),
.pcm_dev_cfg = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_2 |
CAPTURE_1_FROM_SPDIF,
.dac_channels = 8,
.dac_volume_min = 0x0f,
.dac_volume_max = 0xff,
.misc_flags = OXYGEN_MISC_MIDI,
.function_flags = OXYGEN_FUNCTION_SPI |
OXYGEN_FUNCTION_ENABLE_SPI_4_5,
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
},
[MODEL_DX] = {
.shortname = "Xonar DX",
.longname = "Asus Virtuoso 100",
.chip = "AV200",
.owner = THIS_MODULE,
.init = xonar_dx_init,
.control_filter = xonar_dx_control_filter,
.mixer_init = xonar_dx_mixer_init,
.cleanup = xonar_dx_cleanup,
.set_dac_params = set_cs43xx_params,
.set_adc_params = set_cs53x1_params,
.update_dac_volume = update_cs43xx_volume,
.update_dac_mute = update_cs43xx_mute,
.gpio_changed = xonar_gpio_changed,
.ac97_switch = xonar_dx_ac97_switch,
.dac_tlv = cs4362a_db_scale,
.model_data_size = sizeof(struct xonar_data),
.pcm_dev_cfg = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_2,
.dac_channels = 8,
.dac_volume_min = 0,
.dac_volume_max = 127,
.function_flags = OXYGEN_FUNCTION_2WIRE,
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
},
};
static int __devinit xonar_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
++dev;
return -ENOENT;
}
err = oxygen_pci_probe(pci, index[dev], id[dev],
&xonar_models[pci_id->driver_data]);
if (err >= 0)
++dev;
return err;
}
static struct pci_driver xonar_driver = {
.name = "AV200",
.id_table = xonar_ids,
.probe = xonar_probe,
.remove = __devexit_p(oxygen_pci_remove),
};
static int __init alsa_card_xonar_init(void)
{
return pci_register_driver(&xonar_driver);
}
static void __exit alsa_card_xonar_exit(void)
{
pci_unregister_driver(&xonar_driver);
}
module_init(alsa_card_xonar_init)
module_exit(alsa_card_xonar_exit)