blob: 26b9240d1e2359de995da011c180e5fda2b9e3d9 [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV architectural definitions
*
* Copyright (C) 2007 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef __ASM_X86_UV_HUB_H__
#define __ASM_X86_UV_HUB_H__
#include <linux/numa.h>
#include <linux/percpu.h>
#include <asm/types.h>
#include <asm/percpu.h>
/*
* Addressing Terminology
*
* NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
* routers always have low bit of 1, C/MBricks have low bit
* equal to 0. Most addressing macros that target UV hub chips
* right shift the NASID by 1 to exclude the always-zero bit.
*
* SNASID - NASID right shifted by 1 bit.
*
*
* Memory/UV-HUB Processor Socket Address Format:
* +--------+---------------+---------------------+
* |00..0000| SNASID | NodeOffset |
* +--------+---------------+---------------------+
* <--- N bits --->|<--------M bits ----->
*
* M number of node offset bits (35 .. 40)
* N number of SNASID bits (0 .. 10)
*
* Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
* The actual values are configuration dependent and are set at
* boot time
*
* APICID format
* NOTE!!!!!! This is the current format of the APICID. However, code
* should assume that this will change in the future. Use functions
* in this file for all APICID bit manipulations and conversion.
*
* 1111110000000000
* 5432109876543210
* nnnnnnnnnnlc0cch
* sssssssssss
*
* n = snasid bits
* l = socket number on board
* c = core
* h = hyperthread
* s = bits that are in the socket CSR
*
* Note: Processor only supports 12 bits in the APICID register. The ACPI
* tables hold all 16 bits. Software needs to be aware of this.
*
* Unless otherwise specified, all references to APICID refer to
* the FULL value contained in ACPI tables, not the subset in the
* processor APICID register.
*/
/*
* Maximum number of bricks in all partitions and in all coherency domains.
* This is the total number of bricks accessible in the numalink fabric. It
* includes all C & M bricks. Routers are NOT included.
*
* This value is also the value of the maximum number of non-router NASIDs
* in the numalink fabric.
*
* NOTE: a brick may be 1 or 2 OS nodes. Don't get these confused.
*/
#define UV_MAX_NUMALINK_BLADES 16384
/*
* Maximum number of C/Mbricks within a software SSI (hardware may support
* more).
*/
#define UV_MAX_SSI_BLADES 256
/*
* The largest possible NASID of a C or M brick (+ 2)
*/
#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
/*
* The following defines attributes of the HUB chip. These attributes are
* frequently referenced and are kept in the per-cpu data areas of each cpu.
* They are kept together in a struct to minimize cache misses.
*/
struct uv_hub_info_s {
unsigned long global_mmr_base;
unsigned short local_nasid;
unsigned short gnode_upper;
unsigned short coherency_domain_number;
unsigned short numa_blade_id;
unsigned char blade_processor_id;
unsigned char m_val;
unsigned char n_val;
};
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
/*
* Local & Global MMR space macros.
* Note: macros are intended to be used ONLY by inline functions
* in this file - not by other kernel code.
*/
#define UV_SNASID(n) ((n) >> 1)
#define UV_NASID(n) ((n) << 1)
#define UV_LOCAL_MMR_BASE 0xf4000000UL
#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
#define UV_GLOBAL_MMR32_SNASID_MASK 0x3ff
#define UV_GLOBAL_MMR32_SNASID_SHIFT 15
#define UV_GLOBAL_MMR64_SNASID_SHIFT 26
#define UV_GLOBAL_MMR32_NASID_BITS(n) \
(((UV_SNASID(n) & UV_GLOBAL_MMR32_SNASID_MASK)) << \
(UV_GLOBAL_MMR32_SNASID_SHIFT))
#define UV_GLOBAL_MMR64_NASID_BITS(n) \
((unsigned long)UV_SNASID(n) << UV_GLOBAL_MMR64_SNASID_SHIFT)
#define UV_APIC_NASID_SHIFT 6
/*
* Extract a NASID from an APICID (full apicid, not processor subset)
*/
static inline int uv_apicid_to_nasid(int apicid)
{
return (UV_NASID(apicid >> UV_APIC_NASID_SHIFT));
}
/*
* Access global MMRs using the low memory MMR32 space. This region supports
* faster MMR access but not all MMRs are accessible in this space.
*/
static inline unsigned long *uv_global_mmr32_address(int nasid,
unsigned long offset)
{
return __va(UV_GLOBAL_MMR32_BASE |
UV_GLOBAL_MMR32_NASID_BITS(nasid) | offset);
}
static inline void uv_write_global_mmr32(int nasid, unsigned long offset,
unsigned long val)
{
*uv_global_mmr32_address(nasid, offset) = val;
}
static inline unsigned long uv_read_global_mmr32(int nasid,
unsigned long offset)
{
return *uv_global_mmr32_address(nasid, offset);
}
/*
* Access Global MMR space using the MMR space located at the top of physical
* memory.
*/
static inline unsigned long *uv_global_mmr64_address(int nasid,
unsigned long offset)
{
return __va(UV_GLOBAL_MMR64_BASE |
UV_GLOBAL_MMR64_NASID_BITS(nasid) | offset);
}
static inline void uv_write_global_mmr64(int nasid, unsigned long offset,
unsigned long val)
{
*uv_global_mmr64_address(nasid, offset) = val;
}
static inline unsigned long uv_read_global_mmr64(int nasid,
unsigned long offset)
{
return *uv_global_mmr64_address(nasid, offset);
}
/*
* Access node local MMRs. Faster than using global space but only local MMRs
* are accessible.
*/
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
return __va(UV_LOCAL_MMR_BASE | offset);
}
static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
return *uv_local_mmr_address(offset);
}
static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
*uv_local_mmr_address(offset) = val;
}
/*
* Structures and definitions for converting between cpu, node, and blade
* numbers.
*/
struct uv_blade_info {
unsigned short nr_posible_cpus;
unsigned short nr_online_cpus;
unsigned short nasid;
};
struct uv_blade_info *uv_blade_info;
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
return uv_hub_info->blade_processor_id;
}
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
return uv_hub_info->numa_blade_id;
}
/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
return uv_cpu_to_blade[cpu];
}
/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
return uv_node_to_blade[nid];
}
/* Convert a blade id to the NASID of the blade */
static inline int uv_blade_to_nasid(int bid)
{
return uv_blade_info[bid].nasid;
}
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
return uv_blade_info[bid].nr_posible_cpus;
}
/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
return uv_blade_info[bid].nr_online_cpus;
}
/* Convert a cpu id to the NASID of the blade containing the cpu */
static inline int uv_cpu_to_nasid(int cpu)
{
return uv_blade_info[uv_cpu_to_blade_id(cpu)].nasid;
}
/* Convert a node number to the NASID of the blade */
static inline int uv_node_to_nasid(int nid)
{
return uv_blade_info[uv_node_to_blade_id(nid)].nasid;
}
/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
return uv_possible_blades;
}
#endif /* __ASM_X86_UV_HUB__ */