| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| */ |
| #include <linux/kallsyms.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/hardirq.h> |
| #include <linux/kdebug.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/kexec.h> |
| #include <linux/sysfs.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/stacktrace.h> |
| |
| #include "dumpstack.h" |
| |
| #define N_EXCEPTION_STACKS_END \ |
| (N_EXCEPTION_STACKS + DEBUG_STKSZ/EXCEPTION_STKSZ - 2) |
| |
| static char x86_stack_ids[][8] = { |
| [ DEBUG_STACK-1 ] = "#DB", |
| [ NMI_STACK-1 ] = "NMI", |
| [ DOUBLEFAULT_STACK-1 ] = "#DF", |
| [ STACKFAULT_STACK-1 ] = "#SS", |
| [ MCE_STACK-1 ] = "#MC", |
| #if DEBUG_STKSZ > EXCEPTION_STKSZ |
| [ N_EXCEPTION_STACKS ... |
| N_EXCEPTION_STACKS_END ] = "#DB[?]" |
| #endif |
| }; |
| |
| int x86_is_stack_id(int id, char *name) |
| { |
| return x86_stack_ids[id - 1] == name; |
| } |
| |
| static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack, |
| unsigned *usedp, char **idp) |
| { |
| unsigned k; |
| |
| /* |
| * Iterate over all exception stacks, and figure out whether |
| * 'stack' is in one of them: |
| */ |
| for (k = 0; k < N_EXCEPTION_STACKS; k++) { |
| unsigned long end = per_cpu(orig_ist, cpu).ist[k]; |
| /* |
| * Is 'stack' above this exception frame's end? |
| * If yes then skip to the next frame. |
| */ |
| if (stack >= end) |
| continue; |
| /* |
| * Is 'stack' above this exception frame's start address? |
| * If yes then we found the right frame. |
| */ |
| if (stack >= end - EXCEPTION_STKSZ) { |
| /* |
| * Make sure we only iterate through an exception |
| * stack once. If it comes up for the second time |
| * then there's something wrong going on - just |
| * break out and return NULL: |
| */ |
| if (*usedp & (1U << k)) |
| break; |
| *usedp |= 1U << k; |
| *idp = x86_stack_ids[k]; |
| return (unsigned long *)end; |
| } |
| /* |
| * If this is a debug stack, and if it has a larger size than |
| * the usual exception stacks, then 'stack' might still |
| * be within the lower portion of the debug stack: |
| */ |
| #if DEBUG_STKSZ > EXCEPTION_STKSZ |
| if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) { |
| unsigned j = N_EXCEPTION_STACKS - 1; |
| |
| /* |
| * Black magic. A large debug stack is composed of |
| * multiple exception stack entries, which we |
| * iterate through now. Dont look: |
| */ |
| do { |
| ++j; |
| end -= EXCEPTION_STKSZ; |
| x86_stack_ids[j][4] = '1' + |
| (j - N_EXCEPTION_STACKS); |
| } while (stack < end - EXCEPTION_STKSZ); |
| if (*usedp & (1U << j)) |
| break; |
| *usedp |= 1U << j; |
| *idp = x86_stack_ids[j]; |
| return (unsigned long *)end; |
| } |
| #endif |
| } |
| return NULL; |
| } |
| |
| static inline int |
| in_irq_stack(unsigned long *stack, unsigned long *irq_stack, |
| unsigned long *irq_stack_end) |
| { |
| return (stack >= irq_stack && stack < irq_stack_end); |
| } |
| |
| /* |
| * We are returning from the irq stack and go to the previous one. |
| * If the previous stack is also in the irq stack, then bp in the first |
| * frame of the irq stack points to the previous, interrupted one. |
| * Otherwise we have another level of indirection: We first save |
| * the bp of the previous stack, then we switch the stack to the irq one |
| * and save a new bp that links to the previous one. |
| * (See save_args()) |
| */ |
| static inline unsigned long |
| fixup_bp_irq_link(unsigned long bp, unsigned long *stack, |
| unsigned long *irq_stack, unsigned long *irq_stack_end) |
| { |
| #ifdef CONFIG_FRAME_POINTER |
| struct stack_frame *frame = (struct stack_frame *)bp; |
| |
| if (!in_irq_stack(stack, irq_stack, irq_stack_end)) |
| return (unsigned long)frame->next_frame; |
| #endif |
| return bp; |
| } |
| |
| /* |
| * x86-64 can have up to three kernel stacks: |
| * process stack |
| * interrupt stack |
| * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack |
| */ |
| |
| void dump_trace(struct task_struct *task, struct pt_regs *regs, |
| unsigned long *stack, unsigned long bp, |
| const struct stacktrace_ops *ops, void *data) |
| { |
| const unsigned cpu = get_cpu(); |
| unsigned long *irq_stack_end = |
| (unsigned long *)per_cpu(irq_stack_ptr, cpu); |
| unsigned used = 0; |
| struct thread_info *tinfo; |
| int graph = 0; |
| |
| if (!task) |
| task = current; |
| |
| if (!stack) { |
| unsigned long dummy; |
| stack = &dummy; |
| if (task && task != current) |
| stack = (unsigned long *)task->thread.sp; |
| } |
| |
| #ifdef CONFIG_FRAME_POINTER |
| if (!bp) { |
| if (task == current) { |
| /* Grab bp right from our regs */ |
| get_bp(bp); |
| } else { |
| /* bp is the last reg pushed by switch_to */ |
| bp = *(unsigned long *) task->thread.sp; |
| } |
| } |
| #endif |
| |
| /* |
| * Print function call entries in all stacks, starting at the |
| * current stack address. If the stacks consist of nested |
| * exceptions |
| */ |
| tinfo = task_thread_info(task); |
| for (;;) { |
| char *id; |
| unsigned long *estack_end; |
| estack_end = in_exception_stack(cpu, (unsigned long)stack, |
| &used, &id); |
| |
| if (estack_end) { |
| if (ops->stack(data, id) < 0) |
| break; |
| |
| bp = ops->walk_stack(tinfo, stack, bp, ops, |
| data, estack_end, &graph); |
| ops->stack(data, "<EOE>"); |
| /* |
| * We link to the next stack via the |
| * second-to-last pointer (index -2 to end) in the |
| * exception stack: |
| */ |
| stack = (unsigned long *) estack_end[-2]; |
| continue; |
| } |
| if (irq_stack_end) { |
| unsigned long *irq_stack; |
| irq_stack = irq_stack_end - |
| (IRQ_STACK_SIZE - 64) / sizeof(*irq_stack); |
| |
| if (in_irq_stack(stack, irq_stack, irq_stack_end)) { |
| if (ops->stack(data, "IRQ") < 0) |
| break; |
| bp = print_context_stack(tinfo, stack, bp, |
| ops, data, irq_stack_end, &graph); |
| /* |
| * We link to the next stack (which would be |
| * the process stack normally) the last |
| * pointer (index -1 to end) in the IRQ stack: |
| */ |
| stack = (unsigned long *) (irq_stack_end[-1]); |
| bp = fixup_bp_irq_link(bp, stack, irq_stack, |
| irq_stack_end); |
| irq_stack_end = NULL; |
| ops->stack(data, "EOI"); |
| continue; |
| } |
| } |
| break; |
| } |
| |
| /* |
| * This handles the process stack: |
| */ |
| bp = print_context_stack(tinfo, stack, bp, ops, data, NULL, &graph); |
| put_cpu(); |
| } |
| EXPORT_SYMBOL(dump_trace); |
| |
| void |
| show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs, |
| unsigned long *sp, unsigned long bp, char *log_lvl) |
| { |
| unsigned long *irq_stack_end; |
| unsigned long *irq_stack; |
| unsigned long *stack; |
| int cpu; |
| int i; |
| |
| preempt_disable(); |
| cpu = smp_processor_id(); |
| |
| irq_stack_end = (unsigned long *)(per_cpu(irq_stack_ptr, cpu)); |
| irq_stack = (unsigned long *)(per_cpu(irq_stack_ptr, cpu) - IRQ_STACK_SIZE); |
| |
| /* |
| * Debugging aid: "show_stack(NULL, NULL);" prints the |
| * back trace for this cpu: |
| */ |
| if (sp == NULL) { |
| if (task) |
| sp = (unsigned long *)task->thread.sp; |
| else |
| sp = (unsigned long *)&sp; |
| } |
| |
| stack = sp; |
| for (i = 0; i < kstack_depth_to_print; i++) { |
| if (stack >= irq_stack && stack <= irq_stack_end) { |
| if (stack == irq_stack_end) { |
| stack = (unsigned long *) (irq_stack_end[-1]); |
| printk(" <EOI> "); |
| } |
| } else { |
| if (((long) stack & (THREAD_SIZE-1)) == 0) |
| break; |
| } |
| if (i && ((i % STACKSLOTS_PER_LINE) == 0)) |
| printk("\n%s", log_lvl); |
| printk(" %016lx", *stack++); |
| touch_nmi_watchdog(); |
| } |
| preempt_enable(); |
| |
| printk("\n"); |
| show_trace_log_lvl(task, regs, sp, bp, log_lvl); |
| } |
| |
| void show_registers(struct pt_regs *regs) |
| { |
| int i; |
| unsigned long sp; |
| const int cpu = smp_processor_id(); |
| struct task_struct *cur = current; |
| |
| sp = regs->sp; |
| printk("CPU %d ", cpu); |
| __show_regs(regs, 1); |
| printk("Process %s (pid: %d, threadinfo %p, task %p)\n", |
| cur->comm, cur->pid, task_thread_info(cur), cur); |
| |
| /* |
| * When in-kernel, we also print out the stack and code at the |
| * time of the fault.. |
| */ |
| if (!user_mode(regs)) { |
| unsigned int code_prologue = code_bytes * 43 / 64; |
| unsigned int code_len = code_bytes; |
| unsigned char c; |
| u8 *ip; |
| |
| printk(KERN_EMERG "Stack:\n"); |
| show_stack_log_lvl(NULL, regs, (unsigned long *)sp, |
| regs->bp, KERN_EMERG); |
| |
| printk(KERN_EMERG "Code: "); |
| |
| ip = (u8 *)regs->ip - code_prologue; |
| if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) { |
| /* try starting at IP */ |
| ip = (u8 *)regs->ip; |
| code_len = code_len - code_prologue + 1; |
| } |
| for (i = 0; i < code_len; i++, ip++) { |
| if (ip < (u8 *)PAGE_OFFSET || |
| probe_kernel_address(ip, c)) { |
| printk(" Bad RIP value."); |
| break; |
| } |
| if (ip == (u8 *)regs->ip) |
| printk("<%02x> ", c); |
| else |
| printk("%02x ", c); |
| } |
| } |
| printk("\n"); |
| } |
| |
| int is_valid_bugaddr(unsigned long ip) |
| { |
| unsigned short ud2; |
| |
| if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2))) |
| return 0; |
| |
| return ud2 == 0x0b0f; |
| } |