| /* |
| * Versatile Express Serial Power Controller (SPC) support |
| * |
| * Copyright (C) 2013 ARM Ltd. |
| * |
| * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com> |
| * Achin Gupta <achin.gupta@arm.com> |
| * Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/clk-provider.h> |
| #include <linux/clkdev.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/slab.h> |
| #include <linux/semaphore.h> |
| |
| #include <asm/cacheflush.h> |
| |
| #define SPCLOG "vexpress-spc: " |
| |
| #define PERF_LVL_A15 0x00 |
| #define PERF_REQ_A15 0x04 |
| #define PERF_LVL_A7 0x08 |
| #define PERF_REQ_A7 0x0c |
| #define COMMS 0x10 |
| #define COMMS_REQ 0x14 |
| #define PWC_STATUS 0x18 |
| #define PWC_FLAG 0x1c |
| |
| /* SPC wake-up IRQs status and mask */ |
| #define WAKE_INT_MASK 0x24 |
| #define WAKE_INT_RAW 0x28 |
| #define WAKE_INT_STAT 0x2c |
| /* SPC power down registers */ |
| #define A15_PWRDN_EN 0x30 |
| #define A7_PWRDN_EN 0x34 |
| /* SPC per-CPU mailboxes */ |
| #define A15_BX_ADDR0 0x68 |
| #define A7_BX_ADDR0 0x78 |
| |
| /* SPC CPU/cluster reset statue */ |
| #define STANDBYWFI_STAT 0x3c |
| #define STANDBYWFI_STAT_A15_CPU_MASK(cpu) (1 << (cpu)) |
| #define STANDBYWFI_STAT_A7_CPU_MASK(cpu) (1 << (3 + (cpu))) |
| |
| /* SPC system config interface registers */ |
| #define SYSCFG_WDATA 0x70 |
| #define SYSCFG_RDATA 0x74 |
| |
| /* A15/A7 OPP virtual register base */ |
| #define A15_PERFVAL_BASE 0xC10 |
| #define A7_PERFVAL_BASE 0xC30 |
| |
| /* Config interface control bits */ |
| #define SYSCFG_START (1 << 31) |
| #define SYSCFG_SCC (6 << 20) |
| #define SYSCFG_STAT (14 << 20) |
| |
| /* wake-up interrupt masks */ |
| #define GBL_WAKEUP_INT_MSK (0x3 << 10) |
| |
| /* TC2 static dual-cluster configuration */ |
| #define MAX_CLUSTERS 2 |
| |
| /* |
| * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS |
| * operation, the operation could start just before jiffie is about |
| * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz |
| */ |
| #define TIMEOUT_US 20000 |
| |
| #define MAX_OPPS 8 |
| #define CA15_DVFS 0 |
| #define CA7_DVFS 1 |
| #define SPC_SYS_CFG 2 |
| #define STAT_COMPLETE(type) ((1 << 0) << (type << 2)) |
| #define STAT_ERR(type) ((1 << 1) << (type << 2)) |
| #define RESPONSE_MASK(type) (STAT_COMPLETE(type) | STAT_ERR(type)) |
| |
| struct ve_spc_opp { |
| unsigned long freq; |
| unsigned long u_volt; |
| }; |
| |
| struct ve_spc_drvdata { |
| void __iomem *baseaddr; |
| /* |
| * A15s cluster identifier |
| * It corresponds to A15 processors MPIDR[15:8] bitfield |
| */ |
| u32 a15_clusid; |
| uint32_t cur_rsp_mask; |
| uint32_t cur_rsp_stat; |
| struct semaphore sem; |
| struct completion done; |
| struct ve_spc_opp *opps[MAX_CLUSTERS]; |
| int num_opps[MAX_CLUSTERS]; |
| }; |
| |
| static struct ve_spc_drvdata *info; |
| |
| static inline bool cluster_is_a15(u32 cluster) |
| { |
| return cluster == info->a15_clusid; |
| } |
| |
| /** |
| * ve_spc_global_wakeup_irq() |
| * |
| * Function to set/clear global wakeup IRQs. Not protected by locking since |
| * it might be used in code paths where normal cacheable locks are not |
| * working. Locking must be provided by the caller to ensure atomicity. |
| * |
| * @set: if true, global wake-up IRQs are set, if false they are cleared |
| */ |
| void ve_spc_global_wakeup_irq(bool set) |
| { |
| u32 reg; |
| |
| reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK); |
| |
| if (set) |
| reg |= GBL_WAKEUP_INT_MSK; |
| else |
| reg &= ~GBL_WAKEUP_INT_MSK; |
| |
| writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK); |
| } |
| |
| /** |
| * ve_spc_cpu_wakeup_irq() |
| * |
| * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since |
| * it might be used in code paths where normal cacheable locks are not |
| * working. Locking must be provided by the caller to ensure atomicity. |
| * |
| * @cluster: mpidr[15:8] bitfield describing cluster affinity level |
| * @cpu: mpidr[7:0] bitfield describing cpu affinity level |
| * @set: if true, wake-up IRQs are set, if false they are cleared |
| */ |
| void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set) |
| { |
| u32 mask, reg; |
| |
| if (cluster >= MAX_CLUSTERS) |
| return; |
| |
| mask = 1 << cpu; |
| |
| if (!cluster_is_a15(cluster)) |
| mask <<= 4; |
| |
| reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK); |
| |
| if (set) |
| reg |= mask; |
| else |
| reg &= ~mask; |
| |
| writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK); |
| } |
| |
| /** |
| * ve_spc_set_resume_addr() - set the jump address used for warm boot |
| * |
| * @cluster: mpidr[15:8] bitfield describing cluster affinity level |
| * @cpu: mpidr[7:0] bitfield describing cpu affinity level |
| * @addr: physical resume address |
| */ |
| void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr) |
| { |
| void __iomem *baseaddr; |
| |
| if (cluster >= MAX_CLUSTERS) |
| return; |
| |
| if (cluster_is_a15(cluster)) |
| baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2); |
| else |
| baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2); |
| |
| writel_relaxed(addr, baseaddr); |
| } |
| |
| /** |
| * ve_spc_powerdown() |
| * |
| * Function to enable/disable cluster powerdown. Not protected by locking |
| * since it might be used in code paths where normal cacheable locks are not |
| * working. Locking must be provided by the caller to ensure atomicity. |
| * |
| * @cluster: mpidr[15:8] bitfield describing cluster affinity level |
| * @enable: if true enables powerdown, if false disables it |
| */ |
| void ve_spc_powerdown(u32 cluster, bool enable) |
| { |
| u32 pwdrn_reg; |
| |
| if (cluster >= MAX_CLUSTERS) |
| return; |
| |
| pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN; |
| writel_relaxed(enable, info->baseaddr + pwdrn_reg); |
| } |
| |
| static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster) |
| { |
| return cluster_is_a15(cluster) ? |
| STANDBYWFI_STAT_A15_CPU_MASK(cpu) |
| : STANDBYWFI_STAT_A7_CPU_MASK(cpu); |
| } |
| |
| /** |
| * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster) |
| * |
| * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster |
| * @cluster: mpidr[15:8] bitfield describing cluster affinity level |
| * |
| * @return: non-zero if and only if the specified CPU is in WFI |
| * |
| * Take care when interpreting the result of this function: a CPU might |
| * be in WFI temporarily due to idle, and is not necessarily safely |
| * parked. |
| */ |
| int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster) |
| { |
| int ret; |
| u32 mask = standbywfi_cpu_mask(cpu, cluster); |
| |
| if (cluster >= MAX_CLUSTERS) |
| return 1; |
| |
| ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT); |
| |
| pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n", |
| __func__, STANDBYWFI_STAT, ret, mask); |
| |
| return ret & mask; |
| } |
| |
| static int ve_spc_get_performance(int cluster, u32 *freq) |
| { |
| struct ve_spc_opp *opps = info->opps[cluster]; |
| u32 perf_cfg_reg = 0; |
| u32 perf; |
| |
| perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7; |
| |
| perf = readl_relaxed(info->baseaddr + perf_cfg_reg); |
| if (perf >= info->num_opps[cluster]) |
| return -EINVAL; |
| |
| opps += perf; |
| *freq = opps->freq; |
| |
| return 0; |
| } |
| |
| /* find closest match to given frequency in OPP table */ |
| static int ve_spc_round_performance(int cluster, u32 freq) |
| { |
| int idx, max_opp = info->num_opps[cluster]; |
| struct ve_spc_opp *opps = info->opps[cluster]; |
| u32 fmin = 0, fmax = ~0, ftmp; |
| |
| freq /= 1000; /* OPP entries in kHz */ |
| for (idx = 0; idx < max_opp; idx++, opps++) { |
| ftmp = opps->freq; |
| if (ftmp >= freq) { |
| if (ftmp <= fmax) |
| fmax = ftmp; |
| } else { |
| if (ftmp >= fmin) |
| fmin = ftmp; |
| } |
| } |
| if (fmax != ~0) |
| return fmax * 1000; |
| else |
| return fmin * 1000; |
| } |
| |
| static int ve_spc_find_performance_index(int cluster, u32 freq) |
| { |
| int idx, max_opp = info->num_opps[cluster]; |
| struct ve_spc_opp *opps = info->opps[cluster]; |
| |
| for (idx = 0; idx < max_opp; idx++, opps++) |
| if (opps->freq == freq) |
| break; |
| return (idx == max_opp) ? -EINVAL : idx; |
| } |
| |
| static int ve_spc_waitforcompletion(int req_type) |
| { |
| int ret = wait_for_completion_interruptible_timeout( |
| &info->done, usecs_to_jiffies(TIMEOUT_US)); |
| if (ret == 0) |
| ret = -ETIMEDOUT; |
| else if (ret > 0) |
| ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO; |
| return ret; |
| } |
| |
| static int ve_spc_set_performance(int cluster, u32 freq) |
| { |
| u32 perf_cfg_reg, perf_stat_reg; |
| int ret, perf, req_type; |
| |
| if (cluster_is_a15(cluster)) { |
| req_type = CA15_DVFS; |
| perf_cfg_reg = PERF_LVL_A15; |
| perf_stat_reg = PERF_REQ_A15; |
| } else { |
| req_type = CA7_DVFS; |
| perf_cfg_reg = PERF_LVL_A7; |
| perf_stat_reg = PERF_REQ_A7; |
| } |
| |
| perf = ve_spc_find_performance_index(cluster, freq); |
| |
| if (perf < 0) |
| return perf; |
| |
| if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US))) |
| return -ETIME; |
| |
| init_completion(&info->done); |
| info->cur_rsp_mask = RESPONSE_MASK(req_type); |
| |
| writel(perf, info->baseaddr + perf_cfg_reg); |
| ret = ve_spc_waitforcompletion(req_type); |
| |
| info->cur_rsp_mask = 0; |
| up(&info->sem); |
| |
| return ret; |
| } |
| |
| static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data) |
| { |
| int ret; |
| |
| if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US))) |
| return -ETIME; |
| |
| init_completion(&info->done); |
| info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG); |
| |
| /* Set the control value */ |
| writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS); |
| ret = ve_spc_waitforcompletion(SPC_SYS_CFG); |
| |
| if (ret == 0) |
| *data = readl(info->baseaddr + SYSCFG_RDATA); |
| |
| info->cur_rsp_mask = 0; |
| up(&info->sem); |
| |
| return ret; |
| } |
| |
| static irqreturn_t ve_spc_irq_handler(int irq, void *data) |
| { |
| struct ve_spc_drvdata *drv_data = data; |
| uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS); |
| |
| if (info->cur_rsp_mask & status) { |
| info->cur_rsp_stat = status; |
| complete(&drv_data->done); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * +--------------------------+ |
| * | 31 20 | 19 0 | |
| * +--------------------------+ |
| * | m_volt | freq(kHz) | |
| * +--------------------------+ |
| */ |
| #define MULT_FACTOR 20 |
| #define VOLT_SHIFT 20 |
| #define FREQ_MASK (0xFFFFF) |
| static int ve_spc_populate_opps(uint32_t cluster) |
| { |
| uint32_t data = 0, off, ret, idx; |
| struct ve_spc_opp *opps; |
| |
| opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL); |
| if (!opps) |
| return -ENOMEM; |
| |
| info->opps[cluster] = opps; |
| |
| off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE; |
| for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) { |
| ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data); |
| if (!ret) { |
| opps->freq = (data & FREQ_MASK) * MULT_FACTOR; |
| opps->u_volt = (data >> VOLT_SHIFT) * 1000; |
| } else { |
| break; |
| } |
| } |
| info->num_opps[cluster] = idx; |
| |
| return ret; |
| } |
| |
| static int ve_init_opp_table(struct device *cpu_dev) |
| { |
| int cluster = topology_physical_package_id(cpu_dev->id); |
| int idx, ret = 0, max_opp = info->num_opps[cluster]; |
| struct ve_spc_opp *opps = info->opps[cluster]; |
| |
| for (idx = 0; idx < max_opp; idx++, opps++) { |
| ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt); |
| if (ret) { |
| dev_warn(cpu_dev, "failed to add opp %lu %lu\n", |
| opps->freq, opps->u_volt); |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq) |
| { |
| int ret; |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) { |
| pr_err(SPCLOG "unable to allocate mem\n"); |
| return -ENOMEM; |
| } |
| |
| info->baseaddr = baseaddr; |
| info->a15_clusid = a15_clusid; |
| |
| if (irq <= 0) { |
| pr_err(SPCLOG "Invalid IRQ %d\n", irq); |
| kfree(info); |
| return -EINVAL; |
| } |
| |
| init_completion(&info->done); |
| |
| readl_relaxed(info->baseaddr + PWC_STATUS); |
| |
| ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH |
| | IRQF_ONESHOT, "vexpress-spc", info); |
| if (ret) { |
| pr_err(SPCLOG "IRQ %d request failed\n", irq); |
| kfree(info); |
| return -ENODEV; |
| } |
| |
| sema_init(&info->sem, 1); |
| /* |
| * Multi-cluster systems may need this data when non-coherent, during |
| * cluster power-up/power-down. Make sure driver info reaches main |
| * memory. |
| */ |
| sync_cache_w(info); |
| sync_cache_w(&info); |
| |
| return 0; |
| } |
| |
| struct clk_spc { |
| struct clk_hw hw; |
| int cluster; |
| }; |
| |
| #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw) |
| static unsigned long spc_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct clk_spc *spc = to_clk_spc(hw); |
| u32 freq; |
| |
| if (ve_spc_get_performance(spc->cluster, &freq)) |
| return -EIO; |
| |
| return freq * 1000; |
| } |
| |
| static long spc_round_rate(struct clk_hw *hw, unsigned long drate, |
| unsigned long *parent_rate) |
| { |
| struct clk_spc *spc = to_clk_spc(hw); |
| |
| return ve_spc_round_performance(spc->cluster, drate); |
| } |
| |
| static int spc_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct clk_spc *spc = to_clk_spc(hw); |
| |
| return ve_spc_set_performance(spc->cluster, rate / 1000); |
| } |
| |
| static struct clk_ops clk_spc_ops = { |
| .recalc_rate = spc_recalc_rate, |
| .round_rate = spc_round_rate, |
| .set_rate = spc_set_rate, |
| }; |
| |
| static struct clk *ve_spc_clk_register(struct device *cpu_dev) |
| { |
| struct clk_init_data init; |
| struct clk_spc *spc; |
| |
| spc = kzalloc(sizeof(*spc), GFP_KERNEL); |
| if (!spc) { |
| pr_err("could not allocate spc clk\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| spc->hw.init = &init; |
| spc->cluster = topology_physical_package_id(cpu_dev->id); |
| |
| init.name = dev_name(cpu_dev); |
| init.ops = &clk_spc_ops; |
| init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE; |
| init.num_parents = 0; |
| |
| return devm_clk_register(cpu_dev, &spc->hw); |
| } |
| |
| static int __init ve_spc_clk_init(void) |
| { |
| int cpu; |
| struct clk *clk; |
| |
| if (!info) |
| return 0; /* Continue only if SPC is initialised */ |
| |
| if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) { |
| pr_err("failed to build OPP table\n"); |
| return -ENODEV; |
| } |
| |
| for_each_possible_cpu(cpu) { |
| struct device *cpu_dev = get_cpu_device(cpu); |
| if (!cpu_dev) { |
| pr_warn("failed to get cpu%d device\n", cpu); |
| continue; |
| } |
| clk = ve_spc_clk_register(cpu_dev); |
| if (IS_ERR(clk)) { |
| pr_warn("failed to register cpu%d clock\n", cpu); |
| continue; |
| } |
| if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) { |
| pr_warn("failed to register cpu%d clock lookup\n", cpu); |
| continue; |
| } |
| |
| if (ve_init_opp_table(cpu_dev)) |
| pr_warn("failed to initialise cpu%d opp table\n", cpu); |
| } |
| |
| platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0); |
| return 0; |
| } |
| module_init(ve_spc_clk_init); |