| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| /** |
| * DOC: Wireless regulatory infrastructure |
| * |
| * The usual implementation is for a driver to read a device EEPROM to |
| * determine which regulatory domain it should be operating under, then |
| * looking up the allowable channels in a driver-local table and finally |
| * registering those channels in the wiphy structure. |
| * |
| * Another set of compliance enforcement is for drivers to use their |
| * own compliance limits which can be stored on the EEPROM. The host |
| * driver or firmware may ensure these are used. |
| * |
| * In addition to all this we provide an extra layer of regulatory |
| * conformance. For drivers which do not have any regulatory |
| * information CRDA provides the complete regulatory solution. |
| * For others it provides a community effort on further restrictions |
| * to enhance compliance. |
| * |
| * Note: When number of rules --> infinity we will not be able to |
| * index on alpha2 any more, instead we'll probably have to |
| * rely on some SHA1 checksum of the regdomain for example. |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/random.h> |
| #include <linux/nl80211.h> |
| #include <linux/platform_device.h> |
| #include <net/wireless.h> |
| #include <net/cfg80211.h> |
| #include "core.h" |
| #include "reg.h" |
| |
| /* Receipt of information from last regulatory request */ |
| static struct regulatory_request *last_request; |
| |
| /* To trigger userspace events */ |
| static struct platform_device *reg_pdev; |
| |
| /* Keep the ordering from large to small */ |
| static u32 supported_bandwidths[] = { |
| MHZ_TO_KHZ(40), |
| MHZ_TO_KHZ(20), |
| }; |
| |
| /* Central wireless core regulatory domains, we only need two, |
| * the current one and a world regulatory domain in case we have no |
| * information to give us an alpha2 */ |
| static const struct ieee80211_regdomain *cfg80211_regdomain; |
| |
| /* We use this as a place for the rd structure built from the |
| * last parsed country IE to rest until CRDA gets back to us with |
| * what it thinks should apply for the same country */ |
| static const struct ieee80211_regdomain *country_ie_regdomain; |
| |
| /* We keep a static world regulatory domain in case of the absence of CRDA */ |
| static const struct ieee80211_regdomain world_regdom = { |
| .n_reg_rules = 1, |
| .alpha2 = "00", |
| .reg_rules = { |
| REG_RULE(2412-10, 2462+10, 40, 6, 20, |
| NL80211_RRF_PASSIVE_SCAN | |
| NL80211_RRF_NO_IBSS), |
| } |
| }; |
| |
| static const struct ieee80211_regdomain *cfg80211_world_regdom = |
| &world_regdom; |
| |
| #ifdef CONFIG_WIRELESS_OLD_REGULATORY |
| static char *ieee80211_regdom = "US"; |
| module_param(ieee80211_regdom, charp, 0444); |
| MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); |
| |
| /* We assume 40 MHz bandwidth for the old regulatory work. |
| * We make emphasis we are using the exact same frequencies |
| * as before */ |
| |
| static const struct ieee80211_regdomain us_regdom = { |
| .n_reg_rules = 6, |
| .alpha2 = "US", |
| .reg_rules = { |
| /* IEEE 802.11b/g, channels 1..11 */ |
| REG_RULE(2412-10, 2462+10, 40, 6, 27, 0), |
| /* IEEE 802.11a, channel 36 */ |
| REG_RULE(5180-10, 5180+10, 40, 6, 23, 0), |
| /* IEEE 802.11a, channel 40 */ |
| REG_RULE(5200-10, 5200+10, 40, 6, 23, 0), |
| /* IEEE 802.11a, channel 44 */ |
| REG_RULE(5220-10, 5220+10, 40, 6, 23, 0), |
| /* IEEE 802.11a, channels 48..64 */ |
| REG_RULE(5240-10, 5320+10, 40, 6, 23, 0), |
| /* IEEE 802.11a, channels 149..165, outdoor */ |
| REG_RULE(5745-10, 5825+10, 40, 6, 30, 0), |
| } |
| }; |
| |
| static const struct ieee80211_regdomain jp_regdom = { |
| .n_reg_rules = 3, |
| .alpha2 = "JP", |
| .reg_rules = { |
| /* IEEE 802.11b/g, channels 1..14 */ |
| REG_RULE(2412-10, 2484+10, 40, 6, 20, 0), |
| /* IEEE 802.11a, channels 34..48 */ |
| REG_RULE(5170-10, 5240+10, 40, 6, 20, |
| NL80211_RRF_PASSIVE_SCAN), |
| /* IEEE 802.11a, channels 52..64 */ |
| REG_RULE(5260-10, 5320+10, 40, 6, 20, |
| NL80211_RRF_NO_IBSS | |
| NL80211_RRF_DFS), |
| } |
| }; |
| |
| static const struct ieee80211_regdomain eu_regdom = { |
| .n_reg_rules = 6, |
| /* This alpha2 is bogus, we leave it here just for stupid |
| * backward compatibility */ |
| .alpha2 = "EU", |
| .reg_rules = { |
| /* IEEE 802.11b/g, channels 1..13 */ |
| REG_RULE(2412-10, 2472+10, 40, 6, 20, 0), |
| /* IEEE 802.11a, channel 36 */ |
| REG_RULE(5180-10, 5180+10, 40, 6, 23, |
| NL80211_RRF_PASSIVE_SCAN), |
| /* IEEE 802.11a, channel 40 */ |
| REG_RULE(5200-10, 5200+10, 40, 6, 23, |
| NL80211_RRF_PASSIVE_SCAN), |
| /* IEEE 802.11a, channel 44 */ |
| REG_RULE(5220-10, 5220+10, 40, 6, 23, |
| NL80211_RRF_PASSIVE_SCAN), |
| /* IEEE 802.11a, channels 48..64 */ |
| REG_RULE(5240-10, 5320+10, 40, 6, 20, |
| NL80211_RRF_NO_IBSS | |
| NL80211_RRF_DFS), |
| /* IEEE 802.11a, channels 100..140 */ |
| REG_RULE(5500-10, 5700+10, 40, 6, 30, |
| NL80211_RRF_NO_IBSS | |
| NL80211_RRF_DFS), |
| } |
| }; |
| |
| static const struct ieee80211_regdomain *static_regdom(char *alpha2) |
| { |
| if (alpha2[0] == 'U' && alpha2[1] == 'S') |
| return &us_regdom; |
| if (alpha2[0] == 'J' && alpha2[1] == 'P') |
| return &jp_regdom; |
| if (alpha2[0] == 'E' && alpha2[1] == 'U') |
| return &eu_regdom; |
| /* Default, as per the old rules */ |
| return &us_regdom; |
| } |
| |
| static bool is_old_static_regdom(const struct ieee80211_regdomain *rd) |
| { |
| if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom) |
| return true; |
| return false; |
| } |
| #else |
| static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd) |
| { |
| return false; |
| } |
| #endif |
| |
| static void reset_regdomains(void) |
| { |
| /* avoid freeing static information or freeing something twice */ |
| if (cfg80211_regdomain == cfg80211_world_regdom) |
| cfg80211_regdomain = NULL; |
| if (cfg80211_world_regdom == &world_regdom) |
| cfg80211_world_regdom = NULL; |
| if (cfg80211_regdomain == &world_regdom) |
| cfg80211_regdomain = NULL; |
| if (is_old_static_regdom(cfg80211_regdomain)) |
| cfg80211_regdomain = NULL; |
| |
| kfree(cfg80211_regdomain); |
| kfree(cfg80211_world_regdom); |
| |
| cfg80211_world_regdom = &world_regdom; |
| cfg80211_regdomain = NULL; |
| } |
| |
| /* Dynamic world regulatory domain requested by the wireless |
| * core upon initialization */ |
| static void update_world_regdomain(const struct ieee80211_regdomain *rd) |
| { |
| BUG_ON(!last_request); |
| |
| reset_regdomains(); |
| |
| cfg80211_world_regdom = rd; |
| cfg80211_regdomain = rd; |
| } |
| |
| bool is_world_regdom(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| if (alpha2[0] == '0' && alpha2[1] == '0') |
| return true; |
| return false; |
| } |
| |
| static bool is_alpha2_set(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| if (alpha2[0] != 0 && alpha2[1] != 0) |
| return true; |
| return false; |
| } |
| |
| static bool is_alpha_upper(char letter) |
| { |
| /* ASCII A - Z */ |
| if (letter >= 65 && letter <= 90) |
| return true; |
| return false; |
| } |
| |
| static bool is_unknown_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| /* Special case where regulatory domain was built by driver |
| * but a specific alpha2 cannot be determined */ |
| if (alpha2[0] == '9' && alpha2[1] == '9') |
| return true; |
| return false; |
| } |
| |
| static bool is_intersected_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| /* Special case where regulatory domain is the |
| * result of an intersection between two regulatory domain |
| * structures */ |
| if (alpha2[0] == '9' && alpha2[1] == '8') |
| return true; |
| return false; |
| } |
| |
| static bool is_an_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1])) |
| return true; |
| return false; |
| } |
| |
| static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) |
| { |
| if (!alpha2_x || !alpha2_y) |
| return false; |
| if (alpha2_x[0] == alpha2_y[0] && |
| alpha2_x[1] == alpha2_y[1]) |
| return true; |
| return false; |
| } |
| |
| static bool regdom_changed(const char *alpha2) |
| { |
| if (!cfg80211_regdomain) |
| return true; |
| if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) |
| return false; |
| return true; |
| } |
| |
| /** |
| * country_ie_integrity_changes - tells us if the country IE has changed |
| * @checksum: checksum of country IE of fields we are interested in |
| * |
| * If the country IE has not changed you can ignore it safely. This is |
| * useful to determine if two devices are seeing two different country IEs |
| * even on the same alpha2. Note that this will return false if no IE has |
| * been set on the wireless core yet. |
| */ |
| static bool country_ie_integrity_changes(u32 checksum) |
| { |
| /* If no IE has been set then the checksum doesn't change */ |
| if (unlikely(!last_request->country_ie_checksum)) |
| return false; |
| if (unlikely(last_request->country_ie_checksum != checksum)) |
| return true; |
| return false; |
| } |
| |
| /* This lets us keep regulatory code which is updated on a regulatory |
| * basis in userspace. */ |
| static int call_crda(const char *alpha2) |
| { |
| char country_env[9 + 2] = "COUNTRY="; |
| char *envp[] = { |
| country_env, |
| NULL |
| }; |
| |
| if (!is_world_regdom((char *) alpha2)) |
| printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n", |
| alpha2[0], alpha2[1]); |
| else |
| printk(KERN_INFO "cfg80211: Calling CRDA to update world " |
| "regulatory domain\n"); |
| |
| country_env[8] = alpha2[0]; |
| country_env[9] = alpha2[1]; |
| |
| return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp); |
| } |
| |
| /* Used by nl80211 before kmalloc'ing our regulatory domain */ |
| bool reg_is_valid_request(const char *alpha2) |
| { |
| if (!last_request) |
| return false; |
| |
| return alpha2_equal(last_request->alpha2, alpha2); |
| } |
| |
| /* Sanity check on a regulatory rule */ |
| static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) |
| { |
| const struct ieee80211_freq_range *freq_range = &rule->freq_range; |
| u32 freq_diff; |
| |
| if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) |
| return false; |
| |
| if (freq_range->start_freq_khz > freq_range->end_freq_khz) |
| return false; |
| |
| freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| |
| if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff) |
| return false; |
| |
| return true; |
| } |
| |
| static bool is_valid_rd(const struct ieee80211_regdomain *rd) |
| { |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| unsigned int i; |
| |
| if (!rd->n_reg_rules) |
| return false; |
| |
| if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) |
| return false; |
| |
| for (i = 0; i < rd->n_reg_rules; i++) { |
| reg_rule = &rd->reg_rules[i]; |
| if (!is_valid_reg_rule(reg_rule)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Returns value in KHz */ |
| static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range, |
| u32 freq) |
| { |
| unsigned int i; |
| for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) { |
| u32 start_freq_khz = freq - supported_bandwidths[i]/2; |
| u32 end_freq_khz = freq + supported_bandwidths[i]/2; |
| if (start_freq_khz >= freq_range->start_freq_khz && |
| end_freq_khz <= freq_range->end_freq_khz) |
| return supported_bandwidths[i]; |
| } |
| return 0; |
| } |
| |
| /** |
| * freq_in_rule_band - tells us if a frequency is in a frequency band |
| * @freq_range: frequency rule we want to query |
| * @freq_khz: frequency we are inquiring about |
| * |
| * This lets us know if a specific frequency rule is or is not relevant to |
| * a specific frequency's band. Bands are device specific and artificial |
| * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is |
| * safe for now to assume that a frequency rule should not be part of a |
| * frequency's band if the start freq or end freq are off by more than 2 GHz. |
| * This resolution can be lowered and should be considered as we add |
| * regulatory rule support for other "bands". |
| **/ |
| static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, |
| u32 freq_khz) |
| { |
| #define ONE_GHZ_IN_KHZ 1000000 |
| if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) |
| return true; |
| if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) |
| return true; |
| return false; |
| #undef ONE_GHZ_IN_KHZ |
| } |
| |
| /* Converts a country IE to a regulatory domain. A regulatory domain |
| * structure has a lot of information which the IE doesn't yet have, |
| * so for the other values we use upper max values as we will intersect |
| * with our userspace regulatory agent to get lower bounds. */ |
| static struct ieee80211_regdomain *country_ie_2_rd( |
| u8 *country_ie, |
| u8 country_ie_len, |
| u32 *checksum) |
| { |
| struct ieee80211_regdomain *rd = NULL; |
| unsigned int i = 0; |
| char alpha2[2]; |
| u32 flags = 0; |
| u32 num_rules = 0, size_of_regd = 0; |
| u8 *triplets_start = NULL; |
| u8 len_at_triplet = 0; |
| /* the last channel we have registered in a subband (triplet) */ |
| int last_sub_max_channel = 0; |
| |
| *checksum = 0xDEADBEEF; |
| |
| /* Country IE requirements */ |
| BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN || |
| country_ie_len & 0x01); |
| |
| alpha2[0] = country_ie[0]; |
| alpha2[1] = country_ie[1]; |
| |
| /* |
| * Third octet can be: |
| * 'I' - Indoor |
| * 'O' - Outdoor |
| * |
| * anything else we assume is no restrictions |
| */ |
| if (country_ie[2] == 'I') |
| flags = NL80211_RRF_NO_OUTDOOR; |
| else if (country_ie[2] == 'O') |
| flags = NL80211_RRF_NO_INDOOR; |
| |
| country_ie += 3; |
| country_ie_len -= 3; |
| |
| triplets_start = country_ie; |
| len_at_triplet = country_ie_len; |
| |
| *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8); |
| |
| /* We need to build a reg rule for each triplet, but first we must |
| * calculate the number of reg rules we will need. We will need one |
| * for each channel subband */ |
| while (country_ie_len >= 3) { |
| struct ieee80211_country_ie_triplet *triplet = |
| (struct ieee80211_country_ie_triplet *) country_ie; |
| int cur_sub_max_channel = 0, cur_channel = 0; |
| |
| if (triplet->ext.reg_extension_id >= |
| IEEE80211_COUNTRY_EXTENSION_ID) { |
| country_ie += 3; |
| country_ie_len -= 3; |
| continue; |
| } |
| |
| cur_channel = triplet->chans.first_channel; |
| cur_sub_max_channel = ieee80211_channel_to_frequency( |
| cur_channel + triplet->chans.num_channels); |
| |
| /* Basic sanity check */ |
| if (cur_sub_max_channel < cur_channel) |
| return NULL; |
| |
| /* Do not allow overlapping channels. Also channels |
| * passed in each subband must be monotonically |
| * increasing */ |
| if (last_sub_max_channel) { |
| if (cur_channel <= last_sub_max_channel) |
| return NULL; |
| if (cur_sub_max_channel <= last_sub_max_channel) |
| return NULL; |
| } |
| |
| /* When dot11RegulatoryClassesRequired is supported |
| * we can throw ext triplets as part of this soup, |
| * for now we don't care when those change as we |
| * don't support them */ |
| *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) | |
| ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) | |
| ((triplet->chans.max_power ^ cur_sub_max_channel) << 24); |
| |
| last_sub_max_channel = cur_sub_max_channel; |
| |
| country_ie += 3; |
| country_ie_len -= 3; |
| num_rules++; |
| |
| /* Note: this is not a IEEE requirement but |
| * simply a memory requirement */ |
| if (num_rules > NL80211_MAX_SUPP_REG_RULES) |
| return NULL; |
| } |
| |
| country_ie = triplets_start; |
| country_ie_len = len_at_triplet; |
| |
| size_of_regd = sizeof(struct ieee80211_regdomain) + |
| (num_rules * sizeof(struct ieee80211_reg_rule)); |
| |
| rd = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!rd) |
| return NULL; |
| |
| rd->n_reg_rules = num_rules; |
| rd->alpha2[0] = alpha2[0]; |
| rd->alpha2[1] = alpha2[1]; |
| |
| /* This time around we fill in the rd */ |
| while (country_ie_len >= 3) { |
| int end_channel = 0; |
| struct ieee80211_country_ie_triplet *triplet = |
| (struct ieee80211_country_ie_triplet *) country_ie; |
| struct ieee80211_reg_rule *reg_rule = NULL; |
| struct ieee80211_freq_range *freq_range = NULL; |
| struct ieee80211_power_rule *power_rule = NULL; |
| |
| /* Must parse if dot11RegulatoryClassesRequired is true, |
| * we don't support this yet */ |
| if (triplet->ext.reg_extension_id >= |
| IEEE80211_COUNTRY_EXTENSION_ID) { |
| country_ie += 3; |
| country_ie_len -= 3; |
| continue; |
| } |
| |
| reg_rule = &rd->reg_rules[i]; |
| freq_range = ®_rule->freq_range; |
| power_rule = ®_rule->power_rule; |
| |
| reg_rule->flags = flags; |
| |
| /* 2 GHz */ |
| if (triplet->chans.first_channel <= 14) |
| end_channel = triplet->chans.first_channel + |
| triplet->chans.num_channels; |
| else |
| /* |
| * 5 GHz -- For example in country IEs if the first |
| * channel given is 36 and the number of channels is 4 |
| * then the individual channel numbers defined for the |
| * 5 GHz PHY by these parameters are: 36, 40, 44, and 48 |
| * and not 36, 37, 38, 39. |
| * |
| * See: http://tinyurl.com/11d-clarification |
| */ |
| end_channel = triplet->chans.first_channel + |
| (4 * (triplet->chans.num_channels - 1)); |
| |
| /* The +10 is since the regulatory domain expects |
| * the actual band edge, not the center of freq for |
| * its start and end freqs, assuming 20 MHz bandwidth on |
| * the channels passed */ |
| freq_range->start_freq_khz = |
| MHZ_TO_KHZ(ieee80211_channel_to_frequency( |
| triplet->chans.first_channel) - 10); |
| freq_range->end_freq_khz = |
| MHZ_TO_KHZ(ieee80211_channel_to_frequency( |
| end_channel) + 10); |
| |
| /* Large arbitrary values, we intersect later */ |
| /* Increment this if we ever support >= 40 MHz channels |
| * in IEEE 802.11 */ |
| freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40); |
| power_rule->max_antenna_gain = DBI_TO_MBI(100); |
| power_rule->max_eirp = DBM_TO_MBM(100); |
| |
| country_ie += 3; |
| country_ie_len -= 3; |
| i++; |
| |
| BUG_ON(i > NL80211_MAX_SUPP_REG_RULES); |
| } |
| |
| return rd; |
| } |
| |
| |
| /* Helper for regdom_intersect(), this does the real |
| * mathematical intersection fun */ |
| static int reg_rules_intersect( |
| const struct ieee80211_reg_rule *rule1, |
| const struct ieee80211_reg_rule *rule2, |
| struct ieee80211_reg_rule *intersected_rule) |
| { |
| const struct ieee80211_freq_range *freq_range1, *freq_range2; |
| struct ieee80211_freq_range *freq_range; |
| const struct ieee80211_power_rule *power_rule1, *power_rule2; |
| struct ieee80211_power_rule *power_rule; |
| u32 freq_diff; |
| |
| freq_range1 = &rule1->freq_range; |
| freq_range2 = &rule2->freq_range; |
| freq_range = &intersected_rule->freq_range; |
| |
| power_rule1 = &rule1->power_rule; |
| power_rule2 = &rule2->power_rule; |
| power_rule = &intersected_rule->power_rule; |
| |
| freq_range->start_freq_khz = max(freq_range1->start_freq_khz, |
| freq_range2->start_freq_khz); |
| freq_range->end_freq_khz = min(freq_range1->end_freq_khz, |
| freq_range2->end_freq_khz); |
| freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, |
| freq_range2->max_bandwidth_khz); |
| |
| freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| if (freq_range->max_bandwidth_khz > freq_diff) |
| freq_range->max_bandwidth_khz = freq_diff; |
| |
| power_rule->max_eirp = min(power_rule1->max_eirp, |
| power_rule2->max_eirp); |
| power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, |
| power_rule2->max_antenna_gain); |
| |
| intersected_rule->flags = (rule1->flags | rule2->flags); |
| |
| if (!is_valid_reg_rule(intersected_rule)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * regdom_intersect - do the intersection between two regulatory domains |
| * @rd1: first regulatory domain |
| * @rd2: second regulatory domain |
| * |
| * Use this function to get the intersection between two regulatory domains. |
| * Once completed we will mark the alpha2 for the rd as intersected, "98", |
| * as no one single alpha2 can represent this regulatory domain. |
| * |
| * Returns a pointer to the regulatory domain structure which will hold the |
| * resulting intersection of rules between rd1 and rd2. We will |
| * kzalloc() this structure for you. |
| */ |
| static struct ieee80211_regdomain *regdom_intersect( |
| const struct ieee80211_regdomain *rd1, |
| const struct ieee80211_regdomain *rd2) |
| { |
| int r, size_of_regd; |
| unsigned int x, y; |
| unsigned int num_rules = 0, rule_idx = 0; |
| const struct ieee80211_reg_rule *rule1, *rule2; |
| struct ieee80211_reg_rule *intersected_rule; |
| struct ieee80211_regdomain *rd; |
| /* This is just a dummy holder to help us count */ |
| struct ieee80211_reg_rule irule; |
| |
| /* Uses the stack temporarily for counter arithmetic */ |
| intersected_rule = &irule; |
| |
| memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); |
| |
| if (!rd1 || !rd2) |
| return NULL; |
| |
| /* First we get a count of the rules we'll need, then we actually |
| * build them. This is to so we can malloc() and free() a |
| * regdomain once. The reason we use reg_rules_intersect() here |
| * is it will return -EINVAL if the rule computed makes no sense. |
| * All rules that do check out OK are valid. */ |
| |
| for (x = 0; x < rd1->n_reg_rules; x++) { |
| rule1 = &rd1->reg_rules[x]; |
| for (y = 0; y < rd2->n_reg_rules; y++) { |
| rule2 = &rd2->reg_rules[y]; |
| if (!reg_rules_intersect(rule1, rule2, |
| intersected_rule)) |
| num_rules++; |
| memset(intersected_rule, 0, |
| sizeof(struct ieee80211_reg_rule)); |
| } |
| } |
| |
| if (!num_rules) |
| return NULL; |
| |
| size_of_regd = sizeof(struct ieee80211_regdomain) + |
| ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); |
| |
| rd = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!rd) |
| return NULL; |
| |
| for (x = 0; x < rd1->n_reg_rules; x++) { |
| rule1 = &rd1->reg_rules[x]; |
| for (y = 0; y < rd2->n_reg_rules; y++) { |
| rule2 = &rd2->reg_rules[y]; |
| /* This time around instead of using the stack lets |
| * write to the target rule directly saving ourselves |
| * a memcpy() */ |
| intersected_rule = &rd->reg_rules[rule_idx]; |
| r = reg_rules_intersect(rule1, rule2, |
| intersected_rule); |
| /* No need to memset here the intersected rule here as |
| * we're not using the stack anymore */ |
| if (r) |
| continue; |
| rule_idx++; |
| } |
| } |
| |
| if (rule_idx != num_rules) { |
| kfree(rd); |
| return NULL; |
| } |
| |
| rd->n_reg_rules = num_rules; |
| rd->alpha2[0] = '9'; |
| rd->alpha2[1] = '8'; |
| |
| return rd; |
| } |
| |
| /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may |
| * want to just have the channel structure use these */ |
| static u32 map_regdom_flags(u32 rd_flags) |
| { |
| u32 channel_flags = 0; |
| if (rd_flags & NL80211_RRF_PASSIVE_SCAN) |
| channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; |
| if (rd_flags & NL80211_RRF_NO_IBSS) |
| channel_flags |= IEEE80211_CHAN_NO_IBSS; |
| if (rd_flags & NL80211_RRF_DFS) |
| channel_flags |= IEEE80211_CHAN_RADAR; |
| return channel_flags; |
| } |
| |
| static int freq_reg_info_regd(struct wiphy *wiphy, |
| u32 center_freq, |
| u32 *bandwidth, |
| const struct ieee80211_reg_rule **reg_rule, |
| const struct ieee80211_regdomain *custom_regd) |
| { |
| int i; |
| bool band_rule_found = false; |
| const struct ieee80211_regdomain *regd; |
| u32 max_bandwidth = 0; |
| |
| regd = custom_regd ? custom_regd : cfg80211_regdomain; |
| |
| /* Follow the driver's regulatory domain, if present, unless a country |
| * IE has been processed */ |
| if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE && |
| wiphy->regd) |
| regd = wiphy->regd; |
| |
| if (!regd) |
| return -EINVAL; |
| |
| for (i = 0; i < regd->n_reg_rules; i++) { |
| const struct ieee80211_reg_rule *rr; |
| const struct ieee80211_freq_range *fr = NULL; |
| const struct ieee80211_power_rule *pr = NULL; |
| |
| rr = ®d->reg_rules[i]; |
| fr = &rr->freq_range; |
| pr = &rr->power_rule; |
| |
| /* We only need to know if one frequency rule was |
| * was in center_freq's band, that's enough, so lets |
| * not overwrite it once found */ |
| if (!band_rule_found) |
| band_rule_found = freq_in_rule_band(fr, center_freq); |
| |
| max_bandwidth = freq_max_bandwidth(fr, center_freq); |
| |
| if (max_bandwidth && *bandwidth <= max_bandwidth) { |
| *reg_rule = rr; |
| *bandwidth = max_bandwidth; |
| break; |
| } |
| } |
| |
| if (!band_rule_found) |
| return -ERANGE; |
| |
| return !max_bandwidth; |
| } |
| EXPORT_SYMBOL(freq_reg_info); |
| |
| int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth, |
| const struct ieee80211_reg_rule **reg_rule) |
| { |
| return freq_reg_info_regd(wiphy, center_freq, |
| bandwidth, reg_rule, NULL); |
| } |
| |
| static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band, |
| unsigned int chan_idx) |
| { |
| int r; |
| u32 flags; |
| u32 max_bandwidth = 0; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_channel *chan; |
| |
| sband = wiphy->bands[band]; |
| BUG_ON(chan_idx >= sband->n_channels); |
| chan = &sband->channels[chan_idx]; |
| |
| flags = chan->orig_flags; |
| |
| r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq), |
| &max_bandwidth, ®_rule); |
| |
| if (r) { |
| /* This means no regulatory rule was found in the country IE |
| * with a frequency range on the center_freq's band, since |
| * IEEE-802.11 allows for a country IE to have a subset of the |
| * regulatory information provided in a country we ignore |
| * disabling the channel unless at least one reg rule was |
| * found on the center_freq's band. For details see this |
| * clarification: |
| * |
| * http://tinyurl.com/11d-clarification |
| */ |
| if (r == -ERANGE && |
| last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) { |
| #ifdef CONFIG_CFG80211_REG_DEBUG |
| printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz " |
| "intact on %s - no rule found in band on " |
| "Country IE\n", |
| chan->center_freq, wiphy_name(wiphy)); |
| #endif |
| } else { |
| /* In this case we know the country IE has at least one reg rule |
| * for the band so we respect its band definitions */ |
| #ifdef CONFIG_CFG80211_REG_DEBUG |
| if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) |
| printk(KERN_DEBUG "cfg80211: Disabling " |
| "channel %d MHz on %s due to " |
| "Country IE\n", |
| chan->center_freq, wiphy_name(wiphy)); |
| #endif |
| flags |= IEEE80211_CHAN_DISABLED; |
| chan->flags = flags; |
| } |
| return; |
| } |
| |
| power_rule = ®_rule->power_rule; |
| |
| if (last_request->initiator == REGDOM_SET_BY_DRIVER && |
| last_request->wiphy && last_request->wiphy == wiphy && |
| last_request->wiphy->strict_regulatory) { |
| /* This gaurantees the driver's requested regulatory domain |
| * will always be used as a base for further regulatory |
| * settings */ |
| chan->flags = chan->orig_flags = |
| map_regdom_flags(reg_rule->flags); |
| chan->max_antenna_gain = chan->orig_mag = |
| (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth); |
| chan->max_power = chan->orig_mpwr = |
| (int) MBM_TO_DBM(power_rule->max_eirp); |
| return; |
| } |
| |
| chan->flags = flags | map_regdom_flags(reg_rule->flags); |
| chan->max_antenna_gain = min(chan->orig_mag, |
| (int) MBI_TO_DBI(power_rule->max_antenna_gain)); |
| chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth); |
| if (chan->orig_mpwr) |
| chan->max_power = min(chan->orig_mpwr, |
| (int) MBM_TO_DBM(power_rule->max_eirp)); |
| else |
| chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); |
| } |
| |
| static void handle_band(struct wiphy *wiphy, enum ieee80211_band band) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| |
| BUG_ON(!wiphy->bands[band]); |
| sband = wiphy->bands[band]; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_channel(wiphy, band, i); |
| } |
| |
| static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby) |
| { |
| if (!last_request) |
| return true; |
| if (setby == REGDOM_SET_BY_CORE && |
| wiphy->custom_regulatory) |
| return true; |
| /* wiphy->regd will be set once the device has its own |
| * desired regulatory domain set */ |
| if (wiphy->strict_regulatory && !wiphy->regd && |
| !is_world_regdom(last_request->alpha2)) |
| return true; |
| return false; |
| } |
| |
| static void update_all_wiphy_regulatory(enum reg_set_by setby) |
| { |
| struct cfg80211_registered_device *drv; |
| |
| list_for_each_entry(drv, &cfg80211_drv_list, list) |
| wiphy_update_regulatory(&drv->wiphy, setby); |
| } |
| |
| void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby) |
| { |
| enum ieee80211_band band; |
| |
| if (ignore_reg_update(wiphy, setby)) |
| return; |
| for (band = 0; band < IEEE80211_NUM_BANDS; band++) { |
| if (wiphy->bands[band]) |
| handle_band(wiphy, band); |
| } |
| if (wiphy->reg_notifier) |
| wiphy->reg_notifier(wiphy, last_request); |
| } |
| |
| static void handle_channel_custom(struct wiphy *wiphy, |
| enum ieee80211_band band, |
| unsigned int chan_idx, |
| const struct ieee80211_regdomain *regd) |
| { |
| int r; |
| u32 max_bandwidth = 0; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_channel *chan; |
| |
| sband = wiphy->bands[band]; |
| BUG_ON(chan_idx >= sband->n_channels); |
| chan = &sband->channels[chan_idx]; |
| |
| r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), |
| &max_bandwidth, ®_rule, regd); |
| |
| if (r) { |
| chan->flags = IEEE80211_CHAN_DISABLED; |
| return; |
| } |
| |
| power_rule = ®_rule->power_rule; |
| |
| chan->flags |= map_regdom_flags(reg_rule->flags); |
| chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth); |
| chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); |
| } |
| |
| static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, |
| const struct ieee80211_regdomain *regd) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| |
| BUG_ON(!wiphy->bands[band]); |
| sband = wiphy->bands[band]; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_channel_custom(wiphy, band, i, regd); |
| } |
| |
| /* Used by drivers prior to wiphy registration */ |
| void wiphy_apply_custom_regulatory(struct wiphy *wiphy, |
| const struct ieee80211_regdomain *regd) |
| { |
| enum ieee80211_band band; |
| for (band = 0; band < IEEE80211_NUM_BANDS; band++) { |
| if (wiphy->bands[band]) |
| handle_band_custom(wiphy, band, regd); |
| } |
| } |
| EXPORT_SYMBOL(wiphy_apply_custom_regulatory); |
| |
| static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, |
| const struct ieee80211_regdomain *src_regd) |
| { |
| struct ieee80211_regdomain *regd; |
| int size_of_regd = 0; |
| unsigned int i; |
| |
| size_of_regd = sizeof(struct ieee80211_regdomain) + |
| ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); |
| |
| regd = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!regd) |
| return -ENOMEM; |
| |
| memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); |
| |
| for (i = 0; i < src_regd->n_reg_rules; i++) |
| memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], |
| sizeof(struct ieee80211_reg_rule)); |
| |
| *dst_regd = regd; |
| return 0; |
| } |
| |
| /* Return value which can be used by ignore_request() to indicate |
| * it has been determined we should intersect two regulatory domains */ |
| #define REG_INTERSECT 1 |
| |
| /* This has the logic which determines when a new request |
| * should be ignored. */ |
| static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by, |
| const char *alpha2) |
| { |
| /* All initial requests are respected */ |
| if (!last_request) |
| return 0; |
| |
| switch (set_by) { |
| case REGDOM_SET_BY_INIT: |
| return -EINVAL; |
| case REGDOM_SET_BY_CORE: |
| /* |
| * Always respect new wireless core hints, should only happen |
| * when updating the world regulatory domain at init. |
| */ |
| return 0; |
| case REGDOM_SET_BY_COUNTRY_IE: |
| if (unlikely(!is_an_alpha2(alpha2))) |
| return -EINVAL; |
| if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) { |
| if (last_request->wiphy != wiphy) { |
| /* |
| * Two cards with two APs claiming different |
| * different Country IE alpha2s. We could |
| * intersect them, but that seems unlikely |
| * to be correct. Reject second one for now. |
| */ |
| if (!alpha2_equal(alpha2, |
| cfg80211_regdomain->alpha2)) |
| return -EOPNOTSUPP; |
| return -EALREADY; |
| } |
| /* Two consecutive Country IE hints on the same wiphy. |
| * This should be picked up early by the driver/stack */ |
| if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2, |
| alpha2))) |
| return 0; |
| return -EALREADY; |
| } |
| return REG_INTERSECT; |
| case REGDOM_SET_BY_DRIVER: |
| if (last_request->initiator == REGDOM_SET_BY_CORE) { |
| if (is_old_static_regdom(cfg80211_regdomain)) |
| return 0; |
| if (!alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) |
| return 0; |
| return -EALREADY; |
| } |
| return REG_INTERSECT; |
| case REGDOM_SET_BY_USER: |
| if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) |
| return REG_INTERSECT; |
| /* If the user knows better the user should set the regdom |
| * to their country before the IE is picked up */ |
| if (last_request->initiator == REGDOM_SET_BY_USER && |
| last_request->intersect) |
| return -EOPNOTSUPP; |
| /* Process user requests only after previous user/driver/core |
| * requests have been processed */ |
| if (last_request->initiator == REGDOM_SET_BY_CORE || |
| last_request->initiator == REGDOM_SET_BY_DRIVER || |
| last_request->initiator == REGDOM_SET_BY_USER) { |
| if (!alpha2_equal(last_request->alpha2, |
| cfg80211_regdomain->alpha2)) |
| return -EAGAIN; |
| } |
| |
| if (!is_old_static_regdom(cfg80211_regdomain) && |
| alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) |
| return -EALREADY; |
| |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* Caller must hold &cfg80211_drv_mutex */ |
| int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by, |
| const char *alpha2, |
| u32 country_ie_checksum, |
| enum environment_cap env) |
| { |
| struct regulatory_request *request; |
| bool intersect = false; |
| int r = 0; |
| |
| r = ignore_request(wiphy, set_by, alpha2); |
| |
| if (r == REG_INTERSECT) { |
| if (set_by == REGDOM_SET_BY_DRIVER) { |
| r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); |
| if (r) |
| return r; |
| } |
| intersect = true; |
| } else if (r) { |
| /* If the regulatory domain being requested by the |
| * driver has already been set just copy it to the |
| * wiphy */ |
| if (r == -EALREADY && set_by == REGDOM_SET_BY_DRIVER) { |
| r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); |
| if (r) |
| return r; |
| r = -EALREADY; |
| goto new_request; |
| } |
| return r; |
| } |
| |
| new_request: |
| request = kzalloc(sizeof(struct regulatory_request), |
| GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = set_by; |
| request->wiphy = wiphy; |
| request->intersect = intersect; |
| request->country_ie_checksum = country_ie_checksum; |
| request->country_ie_env = env; |
| |
| kfree(last_request); |
| last_request = request; |
| |
| /* When r == REG_INTERSECT we do need to call CRDA */ |
| if (r < 0) |
| return r; |
| |
| /* |
| * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled |
| * AND if CRDA is NOT present nothing will happen, if someone |
| * wants to bother with 11d with OLD_REG you can add a timer. |
| * If after x amount of time nothing happens you can call: |
| * |
| * return set_regdom(country_ie_regdomain); |
| * |
| * to intersect with the static rd |
| */ |
| return call_crda(alpha2); |
| } |
| |
| void regulatory_hint(struct wiphy *wiphy, const char *alpha2) |
| { |
| int r; |
| BUG_ON(!alpha2); |
| |
| mutex_lock(&cfg80211_drv_mutex); |
| r = __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, |
| alpha2, 0, ENVIRON_ANY); |
| /* This is required so that the orig_* parameters are saved */ |
| if (r == -EALREADY && wiphy->strict_regulatory) |
| wiphy_update_regulatory(wiphy, REGDOM_SET_BY_DRIVER); |
| mutex_unlock(&cfg80211_drv_mutex); |
| } |
| EXPORT_SYMBOL(regulatory_hint); |
| |
| static bool reg_same_country_ie_hint(struct wiphy *wiphy, |
| u32 country_ie_checksum) |
| { |
| if (!last_request->wiphy) |
| return false; |
| if (likely(last_request->wiphy != wiphy)) |
| return !country_ie_integrity_changes(country_ie_checksum); |
| /* We should not have let these through at this point, they |
| * should have been picked up earlier by the first alpha2 check |
| * on the device */ |
| if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum))) |
| return true; |
| return false; |
| } |
| |
| void regulatory_hint_11d(struct wiphy *wiphy, |
| u8 *country_ie, |
| u8 country_ie_len) |
| { |
| struct ieee80211_regdomain *rd = NULL; |
| char alpha2[2]; |
| u32 checksum = 0; |
| enum environment_cap env = ENVIRON_ANY; |
| |
| if (!last_request) |
| return; |
| |
| mutex_lock(&cfg80211_drv_mutex); |
| |
| /* IE len must be evenly divisible by 2 */ |
| if (country_ie_len & 0x01) |
| goto out; |
| |
| if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) |
| goto out; |
| |
| /* Pending country IE processing, this can happen after we |
| * call CRDA and wait for a response if a beacon was received before |
| * we were able to process the last regulatory_hint_11d() call */ |
| if (country_ie_regdomain) |
| goto out; |
| |
| alpha2[0] = country_ie[0]; |
| alpha2[1] = country_ie[1]; |
| |
| if (country_ie[2] == 'I') |
| env = ENVIRON_INDOOR; |
| else if (country_ie[2] == 'O') |
| env = ENVIRON_OUTDOOR; |
| |
| /* We will run this for *every* beacon processed for the BSSID, so |
| * we optimize an early check to exit out early if we don't have to |
| * do anything */ |
| if (likely(last_request->wiphy)) { |
| struct cfg80211_registered_device *drv_last_ie; |
| |
| drv_last_ie = wiphy_to_dev(last_request->wiphy); |
| |
| /* Lets keep this simple -- we trust the first AP |
| * after we intersect with CRDA */ |
| if (likely(last_request->wiphy == wiphy)) { |
| /* Ignore IEs coming in on this wiphy with |
| * the same alpha2 and environment cap */ |
| if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2, |
| alpha2) && |
| env == drv_last_ie->env)) { |
| goto out; |
| } |
| /* the wiphy moved on to another BSSID or the AP |
| * was reconfigured. XXX: We need to deal with the |
| * case where the user suspends and goes to goes |
| * to another country, and then gets IEs from an |
| * AP with different settings */ |
| goto out; |
| } else { |
| /* Ignore IEs coming in on two separate wiphys with |
| * the same alpha2 and environment cap */ |
| if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2, |
| alpha2) && |
| env == drv_last_ie->env)) { |
| goto out; |
| } |
| /* We could potentially intersect though */ |
| goto out; |
| } |
| } |
| |
| rd = country_ie_2_rd(country_ie, country_ie_len, &checksum); |
| if (!rd) |
| goto out; |
| |
| /* This will not happen right now but we leave it here for the |
| * the future when we want to add suspend/resume support and having |
| * the user move to another country after doing so, or having the user |
| * move to another AP. Right now we just trust the first AP. This is why |
| * this is marked as likley(). If we hit this before we add this support |
| * we want to be informed of it as it would indicate a mistake in the |
| * current design */ |
| if (likely(WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))) |
| goto out; |
| |
| /* We keep this around for when CRDA comes back with a response so |
| * we can intersect with that */ |
| country_ie_regdomain = rd; |
| |
| __regulatory_hint(wiphy, REGDOM_SET_BY_COUNTRY_IE, |
| country_ie_regdomain->alpha2, checksum, env); |
| |
| out: |
| mutex_unlock(&cfg80211_drv_mutex); |
| } |
| EXPORT_SYMBOL(regulatory_hint_11d); |
| |
| static void print_rd_rules(const struct ieee80211_regdomain *rd) |
| { |
| unsigned int i; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_freq_range *freq_range = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| |
| printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), " |
| "(max_antenna_gain, max_eirp)\n"); |
| |
| for (i = 0; i < rd->n_reg_rules; i++) { |
| reg_rule = &rd->reg_rules[i]; |
| freq_range = ®_rule->freq_range; |
| power_rule = ®_rule->power_rule; |
| |
| /* There may not be documentation for max antenna gain |
| * in certain regions */ |
| if (power_rule->max_antenna_gain) |
| printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), " |
| "(%d mBi, %d mBm)\n", |
| freq_range->start_freq_khz, |
| freq_range->end_freq_khz, |
| freq_range->max_bandwidth_khz, |
| power_rule->max_antenna_gain, |
| power_rule->max_eirp); |
| else |
| printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), " |
| "(N/A, %d mBm)\n", |
| freq_range->start_freq_khz, |
| freq_range->end_freq_khz, |
| freq_range->max_bandwidth_khz, |
| power_rule->max_eirp); |
| } |
| } |
| |
| static void print_regdomain(const struct ieee80211_regdomain *rd) |
| { |
| |
| if (is_intersected_alpha2(rd->alpha2)) { |
| struct wiphy *wiphy = NULL; |
| struct cfg80211_registered_device *drv; |
| |
| if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) { |
| if (last_request->wiphy) { |
| wiphy = last_request->wiphy; |
| drv = wiphy_to_dev(wiphy); |
| printk(KERN_INFO "cfg80211: Current regulatory " |
| "domain updated by AP to: %c%c\n", |
| drv->country_ie_alpha2[0], |
| drv->country_ie_alpha2[1]); |
| } else |
| printk(KERN_INFO "cfg80211: Current regulatory " |
| "domain intersected: \n"); |
| } else |
| printk(KERN_INFO "cfg80211: Current regulatory " |
| "domain intersected: \n"); |
| } else if (is_world_regdom(rd->alpha2)) |
| printk(KERN_INFO "cfg80211: World regulatory " |
| "domain updated:\n"); |
| else { |
| if (is_unknown_alpha2(rd->alpha2)) |
| printk(KERN_INFO "cfg80211: Regulatory domain " |
| "changed to driver built-in settings " |
| "(unknown country)\n"); |
| else |
| printk(KERN_INFO "cfg80211: Regulatory domain " |
| "changed to country: %c%c\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| } |
| print_rd_rules(rd); |
| } |
| |
| static void print_regdomain_info(const struct ieee80211_regdomain *rd) |
| { |
| printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| print_rd_rules(rd); |
| } |
| |
| #ifdef CONFIG_CFG80211_REG_DEBUG |
| static void reg_country_ie_process_debug( |
| const struct ieee80211_regdomain *rd, |
| const struct ieee80211_regdomain *country_ie_regdomain, |
| const struct ieee80211_regdomain *intersected_rd) |
| { |
| printk(KERN_DEBUG "cfg80211: Received country IE:\n"); |
| print_regdomain_info(country_ie_regdomain); |
| printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n"); |
| print_regdomain_info(rd); |
| if (intersected_rd) { |
| printk(KERN_DEBUG "cfg80211: We intersect both of these " |
| "and get:\n"); |
| print_regdomain_info(rd); |
| return; |
| } |
| printk(KERN_DEBUG "cfg80211: Intersection between both failed\n"); |
| } |
| #else |
| static inline void reg_country_ie_process_debug( |
| const struct ieee80211_regdomain *rd, |
| const struct ieee80211_regdomain *country_ie_regdomain, |
| const struct ieee80211_regdomain *intersected_rd) |
| { |
| } |
| #endif |
| |
| /* Takes ownership of rd only if it doesn't fail */ |
| static int __set_regdom(const struct ieee80211_regdomain *rd) |
| { |
| const struct ieee80211_regdomain *intersected_rd = NULL; |
| struct cfg80211_registered_device *drv = NULL; |
| struct wiphy *wiphy = NULL; |
| /* Some basic sanity checks first */ |
| |
| if (is_world_regdom(rd->alpha2)) { |
| if (WARN_ON(!reg_is_valid_request(rd->alpha2))) |
| return -EINVAL; |
| update_world_regdomain(rd); |
| return 0; |
| } |
| |
| if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && |
| !is_unknown_alpha2(rd->alpha2)) |
| return -EINVAL; |
| |
| if (!last_request) |
| return -EINVAL; |
| |
| /* Lets only bother proceeding on the same alpha2 if the current |
| * rd is non static (it means CRDA was present and was used last) |
| * and the pending request came in from a country IE */ |
| if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) { |
| /* If someone else asked us to change the rd lets only bother |
| * checking if the alpha2 changes if CRDA was already called */ |
| if (!is_old_static_regdom(cfg80211_regdomain) && |
| !regdom_changed(rd->alpha2)) |
| return -EINVAL; |
| } |
| |
| wiphy = last_request->wiphy; |
| |
| /* Now lets set the regulatory domain, update all driver channels |
| * and finally inform them of what we have done, in case they want |
| * to review or adjust their own settings based on their own |
| * internal EEPROM data */ |
| |
| if (WARN_ON(!reg_is_valid_request(rd->alpha2))) |
| return -EINVAL; |
| |
| if (!is_valid_rd(rd)) { |
| printk(KERN_ERR "cfg80211: Invalid " |
| "regulatory domain detected:\n"); |
| print_regdomain_info(rd); |
| return -EINVAL; |
| } |
| |
| if (!last_request->intersect) { |
| int r; |
| |
| if (last_request->initiator != REGDOM_SET_BY_DRIVER) { |
| reset_regdomains(); |
| cfg80211_regdomain = rd; |
| return 0; |
| } |
| |
| /* For a driver hint, lets copy the regulatory domain the |
| * driver wanted to the wiphy to deal with conflicts */ |
| |
| BUG_ON(last_request->wiphy->regd); |
| |
| r = reg_copy_regd(&last_request->wiphy->regd, rd); |
| if (r) |
| return r; |
| |
| reset_regdomains(); |
| cfg80211_regdomain = rd; |
| return 0; |
| } |
| |
| /* Intersection requires a bit more work */ |
| |
| if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) { |
| |
| intersected_rd = regdom_intersect(rd, cfg80211_regdomain); |
| if (!intersected_rd) |
| return -EINVAL; |
| |
| /* We can trash what CRDA provided now. |
| * However if a driver requested this specific regulatory |
| * domain we keep it for its private use */ |
| if (last_request->initiator == REGDOM_SET_BY_DRIVER) |
| last_request->wiphy->regd = rd; |
| else |
| kfree(rd); |
| |
| rd = NULL; |
| |
| reset_regdomains(); |
| cfg80211_regdomain = intersected_rd; |
| |
| return 0; |
| } |
| |
| /* |
| * Country IE requests are handled a bit differently, we intersect |
| * the country IE rd with what CRDA believes that country should have |
| */ |
| |
| BUG_ON(!country_ie_regdomain); |
| |
| if (rd != country_ie_regdomain) { |
| /* Intersect what CRDA returned and our what we |
| * had built from the Country IE received */ |
| |
| intersected_rd = regdom_intersect(rd, country_ie_regdomain); |
| |
| reg_country_ie_process_debug(rd, country_ie_regdomain, |
| intersected_rd); |
| |
| kfree(country_ie_regdomain); |
| country_ie_regdomain = NULL; |
| } else { |
| /* This would happen when CRDA was not present and |
| * OLD_REGULATORY was enabled. We intersect our Country |
| * IE rd and what was set on cfg80211 originally */ |
| intersected_rd = regdom_intersect(rd, cfg80211_regdomain); |
| } |
| |
| if (!intersected_rd) |
| return -EINVAL; |
| |
| drv = wiphy_to_dev(wiphy); |
| |
| drv->country_ie_alpha2[0] = rd->alpha2[0]; |
| drv->country_ie_alpha2[1] = rd->alpha2[1]; |
| drv->env = last_request->country_ie_env; |
| |
| BUG_ON(intersected_rd == rd); |
| |
| kfree(rd); |
| rd = NULL; |
| |
| reset_regdomains(); |
| cfg80211_regdomain = intersected_rd; |
| |
| return 0; |
| } |
| |
| |
| /* Use this call to set the current regulatory domain. Conflicts with |
| * multiple drivers can be ironed out later. Caller must've already |
| * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */ |
| int set_regdom(const struct ieee80211_regdomain *rd) |
| { |
| int r; |
| |
| /* Note that this doesn't update the wiphys, this is done below */ |
| r = __set_regdom(rd); |
| if (r) { |
| kfree(rd); |
| return r; |
| } |
| |
| /* This would make this whole thing pointless */ |
| if (!last_request->intersect) |
| BUG_ON(rd != cfg80211_regdomain); |
| |
| /* update all wiphys now with the new established regulatory domain */ |
| update_all_wiphy_regulatory(last_request->initiator); |
| |
| print_regdomain(cfg80211_regdomain); |
| |
| return r; |
| } |
| |
| /* Caller must hold cfg80211_drv_mutex */ |
| void reg_device_remove(struct wiphy *wiphy) |
| { |
| kfree(wiphy->regd); |
| if (!last_request || !last_request->wiphy) |
| return; |
| if (last_request->wiphy != wiphy) |
| return; |
| last_request->wiphy = NULL; |
| last_request->country_ie_env = ENVIRON_ANY; |
| } |
| |
| int regulatory_init(void) |
| { |
| int err; |
| |
| reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); |
| if (IS_ERR(reg_pdev)) |
| return PTR_ERR(reg_pdev); |
| |
| #ifdef CONFIG_WIRELESS_OLD_REGULATORY |
| cfg80211_regdomain = static_regdom(ieee80211_regdom); |
| |
| printk(KERN_INFO "cfg80211: Using static regulatory domain info\n"); |
| print_regdomain_info(cfg80211_regdomain); |
| /* The old code still requests for a new regdomain and if |
| * you have CRDA you get it updated, otherwise you get |
| * stuck with the static values. We ignore "EU" code as |
| * that is not a valid ISO / IEC 3166 alpha2 */ |
| if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U') |
| err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, |
| ieee80211_regdom, 0, ENVIRON_ANY); |
| #else |
| cfg80211_regdomain = cfg80211_world_regdom; |
| |
| err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00", 0, ENVIRON_ANY); |
| if (err) |
| printk(KERN_ERR "cfg80211: calling CRDA failed - " |
| "unable to update world regulatory domain, " |
| "using static definition\n"); |
| #endif |
| |
| return 0; |
| } |
| |
| void regulatory_exit(void) |
| { |
| mutex_lock(&cfg80211_drv_mutex); |
| |
| reset_regdomains(); |
| |
| kfree(country_ie_regdomain); |
| country_ie_regdomain = NULL; |
| |
| kfree(last_request); |
| |
| platform_device_unregister(reg_pdev); |
| |
| mutex_unlock(&cfg80211_drv_mutex); |
| } |