| /* |
| * mm/truncate.c - code for taking down pages from address_spaces |
| * |
| * Copyright (C) 2002, Linus Torvalds |
| * |
| * 10Sep2002 akpm@zip.com.au |
| * Initial version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/module.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/pagevec.h> |
| #include <linux/task_io_accounting_ops.h> |
| #include <linux/buffer_head.h> /* grr. try_to_release_page, |
| do_invalidatepage */ |
| |
| |
| /** |
| * do_invalidatepage - invalidate part of all of a page |
| * @page: the page which is affected |
| * @offset: the index of the truncation point |
| * |
| * do_invalidatepage() is called when all or part of the page has become |
| * invalidated by a truncate operation. |
| * |
| * do_invalidatepage() does not have to release all buffers, but it must |
| * ensure that no dirty buffer is left outside @offset and that no I/O |
| * is underway against any of the blocks which are outside the truncation |
| * point. Because the caller is about to free (and possibly reuse) those |
| * blocks on-disk. |
| */ |
| void do_invalidatepage(struct page *page, unsigned long offset) |
| { |
| void (*invalidatepage)(struct page *, unsigned long); |
| invalidatepage = page->mapping->a_ops->invalidatepage; |
| #ifdef CONFIG_BLOCK |
| if (!invalidatepage) |
| invalidatepage = block_invalidatepage; |
| #endif |
| if (invalidatepage) |
| (*invalidatepage)(page, offset); |
| } |
| |
| static inline void truncate_partial_page(struct page *page, unsigned partial) |
| { |
| zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0); |
| if (PagePrivate(page)) |
| do_invalidatepage(page, partial); |
| } |
| |
| /* |
| * This cancels just the dirty bit on the kernel page itself, it |
| * does NOT actually remove dirty bits on any mmap's that may be |
| * around. It also leaves the page tagged dirty, so any sync |
| * activity will still find it on the dirty lists, and in particular, |
| * clear_page_dirty_for_io() will still look at the dirty bits in |
| * the VM. |
| * |
| * Doing this should *normally* only ever be done when a page |
| * is truncated, and is not actually mapped anywhere at all. However, |
| * fs/buffer.c does this when it notices that somebody has cleaned |
| * out all the buffers on a page without actually doing it through |
| * the VM. Can you say "ext3 is horribly ugly"? Tought you could. |
| */ |
| void cancel_dirty_page(struct page *page, unsigned int account_size) |
| { |
| if (TestClearPageDirty(page)) { |
| struct address_space *mapping = page->mapping; |
| if (mapping && mapping_cap_account_dirty(mapping)) { |
| dec_zone_page_state(page, NR_FILE_DIRTY); |
| if (account_size) |
| task_io_account_cancelled_write(account_size); |
| } |
| } |
| } |
| EXPORT_SYMBOL(cancel_dirty_page); |
| |
| /* |
| * If truncate cannot remove the fs-private metadata from the page, the page |
| * becomes anonymous. It will be left on the LRU and may even be mapped into |
| * user pagetables if we're racing with filemap_nopage(). |
| * |
| * We need to bale out if page->mapping is no longer equal to the original |
| * mapping. This happens a) when the VM reclaimed the page while we waited on |
| * its lock, b) when a concurrent invalidate_mapping_pages got there first and |
| * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. |
| */ |
| static void |
| truncate_complete_page(struct address_space *mapping, struct page *page) |
| { |
| if (page->mapping != mapping) |
| return; |
| |
| cancel_dirty_page(page, PAGE_CACHE_SIZE); |
| |
| if (PagePrivate(page)) |
| do_invalidatepage(page, 0); |
| |
| ClearPageUptodate(page); |
| ClearPageMappedToDisk(page); |
| remove_from_page_cache(page); |
| page_cache_release(page); /* pagecache ref */ |
| } |
| |
| /* |
| * This is for invalidate_mapping_pages(). That function can be called at |
| * any time, and is not supposed to throw away dirty pages. But pages can |
| * be marked dirty at any time too, so use remove_mapping which safely |
| * discards clean, unused pages. |
| * |
| * Returns non-zero if the page was successfully invalidated. |
| */ |
| static int |
| invalidate_complete_page(struct address_space *mapping, struct page *page) |
| { |
| int ret; |
| |
| if (page->mapping != mapping) |
| return 0; |
| |
| if (PagePrivate(page) && !try_to_release_page(page, 0)) |
| return 0; |
| |
| ret = remove_mapping(mapping, page); |
| |
| return ret; |
| } |
| |
| /** |
| * truncate_inode_pages - truncate range of pages specified by start and |
| * end byte offsets |
| * @mapping: mapping to truncate |
| * @lstart: offset from which to truncate |
| * @lend: offset to which to truncate |
| * |
| * Truncate the page cache, removing the pages that are between |
| * specified offsets (and zeroing out partial page |
| * (if lstart is not page aligned)). |
| * |
| * Truncate takes two passes - the first pass is nonblocking. It will not |
| * block on page locks and it will not block on writeback. The second pass |
| * will wait. This is to prevent as much IO as possible in the affected region. |
| * The first pass will remove most pages, so the search cost of the second pass |
| * is low. |
| * |
| * When looking at page->index outside the page lock we need to be careful to |
| * copy it into a local to avoid races (it could change at any time). |
| * |
| * We pass down the cache-hot hint to the page freeing code. Even if the |
| * mapping is large, it is probably the case that the final pages are the most |
| * recently touched, and freeing happens in ascending file offset order. |
| */ |
| void truncate_inode_pages_range(struct address_space *mapping, |
| loff_t lstart, loff_t lend) |
| { |
| const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; |
| pgoff_t end; |
| const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); |
| struct pagevec pvec; |
| pgoff_t next; |
| int i; |
| |
| if (mapping->nrpages == 0) |
| return; |
| |
| BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); |
| end = (lend >> PAGE_CACHE_SHIFT); |
| |
| pagevec_init(&pvec, 0); |
| next = start; |
| while (next <= end && |
| pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i]; |
| pgoff_t page_index = page->index; |
| |
| if (page_index > end) { |
| next = page_index; |
| break; |
| } |
| |
| if (page_index > next) |
| next = page_index; |
| next++; |
| if (TestSetPageLocked(page)) |
| continue; |
| if (PageWriteback(page)) { |
| unlock_page(page); |
| continue; |
| } |
| truncate_complete_page(mapping, page); |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| |
| if (partial) { |
| struct page *page = find_lock_page(mapping, start - 1); |
| if (page) { |
| wait_on_page_writeback(page); |
| truncate_partial_page(page, partial); |
| unlock_page(page); |
| page_cache_release(page); |
| } |
| } |
| |
| next = start; |
| for ( ; ; ) { |
| cond_resched(); |
| if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { |
| if (next == start) |
| break; |
| next = start; |
| continue; |
| } |
| if (pvec.pages[0]->index > end) { |
| pagevec_release(&pvec); |
| break; |
| } |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i]; |
| |
| if (page->index > end) |
| break; |
| lock_page(page); |
| wait_on_page_writeback(page); |
| if (page->index > next) |
| next = page->index; |
| next++; |
| truncate_complete_page(mapping, page); |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| } |
| } |
| EXPORT_SYMBOL(truncate_inode_pages_range); |
| |
| /** |
| * truncate_inode_pages - truncate *all* the pages from an offset |
| * @mapping: mapping to truncate |
| * @lstart: offset from which to truncate |
| * |
| * Called under (and serialised by) inode->i_mutex. |
| */ |
| void truncate_inode_pages(struct address_space *mapping, loff_t lstart) |
| { |
| truncate_inode_pages_range(mapping, lstart, (loff_t)-1); |
| } |
| EXPORT_SYMBOL(truncate_inode_pages); |
| |
| /** |
| * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode |
| * @mapping: the address_space which holds the pages to invalidate |
| * @start: the offset 'from' which to invalidate |
| * @end: the offset 'to' which to invalidate (inclusive) |
| * |
| * This function only removes the unlocked pages, if you want to |
| * remove all the pages of one inode, you must call truncate_inode_pages. |
| * |
| * invalidate_mapping_pages() will not block on IO activity. It will not |
| * invalidate pages which are dirty, locked, under writeback or mapped into |
| * pagetables. |
| */ |
| unsigned long invalidate_mapping_pages(struct address_space *mapping, |
| pgoff_t start, pgoff_t end) |
| { |
| struct pagevec pvec; |
| pgoff_t next = start; |
| unsigned long ret = 0; |
| int i; |
| |
| pagevec_init(&pvec, 0); |
| while (next <= end && |
| pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i]; |
| pgoff_t index; |
| int lock_failed; |
| |
| lock_failed = TestSetPageLocked(page); |
| |
| /* |
| * We really shouldn't be looking at the ->index of an |
| * unlocked page. But we're not allowed to lock these |
| * pages. So we rely upon nobody altering the ->index |
| * of this (pinned-by-us) page. |
| */ |
| index = page->index; |
| if (index > next) |
| next = index; |
| next++; |
| if (lock_failed) |
| continue; |
| |
| if (PageDirty(page) || PageWriteback(page)) |
| goto unlock; |
| if (page_mapped(page)) |
| goto unlock; |
| ret += invalidate_complete_page(mapping, page); |
| unlock: |
| unlock_page(page); |
| if (next > end) |
| break; |
| } |
| pagevec_release(&pvec); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(invalidate_mapping_pages); |
| |
| /* |
| * This is like invalidate_complete_page(), except it ignores the page's |
| * refcount. We do this because invalidate_inode_pages2() needs stronger |
| * invalidation guarantees, and cannot afford to leave pages behind because |
| * shrink_page_list() has a temp ref on them, or because they're transiently |
| * sitting in the lru_cache_add() pagevecs. |
| */ |
| static int |
| invalidate_complete_page2(struct address_space *mapping, struct page *page) |
| { |
| if (page->mapping != mapping) |
| return 0; |
| |
| if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) |
| return 0; |
| |
| write_lock_irq(&mapping->tree_lock); |
| if (PageDirty(page)) |
| goto failed; |
| |
| BUG_ON(PagePrivate(page)); |
| __remove_from_page_cache(page); |
| write_unlock_irq(&mapping->tree_lock); |
| ClearPageUptodate(page); |
| page_cache_release(page); /* pagecache ref */ |
| return 1; |
| failed: |
| write_unlock_irq(&mapping->tree_lock); |
| return 0; |
| } |
| |
| static int do_launder_page(struct address_space *mapping, struct page *page) |
| { |
| if (!PageDirty(page)) |
| return 0; |
| if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) |
| return 0; |
| return mapping->a_ops->launder_page(page); |
| } |
| |
| /** |
| * invalidate_inode_pages2_range - remove range of pages from an address_space |
| * @mapping: the address_space |
| * @start: the page offset 'from' which to invalidate |
| * @end: the page offset 'to' which to invalidate (inclusive) |
| * |
| * Any pages which are found to be mapped into pagetables are unmapped prior to |
| * invalidation. |
| * |
| * Returns -EIO if any pages could not be invalidated. |
| */ |
| int invalidate_inode_pages2_range(struct address_space *mapping, |
| pgoff_t start, pgoff_t end) |
| { |
| struct pagevec pvec; |
| pgoff_t next; |
| int i; |
| int ret = 0; |
| int did_range_unmap = 0; |
| int wrapped = 0; |
| |
| pagevec_init(&pvec, 0); |
| next = start; |
| while (next <= end && !wrapped && |
| pagevec_lookup(&pvec, mapping, next, |
| min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i]; |
| pgoff_t page_index; |
| |
| lock_page(page); |
| if (page->mapping != mapping) { |
| unlock_page(page); |
| continue; |
| } |
| page_index = page->index; |
| next = page_index + 1; |
| if (next == 0) |
| wrapped = 1; |
| if (page_index > end) { |
| unlock_page(page); |
| break; |
| } |
| wait_on_page_writeback(page); |
| while (page_mapped(page)) { |
| if (!did_range_unmap) { |
| /* |
| * Zap the rest of the file in one hit. |
| */ |
| unmap_mapping_range(mapping, |
| (loff_t)page_index<<PAGE_CACHE_SHIFT, |
| (loff_t)(end - page_index + 1) |
| << PAGE_CACHE_SHIFT, |
| 0); |
| did_range_unmap = 1; |
| } else { |
| /* |
| * Just zap this page |
| */ |
| unmap_mapping_range(mapping, |
| (loff_t)page_index<<PAGE_CACHE_SHIFT, |
| PAGE_CACHE_SIZE, 0); |
| } |
| } |
| ret = do_launder_page(mapping, page); |
| if (ret == 0 && !invalidate_complete_page2(mapping, page)) |
| ret = -EIO; |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); |
| |
| /** |
| * invalidate_inode_pages2 - remove all pages from an address_space |
| * @mapping: the address_space |
| * |
| * Any pages which are found to be mapped into pagetables are unmapped prior to |
| * invalidation. |
| * |
| * Returns -EIO if any pages could not be invalidated. |
| */ |
| int invalidate_inode_pages2(struct address_space *mapping) |
| { |
| return invalidate_inode_pages2_range(mapping, 0, -1); |
| } |
| EXPORT_SYMBOL_GPL(invalidate_inode_pages2); |