| /* $Id: pci.c,v 1.39 2002/01/05 01:13:43 davem Exp $ |
| * pci.c: UltraSparc PCI controller support. |
| * |
| * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com) |
| * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz) |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/sched.h> |
| #include <linux/capability.h> |
| #include <linux/errno.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pbm.h> |
| #include <asm/pgtable.h> |
| #include <asm/irq.h> |
| #include <asm/ebus.h> |
| #include <asm/isa.h> |
| #include <asm/prom.h> |
| |
| unsigned long pci_memspace_mask = 0xffffffffUL; |
| |
| #ifndef CONFIG_PCI |
| /* A "nop" PCI implementation. */ |
| asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn, |
| unsigned long off, unsigned long len, |
| unsigned char *buf) |
| { |
| return 0; |
| } |
| asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn, |
| unsigned long off, unsigned long len, |
| unsigned char *buf) |
| { |
| return 0; |
| } |
| #else |
| |
| /* List of all PCI controllers found in the system. */ |
| struct pci_controller_info *pci_controller_root = NULL; |
| |
| /* Each PCI controller found gets a unique index. */ |
| int pci_num_controllers = 0; |
| |
| volatile int pci_poke_in_progress; |
| volatile int pci_poke_cpu = -1; |
| volatile int pci_poke_faulted; |
| |
| static DEFINE_SPINLOCK(pci_poke_lock); |
| |
| void pci_config_read8(u8 *addr, u8 *ret) |
| { |
| unsigned long flags; |
| u8 byte; |
| |
| spin_lock_irqsave(&pci_poke_lock, flags); |
| pci_poke_cpu = smp_processor_id(); |
| pci_poke_in_progress = 1; |
| pci_poke_faulted = 0; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "lduba [%1] %2, %0\n\t" |
| "membar #Sync" |
| : "=r" (byte) |
| : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) |
| : "memory"); |
| pci_poke_in_progress = 0; |
| pci_poke_cpu = -1; |
| if (!pci_poke_faulted) |
| *ret = byte; |
| spin_unlock_irqrestore(&pci_poke_lock, flags); |
| } |
| |
| void pci_config_read16(u16 *addr, u16 *ret) |
| { |
| unsigned long flags; |
| u16 word; |
| |
| spin_lock_irqsave(&pci_poke_lock, flags); |
| pci_poke_cpu = smp_processor_id(); |
| pci_poke_in_progress = 1; |
| pci_poke_faulted = 0; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "lduha [%1] %2, %0\n\t" |
| "membar #Sync" |
| : "=r" (word) |
| : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) |
| : "memory"); |
| pci_poke_in_progress = 0; |
| pci_poke_cpu = -1; |
| if (!pci_poke_faulted) |
| *ret = word; |
| spin_unlock_irqrestore(&pci_poke_lock, flags); |
| } |
| |
| void pci_config_read32(u32 *addr, u32 *ret) |
| { |
| unsigned long flags; |
| u32 dword; |
| |
| spin_lock_irqsave(&pci_poke_lock, flags); |
| pci_poke_cpu = smp_processor_id(); |
| pci_poke_in_progress = 1; |
| pci_poke_faulted = 0; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "lduwa [%1] %2, %0\n\t" |
| "membar #Sync" |
| : "=r" (dword) |
| : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) |
| : "memory"); |
| pci_poke_in_progress = 0; |
| pci_poke_cpu = -1; |
| if (!pci_poke_faulted) |
| *ret = dword; |
| spin_unlock_irqrestore(&pci_poke_lock, flags); |
| } |
| |
| void pci_config_write8(u8 *addr, u8 val) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_poke_lock, flags); |
| pci_poke_cpu = smp_processor_id(); |
| pci_poke_in_progress = 1; |
| pci_poke_faulted = 0; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "stba %0, [%1] %2\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) |
| : "memory"); |
| pci_poke_in_progress = 0; |
| pci_poke_cpu = -1; |
| spin_unlock_irqrestore(&pci_poke_lock, flags); |
| } |
| |
| void pci_config_write16(u16 *addr, u16 val) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_poke_lock, flags); |
| pci_poke_cpu = smp_processor_id(); |
| pci_poke_in_progress = 1; |
| pci_poke_faulted = 0; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "stha %0, [%1] %2\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) |
| : "memory"); |
| pci_poke_in_progress = 0; |
| pci_poke_cpu = -1; |
| spin_unlock_irqrestore(&pci_poke_lock, flags); |
| } |
| |
| void pci_config_write32(u32 *addr, u32 val) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_poke_lock, flags); |
| pci_poke_cpu = smp_processor_id(); |
| pci_poke_in_progress = 1; |
| pci_poke_faulted = 0; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "stwa %0, [%1] %2\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) |
| : "memory"); |
| pci_poke_in_progress = 0; |
| pci_poke_cpu = -1; |
| spin_unlock_irqrestore(&pci_poke_lock, flags); |
| } |
| |
| /* Probe for all PCI controllers in the system. */ |
| extern void sabre_init(struct device_node *, const char *); |
| extern void psycho_init(struct device_node *, const char *); |
| extern void schizo_init(struct device_node *, const char *); |
| extern void schizo_plus_init(struct device_node *, const char *); |
| extern void tomatillo_init(struct device_node *, const char *); |
| extern void sun4v_pci_init(struct device_node *, const char *); |
| |
| static struct { |
| char *model_name; |
| void (*init)(struct device_node *, const char *); |
| } pci_controller_table[] __initdata = { |
| { "SUNW,sabre", sabre_init }, |
| { "pci108e,a000", sabre_init }, |
| { "pci108e,a001", sabre_init }, |
| { "SUNW,psycho", psycho_init }, |
| { "pci108e,8000", psycho_init }, |
| { "SUNW,schizo", schizo_init }, |
| { "pci108e,8001", schizo_init }, |
| { "SUNW,schizo+", schizo_plus_init }, |
| { "pci108e,8002", schizo_plus_init }, |
| { "SUNW,tomatillo", tomatillo_init }, |
| { "pci108e,a801", tomatillo_init }, |
| { "SUNW,sun4v-pci", sun4v_pci_init }, |
| }; |
| #define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \ |
| sizeof(pci_controller_table[0])) |
| |
| static int __init pci_controller_init(const char *model_name, int namelen, struct device_node *dp) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) { |
| if (!strncmp(model_name, |
| pci_controller_table[i].model_name, |
| namelen)) { |
| pci_controller_table[i].init(dp, model_name); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __init pci_is_controller(const char *model_name, int namelen, struct device_node *dp) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) { |
| if (!strncmp(model_name, |
| pci_controller_table[i].model_name, |
| namelen)) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int __init pci_controller_scan(int (*handler)(const char *, int, struct device_node *)) |
| { |
| struct device_node *dp; |
| int count = 0; |
| |
| for_each_node_by_name(dp, "pci") { |
| struct property *prop; |
| int len; |
| |
| prop = of_find_property(dp, "model", &len); |
| if (!prop) |
| prop = of_find_property(dp, "compatible", &len); |
| |
| if (prop) { |
| const char *model = prop->value; |
| int item_len = 0; |
| |
| /* Our value may be a multi-valued string in the |
| * case of some compatible properties. For sanity, |
| * only try the first one. |
| */ |
| while (model[item_len] && len) { |
| len--; |
| item_len++; |
| } |
| |
| if (handler(model, item_len, dp)) |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| |
| /* Is there some PCI controller in the system? */ |
| int __init pcic_present(void) |
| { |
| return pci_controller_scan(pci_is_controller); |
| } |
| |
| struct pci_iommu_ops *pci_iommu_ops; |
| EXPORT_SYMBOL(pci_iommu_ops); |
| |
| extern struct pci_iommu_ops pci_sun4u_iommu_ops, |
| pci_sun4v_iommu_ops; |
| |
| /* Find each controller in the system, attach and initialize |
| * software state structure for each and link into the |
| * pci_controller_root. Setup the controller enough such |
| * that bus scanning can be done. |
| */ |
| static void __init pci_controller_probe(void) |
| { |
| if (tlb_type == hypervisor) |
| pci_iommu_ops = &pci_sun4v_iommu_ops; |
| else |
| pci_iommu_ops = &pci_sun4u_iommu_ops; |
| |
| printk("PCI: Probing for controllers.\n"); |
| |
| pci_controller_scan(pci_controller_init); |
| } |
| |
| static void __init pci_scan_each_controller_bus(void) |
| { |
| struct pci_controller_info *p; |
| |
| for (p = pci_controller_root; p; p = p->next) |
| p->scan_bus(p); |
| } |
| |
| extern void power_init(void); |
| |
| static int __init pcibios_init(void) |
| { |
| pci_controller_probe(); |
| if (pci_controller_root == NULL) |
| return 0; |
| |
| pci_scan_each_controller_bus(); |
| |
| isa_init(); |
| ebus_init(); |
| power_init(); |
| |
| return 0; |
| } |
| |
| subsys_initcall(pcibios_init); |
| |
| void pcibios_fixup_bus(struct pci_bus *pbus) |
| { |
| struct pci_pbm_info *pbm = pbus->sysdata; |
| |
| /* Generic PCI bus probing sets these to point at |
| * &io{port,mem}_resouce which is wrong for us. |
| */ |
| pbus->resource[0] = &pbm->io_space; |
| pbus->resource[1] = &pbm->mem_space; |
| } |
| |
| struct resource *pcibios_select_root(struct pci_dev *pdev, struct resource *r) |
| { |
| struct pci_pbm_info *pbm = pdev->bus->sysdata; |
| struct resource *root = NULL; |
| |
| if (r->flags & IORESOURCE_IO) |
| root = &pbm->io_space; |
| if (r->flags & IORESOURCE_MEM) |
| root = &pbm->mem_space; |
| |
| return root; |
| } |
| |
| void pcibios_update_irq(struct pci_dev *pdev, int irq) |
| { |
| } |
| |
| void pcibios_align_resource(void *data, struct resource *res, |
| resource_size_t size, resource_size_t align) |
| { |
| } |
| |
| int pcibios_enable_device(struct pci_dev *pdev, int mask) |
| { |
| return 0; |
| } |
| |
| void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region, |
| struct resource *res) |
| { |
| struct pci_pbm_info *pbm = pdev->bus->sysdata; |
| struct resource zero_res, *root; |
| |
| zero_res.start = 0; |
| zero_res.end = 0; |
| zero_res.flags = res->flags; |
| |
| if (res->flags & IORESOURCE_IO) |
| root = &pbm->io_space; |
| else |
| root = &pbm->mem_space; |
| |
| pbm->parent->resource_adjust(pdev, &zero_res, root); |
| |
| region->start = res->start - zero_res.start; |
| region->end = res->end - zero_res.start; |
| } |
| EXPORT_SYMBOL(pcibios_resource_to_bus); |
| |
| void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res, |
| struct pci_bus_region *region) |
| { |
| struct pci_pbm_info *pbm = pdev->bus->sysdata; |
| struct resource *root; |
| |
| res->start = region->start; |
| res->end = region->end; |
| |
| if (res->flags & IORESOURCE_IO) |
| root = &pbm->io_space; |
| else |
| root = &pbm->mem_space; |
| |
| pbm->parent->resource_adjust(pdev, res, root); |
| } |
| EXPORT_SYMBOL(pcibios_bus_to_resource); |
| |
| char * __init pcibios_setup(char *str) |
| { |
| return str; |
| } |
| |
| /* Platform support for /proc/bus/pci/X/Y mmap()s. */ |
| |
| /* If the user uses a host-bridge as the PCI device, he may use |
| * this to perform a raw mmap() of the I/O or MEM space behind |
| * that controller. |
| * |
| * This can be useful for execution of x86 PCI bios initialization code |
| * on a PCI card, like the xfree86 int10 stuff does. |
| */ |
| static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| struct pcidev_cookie *pcp = pdev->sysdata; |
| struct pci_pbm_info *pbm; |
| struct pci_controller_info *p; |
| unsigned long space_size, user_offset, user_size; |
| |
| if (!pcp) |
| return -ENXIO; |
| pbm = pcp->pbm; |
| if (!pbm) |
| return -ENXIO; |
| |
| p = pbm->parent; |
| if (p->pbms_same_domain) { |
| unsigned long lowest, highest; |
| |
| lowest = ~0UL; highest = 0UL; |
| if (mmap_state == pci_mmap_io) { |
| if (p->pbm_A.io_space.flags) { |
| lowest = p->pbm_A.io_space.start; |
| highest = p->pbm_A.io_space.end + 1; |
| } |
| if (p->pbm_B.io_space.flags) { |
| if (lowest > p->pbm_B.io_space.start) |
| lowest = p->pbm_B.io_space.start; |
| if (highest < p->pbm_B.io_space.end + 1) |
| highest = p->pbm_B.io_space.end + 1; |
| } |
| space_size = highest - lowest; |
| } else { |
| if (p->pbm_A.mem_space.flags) { |
| lowest = p->pbm_A.mem_space.start; |
| highest = p->pbm_A.mem_space.end + 1; |
| } |
| if (p->pbm_B.mem_space.flags) { |
| if (lowest > p->pbm_B.mem_space.start) |
| lowest = p->pbm_B.mem_space.start; |
| if (highest < p->pbm_B.mem_space.end + 1) |
| highest = p->pbm_B.mem_space.end + 1; |
| } |
| space_size = highest - lowest; |
| } |
| } else { |
| if (mmap_state == pci_mmap_io) { |
| space_size = (pbm->io_space.end - |
| pbm->io_space.start) + 1; |
| } else { |
| space_size = (pbm->mem_space.end - |
| pbm->mem_space.start) + 1; |
| } |
| } |
| |
| /* Make sure the request is in range. */ |
| user_offset = vma->vm_pgoff << PAGE_SHIFT; |
| user_size = vma->vm_end - vma->vm_start; |
| |
| if (user_offset >= space_size || |
| (user_offset + user_size) > space_size) |
| return -EINVAL; |
| |
| if (p->pbms_same_domain) { |
| unsigned long lowest = ~0UL; |
| |
| if (mmap_state == pci_mmap_io) { |
| if (p->pbm_A.io_space.flags) |
| lowest = p->pbm_A.io_space.start; |
| if (p->pbm_B.io_space.flags && |
| lowest > p->pbm_B.io_space.start) |
| lowest = p->pbm_B.io_space.start; |
| } else { |
| if (p->pbm_A.mem_space.flags) |
| lowest = p->pbm_A.mem_space.start; |
| if (p->pbm_B.mem_space.flags && |
| lowest > p->pbm_B.mem_space.start) |
| lowest = p->pbm_B.mem_space.start; |
| } |
| vma->vm_pgoff = (lowest + user_offset) >> PAGE_SHIFT; |
| } else { |
| if (mmap_state == pci_mmap_io) { |
| vma->vm_pgoff = (pbm->io_space.start + |
| user_offset) >> PAGE_SHIFT; |
| } else { |
| vma->vm_pgoff = (pbm->mem_space.start + |
| user_offset) >> PAGE_SHIFT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding |
| * to the 32-bit pci bus offset for DEV requested by the user. |
| * |
| * Basically, the user finds the base address for his device which he wishes |
| * to mmap. They read the 32-bit value from the config space base register, |
| * add whatever PAGE_SIZE multiple offset they wish, and feed this into the |
| * offset parameter of mmap on /proc/bus/pci/XXX for that device. |
| * |
| * Returns negative error code on failure, zero on success. |
| */ |
| static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT; |
| unsigned long user32 = user_offset & pci_memspace_mask; |
| unsigned long largest_base, this_base, addr32; |
| int i; |
| |
| if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) |
| return __pci_mmap_make_offset_bus(dev, vma, mmap_state); |
| |
| /* Figure out which base address this is for. */ |
| largest_base = 0UL; |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| struct resource *rp = &dev->resource[i]; |
| |
| /* Active? */ |
| if (!rp->flags) |
| continue; |
| |
| /* Same type? */ |
| if (i == PCI_ROM_RESOURCE) { |
| if (mmap_state != pci_mmap_mem) |
| continue; |
| } else { |
| if ((mmap_state == pci_mmap_io && |
| (rp->flags & IORESOURCE_IO) == 0) || |
| (mmap_state == pci_mmap_mem && |
| (rp->flags & IORESOURCE_MEM) == 0)) |
| continue; |
| } |
| |
| this_base = rp->start; |
| |
| addr32 = (this_base & PAGE_MASK) & pci_memspace_mask; |
| |
| if (mmap_state == pci_mmap_io) |
| addr32 &= 0xffffff; |
| |
| if (addr32 <= user32 && this_base > largest_base) |
| largest_base = this_base; |
| } |
| |
| if (largest_base == 0UL) |
| return -EINVAL; |
| |
| /* Now construct the final physical address. */ |
| if (mmap_state == pci_mmap_io) |
| vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT); |
| else |
| vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT); |
| |
| return 0; |
| } |
| |
| /* Set vm_flags of VMA, as appropriate for this architecture, for a pci device |
| * mapping. |
| */ |
| static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| vma->vm_flags |= (VM_IO | VM_RESERVED); |
| } |
| |
| /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci |
| * device mapping. |
| */ |
| static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| /* Our io_remap_pfn_range takes care of this, do nothing. */ |
| } |
| |
| /* Perform the actual remap of the pages for a PCI device mapping, as appropriate |
| * for this architecture. The region in the process to map is described by vm_start |
| * and vm_end members of VMA, the base physical address is found in vm_pgoff. |
| * The pci device structure is provided so that architectures may make mapping |
| * decisions on a per-device or per-bus basis. |
| * |
| * Returns a negative error code on failure, zero on success. |
| */ |
| int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state, |
| int write_combine) |
| { |
| int ret; |
| |
| ret = __pci_mmap_make_offset(dev, vma, mmap_state); |
| if (ret < 0) |
| return ret; |
| |
| __pci_mmap_set_flags(dev, vma, mmap_state); |
| __pci_mmap_set_pgprot(dev, vma, mmap_state); |
| |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| ret = io_remap_pfn_range(vma, vma->vm_start, |
| vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| /* Return the domain nuber for this pci bus */ |
| |
| int pci_domain_nr(struct pci_bus *pbus) |
| { |
| struct pci_pbm_info *pbm = pbus->sysdata; |
| int ret; |
| |
| if (pbm == NULL || pbm->parent == NULL) { |
| ret = -ENXIO; |
| } else { |
| struct pci_controller_info *p = pbm->parent; |
| |
| ret = p->index; |
| if (p->pbms_same_domain == 0) |
| ret = ((ret << 1) + |
| ((pbm == &pbm->parent->pbm_B) ? 1 : 0)); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(pci_domain_nr); |
| |
| int pcibios_prep_mwi(struct pci_dev *dev) |
| { |
| /* We set correct PCI_CACHE_LINE_SIZE register values for every |
| * device probed on this platform. So there is nothing to check |
| * and this always succeeds. |
| */ |
| return 0; |
| } |
| |
| #endif /* !(CONFIG_PCI) */ |