blob: 605803ae9ed80f1b2a2254eebb5da73f5e76a88e [file] [log] [blame]
/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/io.h>
#include <asm/unaligned.h>
#include "ath9k.h"
#include "initvals.h"
static int btcoex_enable;
module_param(btcoex_enable, bool, 0);
MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
#define ATH9K_CLOCK_RATE_CCK 22
#define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
#define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode);
static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
struct ar5416_eeprom_def *pEepData,
u32 reg, u32 value);
static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
/********************/
/* Helper Functions */
/********************/
static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (!ah->curchan) /* should really check for CCK instead */
return clks / ATH9K_CLOCK_RATE_CCK;
if (conf->channel->band == IEEE80211_BAND_2GHZ)
return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
}
static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (conf_is_ht40(conf))
return ath9k_hw_mac_usec(ah, clks) / 2;
else
return ath9k_hw_mac_usec(ah, clks);
}
static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (!ah->curchan) /* should really check for CCK instead */
return usecs *ATH9K_CLOCK_RATE_CCK;
if (conf->channel->band == IEEE80211_BAND_2GHZ)
return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
}
static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (conf_is_ht40(conf))
return ath9k_hw_mac_clks(ah, usecs) * 2;
else
return ath9k_hw_mac_clks(ah, usecs);
}
/*
* Read and write, they both share the same lock. We do this to serialize
* reads and writes on Atheros 802.11n PCI devices only. This is required
* as the FIFO on these devices can only accept sanely 2 requests. After
* that the device goes bananas. Serializing the reads/writes prevents this
* from happening.
*/
void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
{
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
iowrite32(val, ah->ah_sc->mem + reg_offset);
spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
} else
iowrite32(val, ah->ah_sc->mem + reg_offset);
}
unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
{
u32 val;
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
val = ioread32(ah->ah_sc->mem + reg_offset);
spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
} else
val = ioread32(ah->ah_sc->mem + reg_offset);
return val;
}
bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
{
int i;
BUG_ON(timeout < AH_TIME_QUANTUM);
for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
if ((REG_READ(ah, reg) & mask) == val)
return true;
udelay(AH_TIME_QUANTUM);
}
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
timeout, reg, REG_READ(ah, reg), mask, val);
return false;
}
u32 ath9k_hw_reverse_bits(u32 val, u32 n)
{
u32 retval;
int i;
for (i = 0, retval = 0; i < n; i++) {
retval = (retval << 1) | (val & 1);
val >>= 1;
}
return retval;
}
bool ath9k_get_channel_edges(struct ath_hw *ah,
u16 flags, u16 *low,
u16 *high)
{
struct ath9k_hw_capabilities *pCap = &ah->caps;
if (flags & CHANNEL_5GHZ) {
*low = pCap->low_5ghz_chan;
*high = pCap->high_5ghz_chan;
return true;
}
if ((flags & CHANNEL_2GHZ)) {
*low = pCap->low_2ghz_chan;
*high = pCap->high_2ghz_chan;
return true;
}
return false;
}
u16 ath9k_hw_computetxtime(struct ath_hw *ah,
const struct ath_rate_table *rates,
u32 frameLen, u16 rateix,
bool shortPreamble)
{
u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
u32 kbps;
kbps = rates->info[rateix].ratekbps;
if (kbps == 0)
return 0;
switch (rates->info[rateix].phy) {
case WLAN_RC_PHY_CCK:
phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
if (shortPreamble && rates->info[rateix].short_preamble)
phyTime >>= 1;
numBits = frameLen << 3;
txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
break;
case WLAN_RC_PHY_OFDM:
if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_QUARTER
+ OFDM_PREAMBLE_TIME_QUARTER
+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
} else if (ah->curchan &&
IS_CHAN_HALF_RATE(ah->curchan)) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_HALF +
OFDM_PREAMBLE_TIME_HALF
+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
} else {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
+ (numSymbols * OFDM_SYMBOL_TIME);
}
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"Unknown phy %u (rate ix %u)\n",
rates->info[rateix].phy, rateix);
txTime = 0;
break;
}
return txTime;
}
void ath9k_hw_get_channel_centers(struct ath_hw *ah,
struct ath9k_channel *chan,
struct chan_centers *centers)
{
int8_t extoff;
if (!IS_CHAN_HT40(chan)) {
centers->ctl_center = centers->ext_center =
centers->synth_center = chan->channel;
return;
}
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS)) {
centers->synth_center =
chan->channel + HT40_CHANNEL_CENTER_SHIFT;
extoff = 1;
} else {
centers->synth_center =
chan->channel - HT40_CHANNEL_CENTER_SHIFT;
extoff = -1;
}
centers->ctl_center =
centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
centers->ext_center =
centers->synth_center + (extoff *
((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
HT40_CHANNEL_CENTER_SHIFT : 15));
}
/******************/
/* Chip Revisions */
/******************/
static void ath9k_hw_read_revisions(struct ath_hw *ah)
{
u32 val;
val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
if (val == 0xFF) {
val = REG_READ(ah, AR_SREV);
ah->hw_version.macVersion =
(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
} else {
if (!AR_SREV_9100(ah))
ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
ah->hw_version.macRev = val & AR_SREV_REVISION;
if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
ah->is_pciexpress = true;
}
}
static int ath9k_hw_get_radiorev(struct ath_hw *ah)
{
u32 val;
int i;
REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
for (i = 0; i < 8; i++)
REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
return ath9k_hw_reverse_bits(val, 8);
}
/************************************/
/* HW Attach, Detach, Init Routines */
/************************************/
static void ath9k_hw_disablepcie(struct ath_hw *ah)
{
if (AR_SREV_9100(ah))
return;
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
}
static bool ath9k_hw_chip_test(struct ath_hw *ah)
{
u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
u32 regHold[2];
u32 patternData[4] = { 0x55555555,
0xaaaaaaaa,
0x66666666,
0x99999999 };
int i, j;
for (i = 0; i < 2; i++) {
u32 addr = regAddr[i];
u32 wrData, rdData;
regHold[i] = REG_READ(ah, addr);
for (j = 0; j < 0x100; j++) {
wrData = (j << 16) | j;
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (rdData != wrData) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"address test failed "
"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
addr, wrData, rdData);
return false;
}
}
for (j = 0; j < 4; j++) {
wrData = patternData[j];
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (wrData != rdData) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"address test failed "
"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
addr, wrData, rdData);
return false;
}
}
REG_WRITE(ah, regAddr[i], regHold[i]);
}
udelay(100);
return true;
}
static const char *ath9k_hw_devname(u16 devid)
{
switch (devid) {
case AR5416_DEVID_PCI:
return "Atheros 5416";
case AR5416_DEVID_PCIE:
return "Atheros 5418";
case AR9160_DEVID_PCI:
return "Atheros 9160";
case AR5416_AR9100_DEVID:
return "Atheros 9100";
case AR9280_DEVID_PCI:
case AR9280_DEVID_PCIE:
return "Atheros 9280";
case AR9285_DEVID_PCIE:
return "Atheros 9285";
}
return NULL;
}
static void ath9k_hw_set_defaults(struct ath_hw *ah)
{
int i;
ah->config.dma_beacon_response_time = 2;
ah->config.sw_beacon_response_time = 10;
ah->config.additional_swba_backoff = 0;
ah->config.ack_6mb = 0x0;
ah->config.cwm_ignore_extcca = 0;
ah->config.pcie_powersave_enable = 0;
ah->config.pcie_clock_req = 0;
ah->config.pcie_waen = 0;
ah->config.analog_shiftreg = 1;
ah->config.ht_enable = 1;
ah->config.ofdm_trig_low = 200;
ah->config.ofdm_trig_high = 500;
ah->config.cck_trig_high = 200;
ah->config.cck_trig_low = 100;
ah->config.enable_ani = 1;
ah->config.diversity_control = 0;
ah->config.antenna_switch_swap = 0;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
ah->config.spurchans[i][0] = AR_NO_SPUR;
ah->config.spurchans[i][1] = AR_NO_SPUR;
}
ah->config.intr_mitigation = true;
/*
* We need this for PCI devices only (Cardbus, PCI, miniPCI)
* _and_ if on non-uniprocessor systems (Multiprocessor/HT).
* This means we use it for all AR5416 devices, and the few
* minor PCI AR9280 devices out there.
*
* Serialization is required because these devices do not handle
* well the case of two concurrent reads/writes due to the latency
* involved. During one read/write another read/write can be issued
* on another CPU while the previous read/write may still be working
* on our hardware, if we hit this case the hardware poops in a loop.
* We prevent this by serializing reads and writes.
*
* This issue is not present on PCI-Express devices or pre-AR5416
* devices (legacy, 802.11abg).
*/
if (num_possible_cpus() > 1)
ah->config.serialize_regmode = SER_REG_MODE_AUTO;
}
static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
int *status)
{
struct ath_hw *ah;
ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
if (ah == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"Cannot allocate memory for state block\n");
*status = -ENOMEM;
return NULL;
}
ah->ah_sc = sc;
ah->hw_version.magic = AR5416_MAGIC;
ah->regulatory.country_code = CTRY_DEFAULT;
ah->hw_version.devid = devid;
ah->hw_version.subvendorid = 0;
ah->ah_flags = 0;
if ((devid == AR5416_AR9100_DEVID))
ah->hw_version.macVersion = AR_SREV_VERSION_9100;
if (!AR_SREV_9100(ah))
ah->ah_flags = AH_USE_EEPROM;
ah->regulatory.power_limit = MAX_RATE_POWER;
ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
ah->atim_window = 0;
ah->diversity_control = ah->config.diversity_control;
ah->antenna_switch_swap =
ah->config.antenna_switch_swap;
ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
ah->beacon_interval = 100;
ah->enable_32kHz_clock = DONT_USE_32KHZ;
ah->slottime = (u32) -1;
ah->acktimeout = (u32) -1;
ah->ctstimeout = (u32) -1;
ah->globaltxtimeout = (u32) -1;
ah->gbeacon_rate = 0;
return ah;
}
static int ath9k_hw_rfattach(struct ath_hw *ah)
{
bool rfStatus = false;
int ecode = 0;
rfStatus = ath9k_hw_init_rf(ah, &ecode);
if (!rfStatus) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"RF setup failed, status: %u\n", ecode);
return ecode;
}
return 0;
}
static int ath9k_hw_rf_claim(struct ath_hw *ah)
{
u32 val;
REG_WRITE(ah, AR_PHY(0), 0x00000007);
val = ath9k_hw_get_radiorev(ah);
switch (val & AR_RADIO_SREV_MAJOR) {
case 0:
val = AR_RAD5133_SREV_MAJOR;
break;
case AR_RAD5133_SREV_MAJOR:
case AR_RAD5122_SREV_MAJOR:
case AR_RAD2133_SREV_MAJOR:
case AR_RAD2122_SREV_MAJOR:
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"Radio Chip Rev 0x%02X not supported\n",
val & AR_RADIO_SREV_MAJOR);
return -EOPNOTSUPP;
}
ah->hw_version.analog5GhzRev = val;
return 0;
}
static int ath9k_hw_init_macaddr(struct ath_hw *ah)
{
u32 sum;
int i;
u16 eeval;
sum = 0;
for (i = 0; i < 3; i++) {
eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
sum += eeval;
ah->macaddr[2 * i] = eeval >> 8;
ah->macaddr[2 * i + 1] = eeval & 0xff;
}
if (sum == 0 || sum == 0xffff * 3)
return -EADDRNOTAVAIL;
return 0;
}
static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
{
u32 rxgain_type;
if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
INIT_INI_ARRAY(&ah->iniModesRxGain,
ar9280Modes_backoff_13db_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
INIT_INI_ARRAY(&ah->iniModesRxGain,
ar9280Modes_backoff_23db_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
else
INIT_INI_ARRAY(&ah->iniModesRxGain,
ar9280Modes_original_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
} else {
INIT_INI_ARRAY(&ah->iniModesRxGain,
ar9280Modes_original_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
}
}
static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
{
u32 txgain_type;
if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9280Modes_high_power_tx_gain_9280_2,
ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
else
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9280Modes_original_tx_gain_9280_2,
ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
} else {
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9280Modes_original_tx_gain_9280_2,
ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
}
}
static int ath9k_hw_post_attach(struct ath_hw *ah)
{
int ecode;
if (!ath9k_hw_chip_test(ah))
return -ENODEV;
ecode = ath9k_hw_rf_claim(ah);
if (ecode != 0)
return ecode;
ecode = ath9k_hw_eeprom_attach(ah);
if (ecode != 0)
return ecode;
DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
ecode = ath9k_hw_rfattach(ah);
if (ecode != 0)
return ecode;
if (!AR_SREV_9100(ah)) {
ath9k_hw_ani_setup(ah);
ath9k_hw_ani_attach(ah);
}
return 0;
}
static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
int *status)
{
struct ath_hw *ah;
int ecode;
u32 i, j;
ah = ath9k_hw_newstate(devid, sc, status);
if (ah == NULL)
return NULL;
ath9k_hw_set_defaults(ah);
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
ecode = -EIO;
goto bad;
}
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
ecode = -EIO;
goto bad;
}
if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
(AR_SREV_9280(ah) && !ah->is_pciexpress)) {
ah->config.serialize_regmode =
SER_REG_MODE_ON;
} else {
ah->config.serialize_regmode =
SER_REG_MODE_OFF;
}
}
DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
ah->config.serialize_regmode);
if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
(ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
(ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
(!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
DPRINTF(sc, ATH_DBG_FATAL,
"Mac Chip Rev 0x%02x.%x is not supported by "
"this driver\n", ah->hw_version.macVersion,
ah->hw_version.macRev);
ecode = -EOPNOTSUPP;
goto bad;
}
if (AR_SREV_9100(ah)) {
ah->iq_caldata.calData = &iq_cal_multi_sample;
ah->supp_cals = IQ_MISMATCH_CAL;
ah->is_pciexpress = false;
}
ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
if (AR_SREV_9160_10_OR_LATER(ah)) {
if (AR_SREV_9280_10_OR_LATER(ah)) {
ah->iq_caldata.calData = &iq_cal_single_sample;
ah->adcgain_caldata.calData =
&adc_gain_cal_single_sample;
ah->adcdc_caldata.calData =
&adc_dc_cal_single_sample;
ah->adcdc_calinitdata.calData =
&adc_init_dc_cal;
} else {
ah->iq_caldata.calData = &iq_cal_multi_sample;
ah->adcgain_caldata.calData =
&adc_gain_cal_multi_sample;
ah->adcdc_caldata.calData =
&adc_dc_cal_multi_sample;
ah->adcdc_calinitdata.calData =
&adc_init_dc_cal;
}
ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
}
ah->ani_function = ATH9K_ANI_ALL;
if (AR_SREV_9280_10_OR_LATER(ah))
ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
if (AR_SREV_9285_12_OR_LATER(ah)) {
INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
ARRAY_SIZE(ar9285Common_9285_1_2), 2);
if (ah->config.pcie_clock_req) {
INIT_INI_ARRAY(&ah->iniPcieSerdes,
ar9285PciePhy_clkreq_off_L1_9285_1_2,
ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
} else {
INIT_INI_ARRAY(&ah->iniPcieSerdes,
ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
2);
}
} else if (AR_SREV_9285_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
ARRAY_SIZE(ar9285Modes_9285), 6);
INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
ARRAY_SIZE(ar9285Common_9285), 2);
if (ah->config.pcie_clock_req) {
INIT_INI_ARRAY(&ah->iniPcieSerdes,
ar9285PciePhy_clkreq_off_L1_9285,
ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
} else {
INIT_INI_ARRAY(&ah->iniPcieSerdes,
ar9285PciePhy_clkreq_always_on_L1_9285,
ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
}
} else if (AR_SREV_9280_20_OR_LATER(ah)) {
INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
ARRAY_SIZE(ar9280Modes_9280_2), 6);
INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
ARRAY_SIZE(ar9280Common_9280_2), 2);
if (ah->config.pcie_clock_req) {
INIT_INI_ARRAY(&ah->iniPcieSerdes,
ar9280PciePhy_clkreq_off_L1_9280,
ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
} else {
INIT_INI_ARRAY(&ah->iniPcieSerdes,
ar9280PciePhy_clkreq_always_on_L1_9280,
ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
}
INIT_INI_ARRAY(&ah->iniModesAdditional,
ar9280Modes_fast_clock_9280_2,
ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
} else if (AR_SREV_9280_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
ARRAY_SIZE(ar9280Modes_9280), 6);
INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
ARRAY_SIZE(ar9280Common_9280), 2);
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
ARRAY_SIZE(ar5416Modes_9160), 6);
INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
ARRAY_SIZE(ar5416Common_9160), 2);
INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
ARRAY_SIZE(ar5416Bank0_9160), 2);
INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
ARRAY_SIZE(ar5416Bank1_9160), 2);
INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
ARRAY_SIZE(ar5416Bank2_9160), 2);
INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
ARRAY_SIZE(ar5416Bank3_9160), 3);
INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
ARRAY_SIZE(ar5416Bank6_9160), 3);
INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
ARRAY_SIZE(ar5416Bank7_9160), 2);
if (AR_SREV_9160_11(ah)) {
INIT_INI_ARRAY(&ah->iniAddac,
ar5416Addac_91601_1,
ARRAY_SIZE(ar5416Addac_91601_1), 2);
} else {
INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
ARRAY_SIZE(ar5416Addac_9160), 2);
}
} else if (AR_SREV_9100_OR_LATER(ah)) {
INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
ARRAY_SIZE(ar5416Modes_9100), 6);
INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
ARRAY_SIZE(ar5416Common_9100), 2);
INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
ARRAY_SIZE(ar5416Bank0_9100), 2);
INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
ARRAY_SIZE(ar5416Bank1_9100), 2);
INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
ARRAY_SIZE(ar5416Bank2_9100), 2);
INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
ARRAY_SIZE(ar5416Bank3_9100), 3);
INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
ARRAY_SIZE(ar5416Bank6_9100), 3);
INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
ARRAY_SIZE(ar5416Bank7_9100), 2);
INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
ARRAY_SIZE(ar5416Addac_9100), 2);
} else {
INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
ARRAY_SIZE(ar5416Modes), 6);
INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
ARRAY_SIZE(ar5416Common), 2);
INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
ARRAY_SIZE(ar5416Bank0), 2);
INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
ARRAY_SIZE(ar5416BB_RfGain), 3);
INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
ARRAY_SIZE(ar5416Bank1), 2);
INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
ARRAY_SIZE(ar5416Bank2), 2);
INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
ARRAY_SIZE(ar5416Bank3), 3);
INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
ARRAY_SIZE(ar5416Bank6), 3);
INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
ARRAY_SIZE(ar5416Bank6TPC), 3);
INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
ARRAY_SIZE(ar5416Bank7), 2);
INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
ARRAY_SIZE(ar5416Addac), 2);
}
if (ah->is_pciexpress)
ath9k_hw_configpcipowersave(ah, 0);
else
ath9k_hw_disablepcie(ah);
ecode = ath9k_hw_post_attach(ah);
if (ecode != 0)
goto bad;
if (AR_SREV_9285_12_OR_LATER(ah)) {
u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
/* txgain table */
if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9285Modes_high_power_tx_gain_9285_1_2,
ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
} else {
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9285Modes_original_tx_gain_9285_1_2,
ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
}
}
/* rxgain table */
if (AR_SREV_9280_20(ah))
ath9k_hw_init_rxgain_ini(ah);
/* txgain table */
if (AR_SREV_9280_20(ah))
ath9k_hw_init_txgain_ini(ah);
ath9k_hw_fill_cap_info(ah);
if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
/* EEPROM Fixup */
for (i = 0; i < ah->iniModes.ia_rows; i++) {
u32 reg = INI_RA(&ah->iniModes, i, 0);
for (j = 1; j < ah->iniModes.ia_columns; j++) {
u32 val = INI_RA(&ah->iniModes, i, j);
INI_RA(&ah->iniModes, i, j) =
ath9k_hw_ini_fixup(ah,
&ah->eeprom.def,
reg, val);
}
}
}
ecode = ath9k_hw_init_macaddr(ah);
if (ecode != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Failed to initialize MAC address\n");
goto bad;
}
if (AR_SREV_9285(ah))
ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
else
ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
ath9k_init_nfcal_hist_buffer(ah);
return ah;
bad:
if (ah)
ath9k_hw_detach(ah);
if (status)
*status = ecode;
return NULL;
}
static void ath9k_hw_init_bb(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 synthDelay;
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
udelay(synthDelay + BASE_ACTIVATE_DELAY);
}
static void ath9k_hw_init_qos(struct ath_hw *ah)
{
REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
REG_WRITE(ah, AR_QOS_NO_ACK,
SM(2, AR_QOS_NO_ACK_TWO_BIT) |
SM(5, AR_QOS_NO_ACK_BIT_OFF) |
SM(0, AR_QOS_NO_ACK_BYTE_OFF));
REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
}
static void ath9k_hw_init_pll(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 pll;
if (AR_SREV_9100(ah)) {
if (chan && IS_CHAN_5GHZ(chan))
pll = 0x1450;
else
pll = 0x1458;
} else {
if (AR_SREV_9280_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan)) {
pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
if (AR_SREV_9280_20(ah)) {
if (((chan->channel % 20) == 0)
|| ((chan->channel % 10) == 0))
pll = 0x2850;
else
pll = 0x142c;
}
} else {
pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
}
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan))
pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
else
pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
} else {
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan))
pll |= SM(0xa, AR_RTC_PLL_DIV);
else
pll |= SM(0xb, AR_RTC_PLL_DIV);
}
}
REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
udelay(RTC_PLL_SETTLE_DELAY);
REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
}
static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
{
int rx_chainmask, tx_chainmask;
rx_chainmask = ah->rxchainmask;
tx_chainmask = ah->txchainmask;
switch (rx_chainmask) {
case 0x5:
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
case 0x3:
if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
break;
}
case 0x1:
case 0x2:
case 0x7:
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
break;
default:
break;
}
REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
if (tx_chainmask == 0x5) {
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
}
if (AR_SREV_9100(ah))
REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
}
static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
enum nl80211_iftype opmode)
{
ah->mask_reg = AR_IMR_TXERR |
AR_IMR_TXURN |
AR_IMR_RXERR |
AR_IMR_RXORN |
AR_IMR_BCNMISC;
if (ah->config.intr_mitigation)
ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
else
ah->mask_reg |= AR_IMR_RXOK;
ah->mask_reg |= AR_IMR_TXOK;
if (opmode == NL80211_IFTYPE_AP)
ah->mask_reg |= AR_IMR_MIB;
REG_WRITE(ah, AR_IMR, ah->mask_reg);
REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
}
}
static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
{
if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
ah->acktimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
ah->acktimeout = us;
return true;
}
}
static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
{
if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
ah->ctstimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
ah->ctstimeout = us;
return true;
}
}
static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
{
if (tu > 0xFFFF) {
DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
"bad global tx timeout %u\n", tu);
ah->globaltxtimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
ah->globaltxtimeout = tu;
return true;
}
}
static void ath9k_hw_init_user_settings(struct ath_hw *ah)
{
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
ah->misc_mode);
if (ah->misc_mode != 0)
REG_WRITE(ah, AR_PCU_MISC,
REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
if (ah->slottime != (u32) -1)
ath9k_hw_setslottime(ah, ah->slottime);
if (ah->acktimeout != (u32) -1)
ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
if (ah->ctstimeout != (u32) -1)
ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
if (ah->globaltxtimeout != (u32) -1)
ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
}
const char *ath9k_hw_probe(u16 vendorid, u16 devid)
{
return vendorid == ATHEROS_VENDOR_ID ?
ath9k_hw_devname(devid) : NULL;
}
void ath9k_hw_detach(struct ath_hw *ah)
{
if (!AR_SREV_9100(ah))
ath9k_hw_ani_detach(ah);
ath9k_hw_rfdetach(ah);
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
kfree(ah);
}
struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
{
struct ath_hw *ah = NULL;
switch (devid) {
case AR5416_DEVID_PCI:
case AR5416_DEVID_PCIE:
case AR5416_AR9100_DEVID:
case AR9160_DEVID_PCI:
case AR9280_DEVID_PCI:
case AR9280_DEVID_PCIE:
case AR9285_DEVID_PCIE:
ah = ath9k_hw_do_attach(devid, sc, error);
break;
default:
*error = -ENXIO;
break;
}
return ah;
}
/*******/
/* INI */
/*******/
static void ath9k_hw_override_ini(struct ath_hw *ah,
struct ath9k_channel *chan)
{
/*
* Set the RX_ABORT and RX_DIS and clear if off only after
* RXE is set for MAC. This prevents frames with corrupted
* descriptor status.
*/
REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
if (!AR_SREV_5416_20_OR_LATER(ah) ||
AR_SREV_9280_10_OR_LATER(ah))
return;
REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
}
static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
struct ar5416_eeprom_def *pEepData,
u32 reg, u32 value)
{
struct base_eep_header *pBase = &(pEepData->baseEepHeader);
switch (ah->hw_version.devid) {
case AR9280_DEVID_PCI:
if (reg == 0x7894) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"ini VAL: %x EEPROM: %x\n", value,
(pBase->version & 0xff));
if ((pBase->version & 0xff) > 0x0a) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"PWDCLKIND: %d\n",
pBase->pwdclkind);
value &= ~AR_AN_TOP2_PWDCLKIND;
value |= AR_AN_TOP2_PWDCLKIND &
(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
} else {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"PWDCLKIND Earlier Rev\n");
}
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"final ini VAL: %x\n", value);
}
break;
}
return value;
}
static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
struct ar5416_eeprom_def *pEepData,
u32 reg, u32 value)
{
if (ah->eep_map == EEP_MAP_4KBITS)
return value;
else
return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
}
static void ath9k_olc_init(struct ath_hw *ah)
{
u32 i;
for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
ah->originalGain[i] =
MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
AR_PHY_TX_GAIN);
ah->PDADCdelta = 0;
}
static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
struct ath9k_channel *chan)
{
u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
if (IS_CHAN_B(chan))
ctl |= CTL_11B;
else if (IS_CHAN_G(chan))
ctl |= CTL_11G;
else
ctl |= CTL_11A;
return ctl;
}
static int ath9k_hw_process_ini(struct ath_hw *ah,
struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
int i, regWrites = 0;
struct ieee80211_channel *channel = chan->chan;
u32 modesIndex, freqIndex;
switch (chan->chanmode) {
case CHANNEL_A:
case CHANNEL_A_HT20:
modesIndex = 1;
freqIndex = 1;
break;
case CHANNEL_A_HT40PLUS:
case CHANNEL_A_HT40MINUS:
modesIndex = 2;
freqIndex = 1;
break;
case CHANNEL_G:
case CHANNEL_G_HT20:
case CHANNEL_B:
modesIndex = 4;
freqIndex = 2;
break;
case CHANNEL_G_HT40PLUS:
case CHANNEL_G_HT40MINUS:
modesIndex = 3;
freqIndex = 2;
break;
default:
return -EINVAL;
}
REG_WRITE(ah, AR_PHY(0), 0x00000007);
REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
ah->eep_ops->set_addac(ah, chan);
if (AR_SREV_5416_22_OR_LATER(ah)) {
REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
} else {
struct ar5416IniArray temp;
u32 addacSize =
sizeof(u32) * ah->iniAddac.ia_rows *
ah->iniAddac.ia_columns;
memcpy(ah->addac5416_21,
ah->iniAddac.ia_array, addacSize);
(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
temp.ia_array = ah->addac5416_21;
temp.ia_columns = ah->iniAddac.ia_columns;
temp.ia_rows = ah->iniAddac.ia_rows;
REG_WRITE_ARRAY(&temp, 1, regWrites);
}
REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
for (i = 0; i < ah->iniModes.ia_rows; i++) {
u32 reg = INI_RA(&ah->iniModes, i, 0);
u32 val = INI_RA(&ah->iniModes, i, modesIndex);
REG_WRITE(ah, reg, val);
if (reg >= 0x7800 && reg < 0x78a0
&& ah->config.analog_shiftreg) {
udelay(100);
}
DO_DELAY(regWrites);
}
if (AR_SREV_9280(ah))
REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah))
REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
for (i = 0; i < ah->iniCommon.ia_rows; i++) {
u32 reg = INI_RA(&ah->iniCommon, i, 0);
u32 val = INI_RA(&ah->iniCommon, i, 1);
REG_WRITE(ah, reg, val);
if (reg >= 0x7800 && reg < 0x78a0
&& ah->config.analog_shiftreg) {
udelay(100);
}
DO_DELAY(regWrites);
}
ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
regWrites);
}
ath9k_hw_override_ini(ah, chan);
ath9k_hw_set_regs(ah, chan, macmode);
ath9k_hw_init_chain_masks(ah);
if (OLC_FOR_AR9280_20_LATER)
ath9k_olc_init(ah);
ah->eep_ops->set_txpower(ah, chan,
ath9k_regd_get_ctl(&ah->regulatory, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->regulatory.power_limit));
if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"ar5416SetRfRegs failed\n");
return -EIO;
}
return 0;
}
/****************************************/
/* Reset and Channel Switching Routines */
/****************************************/
static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
{
u32 rfMode = 0;
if (chan == NULL)
return;
rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (!AR_SREV_9280_10_OR_LATER(ah))
rfMode |= (IS_CHAN_5GHZ(chan)) ?
AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
{
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
static inline void ath9k_hw_set_dma(struct ath_hw *ah)
{
u32 regval;
regval = REG_READ(ah, AR_AHB_MODE);
REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
if (AR_SREV_9285(ah)) {
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
} else {
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
}
static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
{
u32 val;
val = REG_READ(ah, AR_STA_ID1);
val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
switch (opmode) {
case NL80211_IFTYPE_AP:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
| AR_STA_ID1_KSRCH_MODE);
REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
| AR_STA_ID1_KSRCH_MODE);
REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_MONITOR:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
break;
}
}
static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
u32 coef_scaled,
u32 *coef_mantissa,
u32 *coef_exponent)
{
u32 coef_exp, coef_man;
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
*coef_exponent = coef_exp - 16;
}
static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 coef_scaled, ds_coef_exp, ds_coef_man;
u32 clockMhzScaled = 0x64000000;
struct chan_centers centers;
if (IS_CHAN_HALF_RATE(chan))
clockMhzScaled = clockMhzScaled >> 1;
else if (IS_CHAN_QUARTER_RATE(chan))
clockMhzScaled = clockMhzScaled >> 2;
ath9k_hw_get_channel_centers(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
coef_scaled = (9 * coef_scaled) / 10;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
}
static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
{
u32 rst_flags;
u32 tmpReg;
if (AR_SREV_9100(ah)) {
u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
val &= ~AR_RTC_DERIVED_CLK_PERIOD;
val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
}
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
if (AR_SREV_9100(ah)) {
rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
} else {
tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (tmpReg &
(AR_INTR_SYNC_LOCAL_TIMEOUT |
AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
} else {
REG_WRITE(ah, AR_RC, AR_RC_AHB);
}
rst_flags = AR_RTC_RC_MAC_WARM;
if (type == ATH9K_RESET_COLD)
rst_flags |= AR_RTC_RC_MAC_COLD;
}
REG_WRITE(ah, AR_RTC_RC, rst_flags);
udelay(50);
REG_WRITE(ah, AR_RTC_RC, 0);
if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"RTC stuck in MAC reset\n");
return false;
}
if (!AR_SREV_9100(ah))
REG_WRITE(ah, AR_RC, 0);
ath9k_hw_init_pll(ah, NULL);
if (AR_SREV_9100(ah))
udelay(50);
return true;
}
static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
{
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
REG_WRITE(ah, AR_RTC_RESET, 0);
udelay(2);
REG_WRITE(ah, AR_RTC_RESET, 1);
if (!ath9k_hw_wait(ah,
AR_RTC_STATUS,
AR_RTC_STATUS_M,
AR_RTC_STATUS_ON,
AH_WAIT_TIMEOUT)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
return false;
}
ath9k_hw_read_revisions(ah);
return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
}
static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
{
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
switch (type) {
case ATH9K_RESET_POWER_ON:
return ath9k_hw_set_reset_power_on(ah);
case ATH9K_RESET_WARM:
case ATH9K_RESET_COLD:
return ath9k_hw_set_reset(ah, type);
default:
return false;
}
}
static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
u32 phymode;
u32 enableDacFifo = 0;
if (AR_SREV_9285_10_OR_LATER(ah))
enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
AR_PHY_FC_ENABLE_DAC_FIFO);
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
if (IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_FC_DYN2040_EN;
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS))
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
}
REG_WRITE(ah, AR_PHY_TURBO, phymode);
ath9k_hw_set11nmac2040(ah, macmode);
REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}
static bool ath9k_hw_chip_reset(struct ath_hw *ah,
struct ath9k_channel *chan)
{
if (OLC_FOR_AR9280_20_LATER) {
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
return false;
} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
return false;
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
ah->chip_fullsleep = false;
ath9k_hw_init_pll(ah, chan);
ath9k_hw_set_rfmode(ah, chan);
return true;
}
static bool ath9k_hw_channel_change(struct ath_hw *ah,
struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
struct ieee80211_channel *channel = chan->chan;
u32 synthDelay, qnum;
for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
if (ath9k_hw_numtxpending(ah, qnum)) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"Transmit frames pending on queue %d\n", qnum);
return false;
}
}
REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"Could not kill baseband RX\n");
return false;
}
ath9k_hw_set_regs(ah, chan, macmode);
if (AR_SREV_9280_10_OR_LATER(ah)) {
ath9k_hw_ar9280_set_channel(ah, chan);
} else {
if (!(ath9k_hw_set_channel(ah, chan))) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"Failed to set channel\n");
return false;
}
}
ah->eep_ops->set_txpower(ah, chan,
ath9k_regd_get_ctl(&ah->regulatory, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->regulatory.power_limit));
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
udelay(synthDelay + BASE_ACTIVATE_DELAY);
REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
if (AR_SREV_9280_10_OR_LATER(ah))
ath9k_hw_9280_spur_mitigate(ah, chan);
else
ath9k_hw_spur_mitigate(ah, chan);
if (!chan->oneTimeCalsDone)
chan->oneTimeCalsDone = true;
return true;
}
static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int freq;
int bin, cur_bin;
int bb_spur_off, spur_subchannel_sd;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, newVal;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
struct chan_centers centers;
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
ah->config.spurmode = SPUR_ENABLE_EEPROM;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
if (is2GHz)
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
else
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - freq;
if (IS_CHAN_HT40(chan)) {
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
bb_spur = cur_bb_spur;
break;
}
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur) {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
return;
} else {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
}
bin = bb_spur * 320;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
if (IS_CHAN_HT40(chan)) {
if (bb_spur < 0) {
spur_subchannel_sd = 1;
bb_spur_off = bb_spur + 10;
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur - 10;
}
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur;
}
if (IS_CHAN_HT40(chan))
spur_delta_phase =
((bb_spur * 262144) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
else
spur_delta_phase =
((bb_spur * 524288) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, newVal);
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp_v = abs(cur_vit_mask - bin);
if (tmp_v < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int bin, cur_bin;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, new;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - (chan->channel * 10);
if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur)
return;
bin = bb_spur * 32;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, new);
spur_delta_phase = ((bb_spur * 524288) / 100) &
AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, new);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp_v = abs(cur_vit_mask - bin);
if (tmp_v < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
static void ath9k_enable_rfkill(struct ath_hw *ah)
{
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
AR_GPIO_INPUT_MUX2_RFSILENT);
ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
bool bChannelChange)
{
u32 saveLedState;
struct ath_softc *sc = ah->ah_sc;
struct ath9k_channel *curchan = ah->curchan;
u32 saveDefAntenna;
u32 macStaId1;
int i, rx_chainmask, r;
ah->extprotspacing = sc->ht_extprotspacing;
ah->txchainmask = sc->tx_chainmask;
ah->rxchainmask = sc->rx_chainmask;
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return -EIO;
if (curchan)
ath9k_hw_getnf(ah, curchan);
if (bChannelChange &&
(ah->chip_fullsleep != true) &&
(ah->curchan != NULL) &&
(chan->channel != ah->curchan->channel) &&
((chan->channelFlags & CHANNEL_ALL) ==
(ah->curchan->channelFlags & CHANNEL_ALL)) &&
(!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
!IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
ath9k_hw_loadnf(ah, ah->curchan);
ath9k_hw_start_nfcal(ah);
return 0;
}
}
saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0)
saveDefAntenna = 1;
macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
saveLedState = REG_READ(ah, AR_CFG_LED) &
(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
ath9k_hw_mark_phy_inactive(ah);
if (!ath9k_hw_chip_reset(ah, chan)) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
return -EINVAL;
}
if (AR_SREV_9280_10_OR_LATER(ah))
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
if (r)
return r;
/* Setup MFP options for CCMP */
if (AR_SREV_9280_20_OR_LATER(ah)) {
/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
* frames when constructing CCMP AAD. */
REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
0xc7ff);
ah->sw_mgmt_crypto = false;
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
/* Disable hardware crypto for management frames */
REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
ah->sw_mgmt_crypto = true;
} else
ah->sw_mgmt_crypto = true;
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
if (AR_SREV_9280_10_OR_LATER(ah))
ath9k_hw_9280_spur_mitigate(ah, chan);
else
ath9k_hw_spur_mitigate(ah, chan);
ah->eep_ops->set_board_values(ah, chan);
ath9k_hw_decrease_chain_power(ah, chan);
REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| (ah->config.
ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
| ah->sta_id1_defaults);
ath9k_hw_set_operating_mode(ah, ah->opmode);
REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
REG_WRITE(ah, AR_ISR, ~0);
REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
if (AR_SREV_9280_10_OR_LATER(ah))
ath9k_hw_ar9280_set_channel(ah, chan);
else
if (!(ath9k_hw_set_channel(ah, chan)))
return -EIO;
for (i = 0; i < AR_NUM_DCU; i++)
REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
ah->intr_txqs = 0;
for (i = 0; i < ah->caps.total_queues; i++)
ath9k_hw_resettxqueue(ah, i);
ath9k_hw_init_interrupt_masks(ah, ah->opmode);
ath9k_hw_init_qos(ah);
if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
ath9k_enable_rfkill(ah);
ath9k_hw_init_user_settings(ah);
REG_WRITE(ah, AR_STA_ID1,
REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
ath9k_hw_set_dma(ah);
REG_WRITE(ah, AR_OBS, 8);
if (ah->config.intr_mitigation) {
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
}
ath9k_hw_init_bb(ah, chan);
if (!ath9k_hw_init_cal(ah, chan))
return -EIO;
rx_chainmask = ah->rxchainmask;
if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
}
REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
if (AR_SREV_9100(ah)) {
u32 mask;
mask = REG_READ(ah, AR_CFG);
if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"CFG Byte Swap Set 0x%x\n", mask);
} else {
mask =
INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
REG_WRITE(ah, AR_CFG, mask);
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
}
} else {
#ifdef __BIG_ENDIAN
REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
#endif
}
return 0;
}
/************************/
/* Key Cache Management */
/************************/
bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
{
u32 keyType;
if (entry >= ah->caps.keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"keychache entry %u out of range\n", entry);
return false;
}
keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
u16 micentry = entry + 64;
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
}
if (ah->curchan == NULL)
return true;
return true;
}
bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
{
u32 macHi, macLo;
if (entry >= ah->caps.keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"keychache entry %u out of range\n", entry);
return false;
}
if (mac != NULL) {
macHi = (mac[5] << 8) | mac[4];
macLo = (mac[3] << 24) |
(mac[2] << 16) |
(mac[1] << 8) |
mac[0];
macLo >>= 1;
macLo |= (macHi & 1) << 31;
macHi >>= 1;
} else {
macLo = macHi = 0;
}
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
return true;
}
bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
const struct ath9k_keyval *k,
const u8 *mac)
{
const struct ath9k_hw_capabilities *pCap = &ah->caps;
u32 key0, key1, key2, key3, key4;
u32 keyType;
if (entry >= pCap->keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"keycache entry %u out of range\n", entry);
return false;
}
switch (k->kv_type) {
case ATH9K_CIPHER_AES_OCB:
keyType = AR_KEYTABLE_TYPE_AES;
break;
case ATH9K_CIPHER_AES_CCM:
if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"AES-CCM not supported by mac rev 0x%x\n",
ah->hw_version.macRev);
return false;
}
keyType = AR_KEYTABLE_TYPE_CCM;
break;
case ATH9K_CIPHER_TKIP:
keyType = AR_KEYTABLE_TYPE_TKIP;
if (ATH9K_IS_MIC_ENABLED(ah)
&& entry + 64 >= pCap->keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"entry %u inappropriate for TKIP\n", entry);
return false;
}
break;
case ATH9K_CIPHER_WEP:
if (k->kv_len < WLAN_KEY_LEN_WEP40) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"WEP key length %u too small\n", k->kv_len);
return false;
}
if (k->kv_len <= WLAN_KEY_LEN_WEP40)
keyType = AR_KEYTABLE_TYPE_40;
else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
keyType = AR_KEYTABLE_TYPE_104;
else
keyType = AR_KEYTABLE_TYPE_128;
break;
case ATH9K_CIPHER_CLR:
keyType = AR_KEYTABLE_TYPE_CLR;
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"cipher %u not supported\n", k->kv_type);
return false;
}
key0 = get_unaligned_le32(k->kv_val + 0);
key1 = get_unaligned_le16(k->kv_val + 4);
key2 = get_unaligned_le32(k->kv_val + 6);
key3 = get_unaligned_le16(k->kv_val + 10);
key4 = get_unaligned_le32(k->kv_val + 12);
if (k->kv_len <= WLAN_KEY_LEN_WEP104)
key4 &= 0xff;
/*
* Note: Key cache registers access special memory area that requires
* two 32-bit writes to actually update the values in the internal
* memory. Consequently, the exact order and pairs used here must be
* maintained.
*/
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
u16 micentry = entry + 64;
/*
* Write inverted key[47:0] first to avoid Michael MIC errors
* on frames that could be sent or received at the same time.
* The correct key will be written in the end once everything
* else is ready.
*/
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
/* Write key[95:48] */
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
/* Write key[127:96] and key type */
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
/* Write MAC address for the entry */
(void) ath9k_hw_keysetmac(ah, entry, mac);
if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
/*
* TKIP uses two key cache entries:
* Michael MIC TX/RX keys in the same key cache entry
* (idx = main index + 64):
* key0 [31:0] = RX key [31:0]
* key1 [15:0] = TX key [31:16]
* key1 [31:16] = reserved
* key2 [31:0] = RX key [63:32]
* key3 [15:0] = TX key [15:0]
* key3 [31:16] = reserved
* key4 [31:0] = TX key [63:32]
*/
u32 mic0, mic1, mic2, mic3, mic4;
mic0 = get_unaligned_le32(k->kv_mic + 0);
mic2 = get_unaligned_le32(k->kv_mic + 4);
mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
mic4 = get_unaligned_le32(k->kv_txmic + 4);
/* Write RX[31:0] and TX[31:16] */
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
/* Write RX[63:32] and TX[15:0] */
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
/* Write TX[63:32] and keyType(reserved) */
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR);
} else {
/*
* TKIP uses four key cache entries (two for group
* keys):
* Michael MIC TX/RX keys are in different key cache
* entries (idx = main index + 64 for TX and
* main index + 32 + 96 for RX):
* key0 [31:0] = TX/RX MIC key [31:0]
* key1 [31:0] = reserved
* key2 [31:0] = TX/RX MIC key [63:32]
* key3 [31:0] = reserved
* key4 [31:0] = reserved
*
* Upper layer code will call this function separately
* for TX and RX keys when these registers offsets are
* used.
*/
u32 mic0, mic2;
mic0 = get_unaligned_le32(k->kv_mic + 0);
mic2 = get_unaligned_le32(k->kv_mic + 4);
/* Write MIC key[31:0] */
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
/* Write MIC key[63:32] */
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
/* Write TX[63:32] and keyType(reserved) */
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR);
}
/* MAC address registers are reserved for the MIC entry */
REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
/*
* Write the correct (un-inverted) key[47:0] last to enable
* TKIP now that all other registers are set with correct
* values.
*/
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
} else {
/* Write key[47:0] */
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
/* Write key[95:48] */
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
/* Write key[127:96] and key type */
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
/* Write MAC address for the entry */
(void) ath9k_hw_keysetmac(ah, entry, mac);
}
return true;
}
bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
{
if (entry < ah->caps.keycache_size) {
u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
if (val & AR_KEYTABLE_VALID)
return true;
}
return false;
}
/******************************/
/* Power Management (Chipset) */
/******************************/
static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
if (!AR_SREV_9100(ah))
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
REG_CLR_BIT(ah, (AR_RTC_RESET),
AR_RTC_RESET_EN);
}
}
static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
struct ath9k_hw_capabilities *pCap = &ah->caps;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_ON_INT);
} else {
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
}
}
static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
{
u32 val;
int i;
if (setChip) {
if ((REG_READ(ah, AR_RTC_STATUS) &
AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
if (ath9k_hw_set_reset_reg(ah,
ATH9K_RESET_POWER_ON) != true) {
return false;
}
}
if (AR_SREV_9100(ah))
REG_SET_BIT(ah, AR_RTC_RESET,
AR_RTC_RESET_EN);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
udelay(50);
for (i = POWER_UP_TIME / 50; i > 0; i--) {
val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
if (val == AR_RTC_STATUS_ON)
break;
udelay(50);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
if (i == 0) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
return false;
}
}
REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
return true;
}
static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
enum ath9k_power_mode mode)
{
int status = true, setChip = true;
static const char *modes[] = {
"AWAKE",
"FULL-SLEEP",
"NETWORK SLEEP",
"UNDEFINED"
};
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
modes[ah->power_mode], modes[mode]);
switch (mode) {
case ATH9K_PM_AWAKE:
status = ath9k_hw_set_power_awake(ah, setChip);
break;
case ATH9K_PM_FULL_SLEEP:
ath9k_set_power_sleep(ah, setChip);
ah->chip_fullsleep = true;
break;
case ATH9K_PM_NETWORK_SLEEP:
ath9k_set_power_network_sleep(ah, setChip);
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"Unknown power mode %u\n", mode);
return false;
}
ah->power_mode = mode;
return status;
}
bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
{
unsigned long flags;
bool ret;
spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
ret = ath9k_hw_setpower_nolock(ah, mode);
spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
return ret;
}
void ath9k_ps_wakeup(struct ath_softc *sc)
{
unsigned long flags;
spin_lock_irqsave(&sc->sc_pm_lock, flags);
if (++sc->ps_usecount != 1)
goto unlock;
if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE) {
sc->sc_ah->restore_mode = sc->sc_ah->power_mode;
ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
}
unlock:
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
}
void ath9k_ps_restore(struct ath_softc *sc)
{
unsigned long flags;
spin_lock_irqsave(&sc->sc_pm_lock, flags);
if (--sc->ps_usecount != 0)
goto unlock;
if ((sc->hw->conf.flags & IEEE80211_CONF_PS) &&
!(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
SC_OP_WAIT_FOR_CAB |
SC_OP_WAIT_FOR_PSPOLL_DATA |
SC_OP_WAIT_FOR_TX_ACK)))
ath9k_hw_setpower_nolock(sc->sc_ah,
sc->sc_ah->restore_mode);
unlock:
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
}
/*
* Helper for ASPM support.
*
* Disable PLL when in L0s as well as receiver clock when in L1.
* This power saving option must be enabled through the SerDes.
*
* Programming the SerDes must go through the same 288 bit serial shift
* register as the other analog registers. Hence the 9 writes.
*/
void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
{
u8 i;
if (ah->is_pciexpress != true)
return;
/* Do not touch SerDes registers */
if (ah->config.pcie_powersave_enable == 2)
return;
/* Nothing to do on restore for 11N */
if (restore)
return;
if (AR_SREV_9280_20_OR_LATER(ah)) {
/*
* AR9280 2.0 or later chips use SerDes values from the
* initvals.h initialized depending on chipset during
* ath9k_hw_do_attach()
*/
for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
INI_RA(&ah->iniPcieSerdes, i, 1));
}
} else if (AR_SREV_9280(ah) &&
(ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
/* RX shut off when elecidle is asserted */
REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
/* Shut off CLKREQ active in L1 */
if (ah->config.pcie_clock_req)
REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
else
REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
/* Load the new settings */
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
} else {
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
/* RX shut off when elecidle is asserted */
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
/*
* Ignore ah->ah_config.pcie_clock_req setting for
* pre-AR9280 11n
*/
REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
/* Load the new settings */
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
}
udelay(1000);
/* set bit 19 to allow forcing of pcie core into L1 state */
REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
/* Several PCIe massages to ensure proper behaviour */
if (ah->config.pcie_waen) {
REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
} else {
if (AR_SREV_9285(ah))
REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
/*
* On AR9280 chips bit 22 of 0x4004 needs to be set to
* otherwise card may disappear.
*/
else if (AR_SREV_9280(ah))
REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
else
REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
}
}
/**********************/
/* Interrupt Handling */
/**********************/
bool ath9k_hw_intrpend(struct ath_hw *ah)
{
u32 host_isr;
if (AR_SREV_9100(ah))
return true;
host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
return true;
host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if ((host_isr & AR_INTR_SYNC_DEFAULT)
&& (host_isr != AR_INTR_SPURIOUS))
return true;
return false;
}
bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
{
u32 isr = 0;
u32 mask2 = 0;
struct ath9k_hw_capabilities *pCap = &ah->caps;
u32 sync_cause = 0;
bool fatal_int = false;
if (!AR_SREV_9100(ah)) {
if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
== AR_RTC_STATUS_ON) {
isr = REG_READ(ah, AR_ISR);
}
}
sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
AR_INTR_SYNC_DEFAULT;
*masked = 0;
if (!isr && !sync_cause)
return false;
} else {
*masked = 0;
isr = REG_READ(ah, AR_ISR);
}
if (isr) {
if (isr & AR_ISR_BCNMISC) {
u32 isr2;
isr2 = REG_READ(ah, AR_ISR_S2);
if (isr2 & AR_ISR_S2_TIM)
mask2 |= ATH9K_INT_TIM;
if (isr2 & AR_ISR_S2_DTIM)
mask2 |= ATH9K_INT_DTIM;
if (isr2 & AR_ISR_S2_DTIMSYNC)
mask2 |= ATH9K_INT_DTIMSYNC;
if (isr2 & (AR_ISR_S2_CABEND))
mask2 |= ATH9K_INT_CABEND;
if (isr2 & AR_ISR_S2_GTT)
mask2 |= ATH9K_INT_GTT;
if (isr2 & AR_ISR_S2_CST)
mask2 |= ATH9K_INT_CST;
if (isr2 & AR_ISR_S2_TSFOOR)
mask2 |= ATH9K_INT_TSFOOR;
}
isr = REG_READ(ah, AR_ISR_RAC);
if (isr == 0xffffffff) {
*masked = 0;
return false;
}
*masked = isr & ATH9K_INT_COMMON;
if (ah->config.intr_mitigation) {
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
*masked |= ATH9K_INT_RX;
}
if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
*masked |= ATH9K_INT_RX;
if (isr &
(AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
AR_ISR_TXEOL)) {
u32 s0_s, s1_s;
*masked |= ATH9K_INT_TX;
s0_s = REG_READ(ah, AR_ISR_S0_S);
ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
s1_s = REG_READ(ah, AR_ISR_S1_S);
ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
}
if (isr & AR_ISR_RXORN) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"receive FIFO overrun interrupt\n");
}
if (!AR_SREV_9100(ah)) {
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
if (isr5 & AR_ISR_S5_TIM_TIMER)
*masked |= ATH9K_INT_TIM_TIMER;
}
}
*masked |= mask2;
}
if (AR_SREV_9100(ah))
return true;
if (sync_cause) {
fatal_int =
(sync_cause &
(AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
? true : false;
if (fatal_int) {
if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"received PCI FATAL interrupt\n");
}
if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"received PCI PERR interrupt\n");
}
*masked |= ATH9K_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
REG_WRITE(ah, AR_RC, 0);
*masked |= ATH9K_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"AR_INTR_SYNC_LOCAL_TIMEOUT\n");
}
REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
}
return true;
}
enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
{
return ah->mask_reg;
}
enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
{
u32 omask = ah->mask_reg;
u32 mask, mask2;
struct ath9k_hw_capabilities *pCap = &ah->caps;
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
if (omask & ATH9K_INT_GLOBAL) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) REG_READ(ah, AR_IER);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
}
mask = ints & ATH9K_INT_COMMON;
mask2 = 0;
if (ints & ATH9K_INT_TX) {
if (ah->txok_interrupt_mask)
mask |= AR_IMR_TXOK;
if (ah->txdesc_interrupt_mask)
mask |= AR_IMR_TXDESC;
if (ah->txerr_interrupt_mask)
mask |= AR_IMR_TXERR;
if (ah->txeol_interrupt_mask)
mask |= AR_IMR_TXEOL;
}
if (ints & ATH9K_INT_RX) {
mask |= AR_IMR_RXERR;
if (ah->config.intr_mitigation)
mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
else
mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
mask |= AR_IMR_GENTMR;
}
if (ints & (ATH9K_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & ATH9K_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & ATH9K_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & ATH9K_INT_CABEND)
mask2 |= AR_IMR_S2_CABEND;
if (ints & ATH9K_INT_TSFOOR)
mask2 |= AR_IMR_S2_TSFOOR;
}
if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & ATH9K_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
REG_WRITE(ah, AR_IMR, mask);
mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT | AR_IMR_S2_CST);
REG_WRITE(ah, AR_IMR_S2, mask | mask2);
ah->mask_reg = ints;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
if (ints & ATH9K_INT_TIM_TIMER)
REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
else
REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
}
if (ints & ATH9K_INT_GLOBAL) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
AR_INTR_MAC_IRQ);
REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
AR_INTR_SYNC_DEFAULT);
REG_WRITE(ah, AR_INTR_SYNC_MASK,
AR_INTR_SYNC_DEFAULT);
}
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
}
return omask;
}
/*******************/
/* Beacon Handling */
/*******************/
void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
{
int flags = 0;
ah->beacon_interval = beacon_period;
switch (ah->opmode) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_MONITOR:
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
flags |= AR_TBTT_TIMER_EN;
break;
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
REG_SET_BIT(ah, AR_TXCFG,
AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
REG_WRITE(ah, AR_NEXT_NDP_TIMER,
TU_TO_USEC(next_beacon +
(ah->atim_window ? ah->
atim_window : 1)));
flags |= AR_NDP_TIMER_EN;
case NL80211_IFTYPE_AP:
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
TU_TO_USEC(next_beacon -
ah->config.
dma_beacon_response_time));
REG_WRITE(ah, AR_NEXT_SWBA,
TU_TO_USEC(next_beacon -
ah->config.
sw_beacon_response_time));
flags |=
AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
"%s: unsupported opmode: %d\n",
__func__, ah->opmode);
return;
break;
}
REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
beacon_period &= ~ATH9K_BEACON_ENA;
if (beacon_period & ATH9K_BEACON_RESET_TSF) {
beacon_period &= ~ATH9K_BEACON_RESET_TSF;
ath9k_hw_reset_tsf(ah);
}
REG_SET_BIT(ah, AR_TIMER_MODE, flags);
}
void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
const struct ath9k_beacon_state *bs)
{
u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
struct ath9k_hw_capabilities *pCap = &ah->caps;
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
REG_WRITE(ah, AR_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REG_RMW_FIELD(ah, AR_RSSI_THR,
AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
if (bs->bs_sleepduration > beaconintval)
beaconintval = bs->bs_sleepduration;
dtimperiod = bs->bs_dtimperiod;
if (bs->bs_sleepduration > dtimperiod)
dtimperiod = bs->bs_sleepduration;
if (beaconintval == dtimperiod)
nextTbtt = bs->bs_nextdtim;
else
nextTbtt = bs->bs_nexttbtt;
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
REG_WRITE(ah, AR_NEXT_DTIM,
TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
REG_WRITE(ah, AR_SLEEP1,
SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
| AR_SLEEP1_ASSUME_DTIM);
if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
beacontimeout = (BEACON_TIMEOUT_VAL << 3);
else
beacontimeout = MIN_BEACON_TIMEOUT_VAL;
REG_WRITE(ah, AR_SLEEP2,
SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
REG_SET_BIT(ah, AR_TIMER_MODE,
AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
AR_DTIM_TIMER_EN);
/* TSF Out of Range Threshold */
REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
}
/*******************/
/* HW Capabilities */
/*******************/
void ath9k_hw_fill_cap_info(struct ath_hw *ah)
{
struct ath9k_hw_capabilities *pCap = &ah->caps;
u16 capField = 0, eeval;
eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
ah->regulatory.current_rd = eeval;
eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
if (AR_SREV_9285_10_OR_LATER(ah))
eeval |= AR9285_RDEXT_DEFAULT;
ah->regulatory.current_rd_ext = eeval;
capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
if (ah->opmode != NL80211_IFTYPE_AP &&
ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
if (ah->regulatory.current_rd == 0x64 ||
ah->regulatory.current_rd == 0x65)
ah->regulatory.current_rd += 5;
else if (ah->regulatory.current_rd == 0x41)
ah->regulatory.current_rd = 0x43;
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
"regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
}
eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
if (eeval & AR5416_OPFLAGS_11A) {
set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
if (ah->config.ht_enable) {
if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
set_bit(ATH9K_MODE_11NA_HT20,
pCap->wireless_modes);
if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
set_bit(ATH9K_MODE_11NA_HT40PLUS,
pCap->wireless_modes);
set_bit(ATH9K_MODE_11NA_HT40MINUS,
pCap->wireless_modes);
}
}
}
if (eeval & AR5416_OPFLAGS_11G) {
set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
if (ah->config.ht_enable) {
if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
set_bit(ATH9K_MODE_11NG_HT20,
pCap->wireless_modes);
if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
set_bit(ATH9K_MODE_11NG_HT40PLUS,
pCap->wireless_modes);
set_bit(ATH9K_MODE_11NG_HT40MINUS,
pCap->wireless_modes);
}
}
}
pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
!(eeval & AR5416_OPFLAGS_11A))
pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
else
pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
pCap->low_2ghz_chan = 2312;
pCap->high_2ghz_chan = 2732;
pCap->low_5ghz_chan = 4920;
pCap->high_5ghz_chan = 6100;
pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
if (ah->config.ht_enable)
pCap->hw_caps |= ATH9K_HW_CAP_HT;
else
pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
pCap->hw_caps |= ATH9K_HW_CAP_GTT;
pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
if (capField & AR_EEPROM_EEPCAP_MAXQCU)
pCap->total_queues =
MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
else
pCap->total_queues = ATH9K_NUM_TX_QUEUES;
if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
pCap->keycache_size =
1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
else
pCap->keycache_size = AR_KEYTABLE_SIZE;
pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
if (AR_SREV_9285_10_OR_LATER(ah))
pCap->num_gpio_pins = AR9285_NUM_GPIO;
else if (AR_SREV_9280_10_OR_LATER(ah))
pCap->num_gpio_pins = AR928X_NUM_GPIO;
else
pCap->num_gpio_pins = AR_NUM_GPIO;
if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
pCap->hw_caps |= ATH9K_HW_CAP_CST;
pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
} else {
pCap->rts_aggr_limit = (8 * 1024);
}
pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
ah->rfkill_gpio =
MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
ah->rfkill_polarity =
MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
}
#endif
if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
(ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
(ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
(ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
(ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
(ah->hw_version.macVersion == AR_SREV_VERSION_9285))
pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
else
pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
else
pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
AR_EEPROM_EEREGCAP_EN_KK_U2 |
AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
} else {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
}
pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
pCap->num_antcfg_5ghz =
ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
pCap->num_antcfg_2ghz =
ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
ah->btactive_gpio = 6;
ah->wlanactive_gpio = 5;
}
}
bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
u32 capability, u32 *result)
{
switch (type) {
case ATH9K_CAP_CIPHER:
switch (capability) {
case ATH9K_CIPHER_AES_CCM:
case ATH9K_CIPHER_AES_OCB:
case ATH9K_CIPHER_TKIP:
case ATH9K_CIPHER_WEP:
case ATH9K_CIPHER_MIC:
case ATH9K_CIPHER_CLR:
return true;
default:
return false;
}
case ATH9K_CAP_TKIP_MIC:
switch (capability) {
case 0:
return true;
case 1:
return (ah->sta_id1_defaults &
AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
false;
}
case ATH9K_CAP_TKIP_SPLIT:
return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
false : true;
case ATH9K_CAP_DIVERSITY:
return (REG_READ(ah, AR_PHY_CCK_DETECT) &
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
true : false;
case ATH9K_CAP_MCAST_KEYSRCH:
switch (capability) {
case 0:
return true;
case 1:
if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
return false;
} else {
return (ah->sta_id1_defaults &
AR_STA_ID1_MCAST_KSRCH) ? true :
false;
}
}
return false;
case ATH9K_CAP_TXPOW:
switch (capability) {
case 0:
return 0;
case 1:
*result = ah->regulatory.power_limit;
return 0;
case 2:
*result = ah->regulatory.max_power_level;
return 0;
case 3:
*result = ah->regulatory.tp_scale;
return 0;
}
return false;
case ATH9K_CAP_DS:
return (AR_SREV_9280_20_OR_LATER(ah) &&
(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
? false : true;
default:
return false;
}
}
bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
u32 capability, u32 setting, int *status)
{
u32 v;
switch (type) {
case ATH9K_CAP_TKIP_MIC:
if (setting)
ah->sta_id1_defaults |=
AR_STA_ID1_CRPT_MIC_ENABLE;
else
ah->sta_id1_defaults &=
~AR_STA_ID1_CRPT_MIC_ENABLE;
return true;
case ATH9K_CAP_DIVERSITY:
v = REG_READ(ah, AR_PHY_CCK_DETECT);
if (setting)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
return true;
case ATH9K_CAP_MCAST_KEYSRCH:
if (setting)
ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
else
ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
return true;
default:
return false;
}
}
/****************************/
/* GPIO / RFKILL / Antennae */
/****************************/
static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
u32 gpio, u32 type)
{
int addr;
u32 gpio_shift, tmp;
if (gpio > 11)
addr = AR_GPIO_OUTPUT_MUX3;
else if (gpio > 5)
addr = AR_GPIO_OUTPUT_MUX2;
else
addr = AR_GPIO_OUTPUT_MUX1;
gpio_shift = (gpio % 6) * 5;
if (AR_SREV_9280_20_OR_LATER(ah)
|| (addr != AR_GPIO_OUTPUT_MUX1)) {
REG_RMW(ah, addr, (type << gpio_shift),
(0x1f << gpio_shift));
} else {
tmp = REG_READ(ah, addr);
tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
tmp &= ~(0x1f << gpio_shift);
tmp |= (type << gpio_shift);
REG_WRITE(ah, addr, tmp);
}
}
void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
{
u32 gpio_shift;
ASSERT(gpio < ah->caps.num_gpio_pins);
gpio_shift = gpio << 1;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
{
#define MS_REG_READ(x, y) \
(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
if (gpio >= ah->caps.num_gpio_pins)
return 0xffffffff;
if (AR_SREV_9285_10_OR_LATER(ah))
return MS_REG_READ(AR9285, gpio) != 0;
else if (AR_SREV_9280_10_OR_LATER(ah))
return MS_REG_READ(AR928X, gpio) != 0;
else
return MS_REG_READ(AR, gpio) != 0;
}
void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
u32 ah_signal_type)
{
u32 gpio_shift;
ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
gpio_shift = 2 * gpio;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
{
REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
AR_GPIO_BIT(gpio));
}
u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
{
return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
}
void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
{
REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
enum ath9k_ant_setting settings,
struct ath9k_channel *chan,
u8 *tx_chainmask,
u8 *rx_chainmask,
u8 *antenna_cfgd)
{
static u8 tx_chainmask_cfg, rx_chainmask_cfg;
if (AR_SREV_9280(ah)) {
if (!tx_chainmask_cfg) {
tx_chainmask_cfg = *tx_chainmask;
rx_chainmask_cfg = *rx_chainmask;
}
switch (settings) {
case ATH9K_ANT_FIXED_A:
*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
*antenna_cfgd = true;
break;
case ATH9K_ANT_FIXED_B:
if (ah->caps.tx_chainmask >
ATH9K_ANTENNA1_CHAINMASK) {
*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
}
*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
*antenna_cfgd = true;
break;
case ATH9K_ANT_VARIABLE:
*tx_chainmask = tx_chainmask_cfg;
*rx_chainmask = rx_chainmask_cfg;
*antenna_cfgd = true;
break;
default:
break;
}
} else {
ah->diversity_control = settings;
}
return true;
}
/*********************/
/* General Operation */
/*********************/
u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
{
u32 bits = REG_READ(ah, AR_RX_FILTER);
u32 phybits = REG_READ(ah, AR_PHY_ERR);
if (phybits & AR_PHY_ERR_RADAR)
bits |= ATH9K_RX_FILTER_PHYRADAR;
if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
bits |= ATH9K_RX_FILTER_PHYERR;
return bits;
}
void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
{
u32 phybits;
REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
phybits = 0;
if (bits & ATH9K_RX_FILTER_PHYRADAR)
phybits |= AR_PHY_ERR_RADAR;
if (bits & ATH9K_RX_FILTER_PHYERR)
phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
REG_WRITE(ah, AR_PHY_ERR, phybits);
if (phybits)
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
else
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
}
bool ath9k_hw_phy_disable(struct ath_hw *ah)
{
return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
}
bool ath9k_hw_disable(struct ath_hw *ah)
{
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
}
void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
{
struct ath9k_channel *chan = ah->curchan;
struct ieee80211_channel *channel = chan->chan;
ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
ah->eep_ops->set_txpower(ah, chan,
ath9k_regd_get_ctl(&ah->regulatory, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->regulatory.power_limit));
}
void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
{
memcpy(ah->macaddr, mac, ETH_ALEN);
}
void ath9k_hw_setopmode(struct ath_hw *ah)
{
ath9k_hw_set_operating_mode(ah, ah->opmode);
}
void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
{
REG_WRITE(ah, AR_MCAST_FIL0, filter0);
REG_WRITE(ah, AR_MCAST_FIL1, filter1);
}
void ath9k_hw_setbssidmask(struct ath_softc *sc)
{
REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
}
void ath9k_hw_write_associd(struct ath_softc *sc)
{
REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
}
u64 ath9k_hw_gettsf64(struct ath_hw *ah)
{
u64 tsf;
tsf = REG_READ(ah, AR_TSF_U32);
tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
return tsf;
}
void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
{
REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
}
void ath9k_hw_reset_tsf(struct ath_hw *ah)
{
ath9k_ps_wakeup(ah->ah_sc);
if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
AH_TSF_WRITE_TIMEOUT))
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
ath9k_ps_restore(ah->ah_sc);
}
bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
{
if (setting)
ah->misc_mode |= AR_PCU_TX_ADD_TSF;
else
ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
return true;
}
bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
{
if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
ah->slottime = (u32) -1;
return false;
} else {
REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
ah->slottime = us;
return true;
}
}
void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
{
u32 macmode;
if (mode == ATH9K_HT_MACMODE_2040 &&
!ah->config.cwm_ignore_extcca)
macmode = AR_2040_JOINED_RX_CLEAR;
else
macmode = 0;
REG_WRITE(ah, AR_2040_MODE, macmode);
}
/***************************/
/* Bluetooth Coexistence */
/***************************/
void ath9k_hw_btcoex_enable(struct ath_hw *ah)
{
/* connect bt_active to baseband */
REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
(AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
/* Set input mux for bt_active to gpio pin */
REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
AR_GPIO_INPUT_MUX1_BT_ACTIVE,
ah->btactive_gpio);
/* Configure the desired gpio port for input */
ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
/* Configure the desired GPIO port for TX_FRAME output */
ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
}