| /* $Id: pci_iommu.c,v 1.17 2001/12/17 07:05:09 davem Exp $ |
| * pci_iommu.c: UltraSparc PCI controller IOM/STC support. |
| * |
| * Copyright (C) 1999 David S. Miller (davem@redhat.com) |
| * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/delay.h> |
| |
| #include <asm/pbm.h> |
| |
| #include "iommu_common.h" |
| |
| #define PCI_STC_CTXMATCH_ADDR(STC, CTX) \ |
| ((STC)->strbuf_ctxmatch_base + ((CTX) << 3)) |
| |
| /* Accessing IOMMU and Streaming Buffer registers. |
| * REG parameter is a physical address. All registers |
| * are 64-bits in size. |
| */ |
| #define pci_iommu_read(__reg) \ |
| ({ u64 __ret; \ |
| __asm__ __volatile__("ldxa [%1] %2, %0" \ |
| : "=r" (__ret) \ |
| : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ |
| : "memory"); \ |
| __ret; \ |
| }) |
| #define pci_iommu_write(__reg, __val) \ |
| __asm__ __volatile__("stxa %0, [%1] %2" \ |
| : /* no outputs */ \ |
| : "r" (__val), "r" (__reg), \ |
| "i" (ASI_PHYS_BYPASS_EC_E)) |
| |
| /* Must be invoked under the IOMMU lock. */ |
| static void __iommu_flushall(struct pci_iommu *iommu) |
| { |
| unsigned long tag; |
| int entry; |
| |
| tag = iommu->iommu_flush + (0xa580UL - 0x0210UL); |
| for (entry = 0; entry < 16; entry++) { |
| pci_iommu_write(tag, 0); |
| tag += 8; |
| } |
| |
| /* Ensure completion of previous PIO writes. */ |
| (void) pci_iommu_read(iommu->write_complete_reg); |
| |
| /* Now update everyone's flush point. */ |
| for (entry = 0; entry < PBM_NCLUSTERS; entry++) { |
| iommu->alloc_info[entry].flush = |
| iommu->alloc_info[entry].next; |
| } |
| } |
| |
| #define IOPTE_CONSISTENT(CTX) \ |
| (IOPTE_VALID | IOPTE_CACHE | \ |
| (((CTX) << 47) & IOPTE_CONTEXT)) |
| |
| #define IOPTE_STREAMING(CTX) \ |
| (IOPTE_CONSISTENT(CTX) | IOPTE_STBUF) |
| |
| /* Existing mappings are never marked invalid, instead they |
| * are pointed to a dummy page. |
| */ |
| #define IOPTE_IS_DUMMY(iommu, iopte) \ |
| ((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa) |
| |
| static void inline iopte_make_dummy(struct pci_iommu *iommu, iopte_t *iopte) |
| { |
| unsigned long val = iopte_val(*iopte); |
| |
| val &= ~IOPTE_PAGE; |
| val |= iommu->dummy_page_pa; |
| |
| iopte_val(*iopte) = val; |
| } |
| |
| void pci_iommu_table_init(struct pci_iommu *iommu, int tsbsize) |
| { |
| int i; |
| |
| tsbsize /= sizeof(iopte_t); |
| |
| for (i = 0; i < tsbsize; i++) |
| iopte_make_dummy(iommu, &iommu->page_table[i]); |
| } |
| |
| static iopte_t *alloc_streaming_cluster(struct pci_iommu *iommu, unsigned long npages) |
| { |
| iopte_t *iopte, *limit, *first; |
| unsigned long cnum, ent, flush_point; |
| |
| cnum = 0; |
| while ((1UL << cnum) < npages) |
| cnum++; |
| iopte = (iommu->page_table + |
| (cnum << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); |
| |
| if (cnum == 0) |
| limit = (iommu->page_table + |
| iommu->lowest_consistent_map); |
| else |
| limit = (iopte + |
| (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); |
| |
| iopte += ((ent = iommu->alloc_info[cnum].next) << cnum); |
| flush_point = iommu->alloc_info[cnum].flush; |
| |
| first = iopte; |
| for (;;) { |
| if (IOPTE_IS_DUMMY(iommu, iopte)) { |
| if ((iopte + (1 << cnum)) >= limit) |
| ent = 0; |
| else |
| ent = ent + 1; |
| iommu->alloc_info[cnum].next = ent; |
| if (ent == flush_point) |
| __iommu_flushall(iommu); |
| break; |
| } |
| iopte += (1 << cnum); |
| ent++; |
| if (iopte >= limit) { |
| iopte = (iommu->page_table + |
| (cnum << |
| (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); |
| ent = 0; |
| } |
| if (ent == flush_point) |
| __iommu_flushall(iommu); |
| if (iopte == first) |
| goto bad; |
| } |
| |
| /* I've got your streaming cluster right here buddy boy... */ |
| return iopte; |
| |
| bad: |
| printk(KERN_EMERG "pci_iommu: alloc_streaming_cluster of npages(%ld) failed!\n", |
| npages); |
| return NULL; |
| } |
| |
| static void free_streaming_cluster(struct pci_iommu *iommu, dma_addr_t base, |
| unsigned long npages, unsigned long ctx) |
| { |
| unsigned long cnum, ent; |
| |
| cnum = 0; |
| while ((1UL << cnum) < npages) |
| cnum++; |
| |
| ent = (base << (32 - IO_PAGE_SHIFT + PBM_LOGCLUSTERS - iommu->page_table_sz_bits)) |
| >> (32 + PBM_LOGCLUSTERS + cnum - iommu->page_table_sz_bits); |
| |
| /* If the global flush might not have caught this entry, |
| * adjust the flush point such that we will flush before |
| * ever trying to reuse it. |
| */ |
| #define between(X,Y,Z) (((Z) - (Y)) >= ((X) - (Y))) |
| if (between(ent, iommu->alloc_info[cnum].next, iommu->alloc_info[cnum].flush)) |
| iommu->alloc_info[cnum].flush = ent; |
| #undef between |
| } |
| |
| /* We allocate consistent mappings from the end of cluster zero. */ |
| static iopte_t *alloc_consistent_cluster(struct pci_iommu *iommu, unsigned long npages) |
| { |
| iopte_t *iopte; |
| |
| iopte = iommu->page_table + (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)); |
| while (iopte > iommu->page_table) { |
| iopte--; |
| if (IOPTE_IS_DUMMY(iommu, iopte)) { |
| unsigned long tmp = npages; |
| |
| while (--tmp) { |
| iopte--; |
| if (!IOPTE_IS_DUMMY(iommu, iopte)) |
| break; |
| } |
| if (tmp == 0) { |
| u32 entry = (iopte - iommu->page_table); |
| |
| if (entry < iommu->lowest_consistent_map) |
| iommu->lowest_consistent_map = entry; |
| return iopte; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| static int iommu_alloc_ctx(struct pci_iommu *iommu) |
| { |
| int lowest = iommu->ctx_lowest_free; |
| int sz = IOMMU_NUM_CTXS - lowest; |
| int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest); |
| |
| if (unlikely(n == sz)) { |
| n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1); |
| if (unlikely(n == lowest)) { |
| printk(KERN_WARNING "IOMMU: Ran out of contexts.\n"); |
| n = 0; |
| } |
| } |
| if (n) |
| __set_bit(n, iommu->ctx_bitmap); |
| |
| return n; |
| } |
| |
| static inline void iommu_free_ctx(struct pci_iommu *iommu, int ctx) |
| { |
| if (likely(ctx)) { |
| __clear_bit(ctx, iommu->ctx_bitmap); |
| if (ctx < iommu->ctx_lowest_free) |
| iommu->ctx_lowest_free = ctx; |
| } |
| } |
| |
| /* Allocate and map kernel buffer of size SIZE using consistent mode |
| * DMA for PCI device PDEV. Return non-NULL cpu-side address if |
| * successful and set *DMA_ADDRP to the PCI side dma address. |
| */ |
| void *pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| iopte_t *iopte; |
| unsigned long flags, order, first_page, ctx; |
| void *ret; |
| int npages; |
| |
| size = IO_PAGE_ALIGN(size); |
| order = get_order(size); |
| if (order >= 10) |
| return NULL; |
| |
| first_page = __get_free_pages(GFP_ATOMIC, order); |
| if (first_page == 0UL) |
| return NULL; |
| memset((char *)first_page, 0, PAGE_SIZE << order); |
| |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| iopte = alloc_consistent_cluster(iommu, size >> IO_PAGE_SHIFT); |
| if (iopte == NULL) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| free_pages(first_page, order); |
| return NULL; |
| } |
| |
| *dma_addrp = (iommu->page_table_map_base + |
| ((iopte - iommu->page_table) << IO_PAGE_SHIFT)); |
| ret = (void *) first_page; |
| npages = size >> IO_PAGE_SHIFT; |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = iommu_alloc_ctx(iommu); |
| first_page = __pa(first_page); |
| while (npages--) { |
| iopte_val(*iopte) = (IOPTE_CONSISTENT(ctx) | |
| IOPTE_WRITE | |
| (first_page & IOPTE_PAGE)); |
| iopte++; |
| first_page += IO_PAGE_SIZE; |
| } |
| |
| { |
| int i; |
| u32 daddr = *dma_addrp; |
| |
| npages = size >> IO_PAGE_SHIFT; |
| for (i = 0; i < npages; i++) { |
| pci_iommu_write(iommu->iommu_flush, daddr); |
| daddr += IO_PAGE_SIZE; |
| } |
| } |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return ret; |
| } |
| |
| /* Free and unmap a consistent DMA translation. */ |
| void pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu, dma_addr_t dvma) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| iopte_t *iopte; |
| unsigned long flags, order, npages, i, ctx; |
| |
| npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| iopte = iommu->page_table + |
| ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| if ((iopte - iommu->page_table) == |
| iommu->lowest_consistent_map) { |
| iopte_t *walk = iopte + npages; |
| iopte_t *limit; |
| |
| limit = (iommu->page_table + |
| (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); |
| while (walk < limit) { |
| if (!IOPTE_IS_DUMMY(iommu, walk)) |
| break; |
| walk++; |
| } |
| iommu->lowest_consistent_map = |
| (walk - iommu->page_table); |
| } |
| |
| /* Data for consistent mappings cannot enter the streaming |
| * buffers, so we only need to update the TSB. We flush |
| * the IOMMU here as well to prevent conflicts with the |
| * streaming mapping deferred tlb flush scheme. |
| */ |
| |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; |
| |
| for (i = 0; i < npages; i++, iopte++) |
| iopte_make_dummy(iommu, iopte); |
| |
| if (iommu->iommu_ctxflush) { |
| pci_iommu_write(iommu->iommu_ctxflush, ctx); |
| } else { |
| for (i = 0; i < npages; i++) { |
| u32 daddr = dvma + (i << IO_PAGE_SHIFT); |
| |
| pci_iommu_write(iommu->iommu_flush, daddr); |
| } |
| } |
| |
| iommu_free_ctx(iommu, ctx); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| order = get_order(size); |
| if (order < 10) |
| free_pages((unsigned long)cpu, order); |
| } |
| |
| /* Map a single buffer at PTR of SZ bytes for PCI DMA |
| * in streaming mode. |
| */ |
| dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr, size_t sz, int direction) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| struct pci_strbuf *strbuf; |
| iopte_t *base; |
| unsigned long flags, npages, oaddr; |
| unsigned long i, base_paddr, ctx; |
| u32 bus_addr, ret; |
| unsigned long iopte_protection; |
| |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| strbuf = &pcp->pbm->stc; |
| |
| if (direction == PCI_DMA_NONE) |
| BUG(); |
| |
| oaddr = (unsigned long)ptr; |
| npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK); |
| npages >>= IO_PAGE_SHIFT; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| base = alloc_streaming_cluster(iommu, npages); |
| if (base == NULL) |
| goto bad; |
| bus_addr = (iommu->page_table_map_base + |
| ((base - iommu->page_table) << IO_PAGE_SHIFT)); |
| ret = bus_addr | (oaddr & ~IO_PAGE_MASK); |
| base_paddr = __pa(oaddr & IO_PAGE_MASK); |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = iommu_alloc_ctx(iommu); |
| if (strbuf->strbuf_enabled) |
| iopte_protection = IOPTE_STREAMING(ctx); |
| else |
| iopte_protection = IOPTE_CONSISTENT(ctx); |
| if (direction != PCI_DMA_TODEVICE) |
| iopte_protection |= IOPTE_WRITE; |
| |
| for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE) |
| iopte_val(*base) = iopte_protection | base_paddr; |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return ret; |
| |
| bad: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return PCI_DMA_ERROR_CODE; |
| } |
| |
| static void pci_strbuf_flush(struct pci_strbuf *strbuf, struct pci_iommu *iommu, u32 vaddr, unsigned long ctx, unsigned long npages, int direction) |
| { |
| int limit; |
| |
| if (strbuf->strbuf_ctxflush && |
| iommu->iommu_ctxflush) { |
| unsigned long matchreg, flushreg; |
| u64 val; |
| |
| flushreg = strbuf->strbuf_ctxflush; |
| matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx); |
| |
| pci_iommu_write(flushreg, ctx); |
| val = pci_iommu_read(matchreg); |
| val &= 0xffff; |
| if (!val) |
| goto do_flush_sync; |
| |
| while (val) { |
| if (val & 0x1) |
| pci_iommu_write(flushreg, ctx); |
| val >>= 1; |
| } |
| val = pci_iommu_read(matchreg); |
| if (unlikely(val)) { |
| printk(KERN_WARNING "pci_strbuf_flush: ctx flush " |
| "timeout matchreg[%lx] ctx[%lx]\n", |
| val, ctx); |
| goto do_page_flush; |
| } |
| } else { |
| unsigned long i; |
| |
| do_page_flush: |
| for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE) |
| pci_iommu_write(strbuf->strbuf_pflush, vaddr); |
| } |
| |
| do_flush_sync: |
| /* If the device could not have possibly put dirty data into |
| * the streaming cache, no flush-flag synchronization needs |
| * to be performed. |
| */ |
| if (direction == PCI_DMA_TODEVICE) |
| return; |
| |
| PCI_STC_FLUSHFLAG_INIT(strbuf); |
| pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa); |
| (void) pci_iommu_read(iommu->write_complete_reg); |
| |
| limit = 100000; |
| while (!PCI_STC_FLUSHFLAG_SET(strbuf)) { |
| limit--; |
| if (!limit) |
| break; |
| udelay(1); |
| rmb(); |
| } |
| if (!limit) |
| printk(KERN_WARNING "pci_strbuf_flush: flushflag timeout " |
| "vaddr[%08x] ctx[%lx] npages[%ld]\n", |
| vaddr, ctx, npages); |
| } |
| |
| /* Unmap a single streaming mode DMA translation. */ |
| void pci_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| struct pci_strbuf *strbuf; |
| iopte_t *base; |
| unsigned long flags, npages, ctx; |
| |
| if (direction == PCI_DMA_NONE) |
| BUG(); |
| |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| strbuf = &pcp->pbm->stc; |
| |
| npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); |
| npages >>= IO_PAGE_SHIFT; |
| base = iommu->page_table + |
| ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| #ifdef DEBUG_PCI_IOMMU |
| if (IOPTE_IS_DUMMY(iommu, base)) |
| printk("pci_unmap_single called on non-mapped region %08x,%08x from %016lx\n", |
| bus_addr, sz, __builtin_return_address(0)); |
| #endif |
| bus_addr &= IO_PAGE_MASK; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| /* Record the context, if any. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL; |
| |
| /* Step 1: Kick data out of streaming buffers if necessary. */ |
| if (strbuf->strbuf_enabled) |
| pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction); |
| |
| /* Step 2: Clear out first TSB entry. */ |
| iopte_make_dummy(iommu, base); |
| |
| free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base, |
| npages, ctx); |
| |
| iommu_free_ctx(iommu, ctx); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| #define SG_ENT_PHYS_ADDRESS(SG) \ |
| (__pa(page_address((SG)->page)) + (SG)->offset) |
| |
| static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg, |
| int nused, int nelems, unsigned long iopte_protection) |
| { |
| struct scatterlist *dma_sg = sg; |
| struct scatterlist *sg_end = sg + nelems; |
| int i; |
| |
| for (i = 0; i < nused; i++) { |
| unsigned long pteval = ~0UL; |
| u32 dma_npages; |
| |
| dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) + |
| dma_sg->dma_length + |
| ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT; |
| do { |
| unsigned long offset; |
| signed int len; |
| |
| /* If we are here, we know we have at least one |
| * more page to map. So walk forward until we |
| * hit a page crossing, and begin creating new |
| * mappings from that spot. |
| */ |
| for (;;) { |
| unsigned long tmp; |
| |
| tmp = SG_ENT_PHYS_ADDRESS(sg); |
| len = sg->length; |
| if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) { |
| pteval = tmp & IO_PAGE_MASK; |
| offset = tmp & (IO_PAGE_SIZE - 1UL); |
| break; |
| } |
| if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) { |
| pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK; |
| offset = 0UL; |
| len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL))); |
| break; |
| } |
| sg++; |
| } |
| |
| pteval = iopte_protection | (pteval & IOPTE_PAGE); |
| while (len > 0) { |
| *iopte++ = __iopte(pteval); |
| pteval += IO_PAGE_SIZE; |
| len -= (IO_PAGE_SIZE - offset); |
| offset = 0; |
| dma_npages--; |
| } |
| |
| pteval = (pteval & IOPTE_PAGE) + len; |
| sg++; |
| |
| /* Skip over any tail mappings we've fully mapped, |
| * adjusting pteval along the way. Stop when we |
| * detect a page crossing event. |
| */ |
| while (sg < sg_end && |
| (pteval << (64 - IO_PAGE_SHIFT)) != 0UL && |
| (pteval == SG_ENT_PHYS_ADDRESS(sg)) && |
| ((pteval ^ |
| (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) { |
| pteval += sg->length; |
| sg++; |
| } |
| if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL) |
| pteval = ~0UL; |
| } while (dma_npages != 0); |
| dma_sg++; |
| } |
| } |
| |
| /* Map a set of buffers described by SGLIST with NELEMS array |
| * elements in streaming mode for PCI DMA. |
| * When making changes here, inspect the assembly output. I was having |
| * hard time to kepp this routine out of using stack slots for holding variables. |
| */ |
| int pci_map_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| struct pci_strbuf *strbuf; |
| unsigned long flags, ctx, npages, iopte_protection; |
| iopte_t *base; |
| u32 dma_base; |
| struct scatterlist *sgtmp; |
| int used; |
| |
| /* Fast path single entry scatterlists. */ |
| if (nelems == 1) { |
| sglist->dma_address = |
| pci_map_single(pdev, |
| (page_address(sglist->page) + sglist->offset), |
| sglist->length, direction); |
| sglist->dma_length = sglist->length; |
| return 1; |
| } |
| |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| strbuf = &pcp->pbm->stc; |
| |
| if (direction == PCI_DMA_NONE) |
| BUG(); |
| |
| /* Step 1: Prepare scatter list. */ |
| |
| npages = prepare_sg(sglist, nelems); |
| |
| /* Step 2: Allocate a cluster. */ |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| base = alloc_streaming_cluster(iommu, npages); |
| if (base == NULL) |
| goto bad; |
| dma_base = iommu->page_table_map_base + ((base - iommu->page_table) << IO_PAGE_SHIFT); |
| |
| /* Step 3: Normalize DMA addresses. */ |
| used = nelems; |
| |
| sgtmp = sglist; |
| while (used && sgtmp->dma_length) { |
| sgtmp->dma_address += dma_base; |
| sgtmp++; |
| used--; |
| } |
| used = nelems - used; |
| |
| /* Step 4: Choose a context if necessary. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = iommu_alloc_ctx(iommu); |
| |
| /* Step 5: Create the mappings. */ |
| if (strbuf->strbuf_enabled) |
| iopte_protection = IOPTE_STREAMING(ctx); |
| else |
| iopte_protection = IOPTE_CONSISTENT(ctx); |
| if (direction != PCI_DMA_TODEVICE) |
| iopte_protection |= IOPTE_WRITE; |
| fill_sg (base, sglist, used, nelems, iopte_protection); |
| #ifdef VERIFY_SG |
| verify_sglist(sglist, nelems, base, npages); |
| #endif |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return used; |
| |
| bad: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return PCI_DMA_ERROR_CODE; |
| } |
| |
| /* Unmap a set of streaming mode DMA translations. */ |
| void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| struct pci_strbuf *strbuf; |
| iopte_t *base; |
| unsigned long flags, ctx, i, npages; |
| u32 bus_addr; |
| |
| if (direction == PCI_DMA_NONE) |
| BUG(); |
| |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| strbuf = &pcp->pbm->stc; |
| |
| bus_addr = sglist->dma_address & IO_PAGE_MASK; |
| |
| for (i = 1; i < nelems; i++) |
| if (sglist[i].dma_length == 0) |
| break; |
| i--; |
| npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT; |
| |
| base = iommu->page_table + |
| ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| |
| #ifdef DEBUG_PCI_IOMMU |
| if (IOPTE_IS_DUMMY(iommu, base)) |
| printk("pci_unmap_sg called on non-mapped region %016lx,%d from %016lx\n", sglist->dma_address, nelems, __builtin_return_address(0)); |
| #endif |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| /* Record the context, if any. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL; |
| |
| /* Step 1: Kick data out of streaming buffers if necessary. */ |
| if (strbuf->strbuf_enabled) |
| pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction); |
| |
| /* Step 2: Clear out first TSB entry. */ |
| iopte_make_dummy(iommu, base); |
| |
| free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base, |
| npages, ctx); |
| |
| iommu_free_ctx(iommu, ctx); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| /* Make physical memory consistent for a single |
| * streaming mode DMA translation after a transfer. |
| */ |
| void pci_dma_sync_single_for_cpu(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| struct pci_strbuf *strbuf; |
| unsigned long flags, ctx, npages; |
| |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| strbuf = &pcp->pbm->stc; |
| |
| if (!strbuf->strbuf_enabled) |
| return; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); |
| npages >>= IO_PAGE_SHIFT; |
| bus_addr &= IO_PAGE_MASK; |
| |
| /* Step 1: Record the context, if any. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush && |
| strbuf->strbuf_ctxflush) { |
| iopte_t *iopte; |
| |
| iopte = iommu->page_table + |
| ((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT); |
| ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; |
| } |
| |
| /* Step 2: Kick data out of streaming buffers. */ |
| pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| /* Make physical memory consistent for a set of streaming |
| * mode DMA translations after a transfer. |
| */ |
| void pci_dma_sync_sg_for_cpu(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) |
| { |
| struct pcidev_cookie *pcp; |
| struct pci_iommu *iommu; |
| struct pci_strbuf *strbuf; |
| unsigned long flags, ctx, npages, i; |
| u32 bus_addr; |
| |
| pcp = pdev->sysdata; |
| iommu = pcp->pbm->iommu; |
| strbuf = &pcp->pbm->stc; |
| |
| if (!strbuf->strbuf_enabled) |
| return; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| /* Step 1: Record the context, if any. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush && |
| strbuf->strbuf_ctxflush) { |
| iopte_t *iopte; |
| |
| iopte = iommu->page_table + |
| ((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; |
| } |
| |
| /* Step 2: Kick data out of streaming buffers. */ |
| bus_addr = sglist[0].dma_address & IO_PAGE_MASK; |
| for(i = 1; i < nelems; i++) |
| if (!sglist[i].dma_length) |
| break; |
| i--; |
| npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) |
| - bus_addr) >> IO_PAGE_SHIFT; |
| pci_strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit) |
| { |
| struct pci_dev *ali_isa_bridge; |
| u8 val; |
| |
| /* ALI sound chips generate 31-bits of DMA, a special register |
| * determines what bit 31 is emitted as. |
| */ |
| ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL, |
| PCI_DEVICE_ID_AL_M1533, |
| NULL); |
| |
| pci_read_config_byte(ali_isa_bridge, 0x7e, &val); |
| if (set_bit) |
| val |= 0x01; |
| else |
| val &= ~0x01; |
| pci_write_config_byte(ali_isa_bridge, 0x7e, val); |
| pci_dev_put(ali_isa_bridge); |
| } |
| |
| int pci_dma_supported(struct pci_dev *pdev, u64 device_mask) |
| { |
| struct pcidev_cookie *pcp = pdev->sysdata; |
| u64 dma_addr_mask; |
| |
| if (pdev == NULL) { |
| dma_addr_mask = 0xffffffff; |
| } else { |
| struct pci_iommu *iommu = pcp->pbm->iommu; |
| |
| dma_addr_mask = iommu->dma_addr_mask; |
| |
| if (pdev->vendor == PCI_VENDOR_ID_AL && |
| pdev->device == PCI_DEVICE_ID_AL_M5451 && |
| device_mask == 0x7fffffff) { |
| ali_sound_dma_hack(pdev, |
| (dma_addr_mask & 0x80000000) != 0); |
| return 1; |
| } |
| } |
| |
| if (device_mask >= (1UL << 32UL)) |
| return 0; |
| |
| return (device_mask & dma_addr_mask) == dma_addr_mask; |
| } |