| /* |
| * SBP2 driver (SCSI over IEEE1394) |
| * |
| * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| * The basic structure of this driver is based on the old storage driver, |
| * drivers/ieee1394/sbp2.c, originally written by |
| * James Goodwin <jamesg@filanet.com> |
| * with later contributions and ongoing maintenance from |
| * Ben Collins <bcollins@debian.org>, |
| * Stefan Richter <stefanr@s5r6.in-berlin.de> |
| * and many others. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/device.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/timer.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_dbg.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_host.h> |
| |
| #include "fw-transaction.h" |
| #include "fw-topology.h" |
| #include "fw-device.h" |
| |
| /* I don't know why the SCSI stack doesn't define something like this... */ |
| typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); |
| |
| static const char sbp2_driver_name[] = "sbp2"; |
| |
| struct sbp2_device { |
| struct kref kref; |
| struct fw_unit *unit; |
| struct fw_address_handler address_handler; |
| struct list_head orb_list; |
| u64 management_agent_address; |
| u64 command_block_agent_address; |
| u32 workarounds; |
| int login_id; |
| |
| /* |
| * We cache these addresses and only update them once we've |
| * logged in or reconnected to the sbp2 device. That way, any |
| * IO to the device will automatically fail and get retried if |
| * it happens in a window where the device is not ready to |
| * handle it (e.g. after a bus reset but before we reconnect). |
| */ |
| int node_id; |
| int address_high; |
| int generation; |
| |
| int retries; |
| struct delayed_work work; |
| }; |
| |
| #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000 |
| #define SBP2_MAX_SECTORS 255 /* Max sectors supported */ |
| #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */ |
| |
| #define SBP2_ORB_NULL 0x80000000 |
| |
| #define SBP2_DIRECTION_TO_MEDIA 0x0 |
| #define SBP2_DIRECTION_FROM_MEDIA 0x1 |
| |
| /* Unit directory keys */ |
| #define SBP2_COMMAND_SET_SPECIFIER 0x38 |
| #define SBP2_COMMAND_SET 0x39 |
| #define SBP2_COMMAND_SET_REVISION 0x3b |
| #define SBP2_FIRMWARE_REVISION 0x3c |
| |
| /* Flags for detected oddities and brokeness */ |
| #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 |
| #define SBP2_WORKAROUND_INQUIRY_36 0x2 |
| #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 |
| #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 |
| #define SBP2_WORKAROUND_OVERRIDE 0x100 |
| |
| /* Management orb opcodes */ |
| #define SBP2_LOGIN_REQUEST 0x0 |
| #define SBP2_QUERY_LOGINS_REQUEST 0x1 |
| #define SBP2_RECONNECT_REQUEST 0x3 |
| #define SBP2_SET_PASSWORD_REQUEST 0x4 |
| #define SBP2_LOGOUT_REQUEST 0x7 |
| #define SBP2_ABORT_TASK_REQUEST 0xb |
| #define SBP2_ABORT_TASK_SET 0xc |
| #define SBP2_LOGICAL_UNIT_RESET 0xe |
| #define SBP2_TARGET_RESET_REQUEST 0xf |
| |
| /* Offsets for command block agent registers */ |
| #define SBP2_AGENT_STATE 0x00 |
| #define SBP2_AGENT_RESET 0x04 |
| #define SBP2_ORB_POINTER 0x08 |
| #define SBP2_DOORBELL 0x10 |
| #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 |
| |
| /* Status write response codes */ |
| #define SBP2_STATUS_REQUEST_COMPLETE 0x0 |
| #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 |
| #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 |
| #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 |
| |
| #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) |
| #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) |
| #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) |
| #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) |
| #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) |
| #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) |
| #define STATUS_GET_ORB_LOW(v) ((v).orb_low) |
| #define STATUS_GET_DATA(v) ((v).data) |
| |
| struct sbp2_status { |
| u32 status; |
| u32 orb_low; |
| u8 data[24]; |
| }; |
| |
| struct sbp2_pointer { |
| u32 high; |
| u32 low; |
| }; |
| |
| struct sbp2_orb { |
| struct fw_transaction t; |
| dma_addr_t request_bus; |
| int rcode; |
| struct sbp2_pointer pointer; |
| void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); |
| struct list_head link; |
| }; |
| |
| #define MANAGEMENT_ORB_LUN(v) ((v)) |
| #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) |
| #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) |
| #define MANAGEMENT_ORB_EXCLUSIVE ((1) << 28) |
| #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) |
| #define MANAGEMENT_ORB_NOTIFY ((1) << 31) |
| |
| #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) |
| #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) |
| |
| struct sbp2_management_orb { |
| struct sbp2_orb base; |
| struct { |
| struct sbp2_pointer password; |
| struct sbp2_pointer response; |
| u32 misc; |
| u32 length; |
| struct sbp2_pointer status_fifo; |
| } request; |
| __be32 response[4]; |
| dma_addr_t response_bus; |
| struct completion done; |
| struct sbp2_status status; |
| }; |
| |
| #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff) |
| #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff) |
| |
| struct sbp2_login_response { |
| u32 misc; |
| struct sbp2_pointer command_block_agent; |
| u32 reconnect_hold; |
| }; |
| #define COMMAND_ORB_DATA_SIZE(v) ((v)) |
| #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) |
| #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) |
| #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) |
| #define COMMAND_ORB_SPEED(v) ((v) << 24) |
| #define COMMAND_ORB_DIRECTION(v) ((v) << 27) |
| #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) |
| #define COMMAND_ORB_NOTIFY ((1) << 31) |
| |
| struct sbp2_command_orb { |
| struct sbp2_orb base; |
| struct { |
| struct sbp2_pointer next; |
| struct sbp2_pointer data_descriptor; |
| u32 misc; |
| u8 command_block[12]; |
| } request; |
| struct scsi_cmnd *cmd; |
| scsi_done_fn_t done; |
| struct fw_unit *unit; |
| |
| struct sbp2_pointer page_table[SG_ALL]; |
| dma_addr_t page_table_bus; |
| }; |
| |
| /* |
| * List of devices with known bugs. |
| * |
| * The firmware_revision field, masked with 0xffff00, is the best |
| * indicator for the type of bridge chip of a device. It yields a few |
| * false positives but this did not break correctly behaving devices |
| * so far. We use ~0 as a wildcard, since the 24 bit values we get |
| * from the config rom can never match that. |
| */ |
| static const struct { |
| u32 firmware_revision; |
| u32 model; |
| unsigned workarounds; |
| } sbp2_workarounds_table[] = { |
| /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { |
| .firmware_revision = 0x002800, |
| .model = 0x001010, |
| .workarounds = SBP2_WORKAROUND_INQUIRY_36 | |
| SBP2_WORKAROUND_MODE_SENSE_8, |
| }, |
| /* Initio bridges, actually only needed for some older ones */ { |
| .firmware_revision = 0x000200, |
| .model = ~0, |
| .workarounds = SBP2_WORKAROUND_INQUIRY_36, |
| }, |
| /* Symbios bridge */ { |
| .firmware_revision = 0xa0b800, |
| .model = ~0, |
| .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, |
| }, |
| |
| /* |
| * There are iPods (2nd gen, 3rd gen) with model_id == 0, but |
| * these iPods do not feature the read_capacity bug according |
| * to one report. Read_capacity behaviour as well as model_id |
| * could change due to Apple-supplied firmware updates though. |
| */ |
| |
| /* iPod 4th generation. */ { |
| .firmware_revision = 0x0a2700, |
| .model = 0x000021, |
| .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, |
| }, |
| /* iPod mini */ { |
| .firmware_revision = 0x0a2700, |
| .model = 0x000023, |
| .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, |
| }, |
| /* iPod Photo */ { |
| .firmware_revision = 0x0a2700, |
| .model = 0x00007e, |
| .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, |
| } |
| }; |
| |
| static void |
| sbp2_status_write(struct fw_card *card, struct fw_request *request, |
| int tcode, int destination, int source, |
| int generation, int speed, |
| unsigned long long offset, |
| void *payload, size_t length, void *callback_data) |
| { |
| struct sbp2_device *sd = callback_data; |
| struct sbp2_orb *orb; |
| struct sbp2_status status; |
| size_t header_size; |
| unsigned long flags; |
| |
| if (tcode != TCODE_WRITE_BLOCK_REQUEST || |
| length == 0 || length > sizeof(status)) { |
| fw_send_response(card, request, RCODE_TYPE_ERROR); |
| return; |
| } |
| |
| header_size = min(length, 2 * sizeof(u32)); |
| fw_memcpy_from_be32(&status, payload, header_size); |
| if (length > header_size) |
| memcpy(status.data, payload + 8, length - header_size); |
| if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { |
| fw_notify("non-orb related status write, not handled\n"); |
| fw_send_response(card, request, RCODE_COMPLETE); |
| return; |
| } |
| |
| /* Lookup the orb corresponding to this status write. */ |
| spin_lock_irqsave(&card->lock, flags); |
| list_for_each_entry(orb, &sd->orb_list, link) { |
| if (STATUS_GET_ORB_HIGH(status) == 0 && |
| STATUS_GET_ORB_LOW(status) == orb->request_bus && |
| orb->rcode == RCODE_COMPLETE) { |
| list_del(&orb->link); |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| if (&orb->link != &sd->orb_list) |
| orb->callback(orb, &status); |
| else |
| fw_error("status write for unknown orb\n"); |
| |
| fw_send_response(card, request, RCODE_COMPLETE); |
| } |
| |
| static void |
| complete_transaction(struct fw_card *card, int rcode, |
| void *payload, size_t length, void *data) |
| { |
| struct sbp2_orb *orb = data; |
| unsigned long flags; |
| |
| orb->rcode = rcode; |
| if (rcode != RCODE_COMPLETE) { |
| spin_lock_irqsave(&card->lock, flags); |
| list_del(&orb->link); |
| spin_unlock_irqrestore(&card->lock, flags); |
| orb->callback(orb, NULL); |
| } |
| } |
| |
| static void |
| sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit, |
| int node_id, int generation, u64 offset) |
| { |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_device *sd = unit->device.driver_data; |
| unsigned long flags; |
| |
| orb->pointer.high = 0; |
| orb->pointer.low = orb->request_bus; |
| fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer)); |
| |
| spin_lock_irqsave(&device->card->lock, flags); |
| list_add_tail(&orb->link, &sd->orb_list); |
| spin_unlock_irqrestore(&device->card->lock, flags); |
| |
| fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, |
| node_id, generation, device->max_speed, offset, |
| &orb->pointer, sizeof(orb->pointer), |
| complete_transaction, orb); |
| } |
| |
| static int sbp2_cancel_orbs(struct fw_unit *unit) |
| { |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_device *sd = unit->device.driver_data; |
| struct sbp2_orb *orb, *next; |
| struct list_head list; |
| unsigned long flags; |
| int retval = -ENOENT; |
| |
| INIT_LIST_HEAD(&list); |
| spin_lock_irqsave(&device->card->lock, flags); |
| list_splice_init(&sd->orb_list, &list); |
| spin_unlock_irqrestore(&device->card->lock, flags); |
| |
| list_for_each_entry_safe(orb, next, &list, link) { |
| retval = 0; |
| if (fw_cancel_transaction(device->card, &orb->t) == 0) |
| continue; |
| |
| orb->rcode = RCODE_CANCELLED; |
| orb->callback(orb, NULL); |
| } |
| |
| return retval; |
| } |
| |
| static void |
| complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status) |
| { |
| struct sbp2_management_orb *orb = |
| (struct sbp2_management_orb *)base_orb; |
| |
| if (status) |
| memcpy(&orb->status, status, sizeof(*status)); |
| complete(&orb->done); |
| } |
| |
| static int |
| sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation, |
| int function, int lun, void *response) |
| { |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_device *sd = unit->device.driver_data; |
| struct sbp2_management_orb *orb; |
| int retval = -ENOMEM; |
| |
| orb = kzalloc(sizeof(*orb), GFP_ATOMIC); |
| if (orb == NULL) |
| return -ENOMEM; |
| |
| /* |
| * The sbp2 device is going to send a block read request to |
| * read out the request from host memory, so map it for dma. |
| */ |
| orb->base.request_bus = |
| dma_map_single(device->card->device, &orb->request, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| if (dma_mapping_error(orb->base.request_bus)) |
| goto out; |
| |
| orb->response_bus = |
| dma_map_single(device->card->device, &orb->response, |
| sizeof(orb->response), DMA_FROM_DEVICE); |
| if (dma_mapping_error(orb->response_bus)) |
| goto out; |
| |
| orb->request.response.high = 0; |
| orb->request.response.low = orb->response_bus; |
| |
| orb->request.misc = |
| MANAGEMENT_ORB_NOTIFY | |
| MANAGEMENT_ORB_FUNCTION(function) | |
| MANAGEMENT_ORB_LUN(lun); |
| orb->request.length = |
| MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)); |
| |
| orb->request.status_fifo.high = sd->address_handler.offset >> 32; |
| orb->request.status_fifo.low = sd->address_handler.offset; |
| |
| /* |
| * FIXME: Yeah, ok this isn't elegant, we hardwire exclusive |
| * login and 1 second reconnect time. The reconnect setting |
| * is probably fine, but the exclusive login should be an option. |
| */ |
| if (function == SBP2_LOGIN_REQUEST) { |
| orb->request.misc |= |
| MANAGEMENT_ORB_EXCLUSIVE | |
| MANAGEMENT_ORB_RECONNECT(0); |
| } |
| |
| fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request)); |
| |
| init_completion(&orb->done); |
| orb->base.callback = complete_management_orb; |
| |
| sbp2_send_orb(&orb->base, unit, |
| node_id, generation, sd->management_agent_address); |
| |
| wait_for_completion_timeout(&orb->done, |
| msecs_to_jiffies(SBP2_ORB_TIMEOUT)); |
| |
| retval = -EIO; |
| if (sbp2_cancel_orbs(unit) == 0) { |
| fw_error("orb reply timed out, rcode=0x%02x\n", |
| orb->base.rcode); |
| goto out; |
| } |
| |
| if (orb->base.rcode != RCODE_COMPLETE) { |
| fw_error("management write failed, rcode 0x%02x\n", |
| orb->base.rcode); |
| goto out; |
| } |
| |
| if (STATUS_GET_RESPONSE(orb->status) != 0 || |
| STATUS_GET_SBP_STATUS(orb->status) != 0) { |
| fw_error("error status: %d:%d\n", |
| STATUS_GET_RESPONSE(orb->status), |
| STATUS_GET_SBP_STATUS(orb->status)); |
| goto out; |
| } |
| |
| retval = 0; |
| out: |
| dma_unmap_single(device->card->device, orb->base.request_bus, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| dma_unmap_single(device->card->device, orb->response_bus, |
| sizeof(orb->response), DMA_FROM_DEVICE); |
| |
| if (response) |
| fw_memcpy_from_be32(response, |
| orb->response, sizeof(orb->response)); |
| kfree(orb); |
| |
| return retval; |
| } |
| |
| static void |
| complete_agent_reset_write(struct fw_card *card, int rcode, |
| void *payload, size_t length, void *data) |
| { |
| struct fw_transaction *t = data; |
| |
| kfree(t); |
| } |
| |
| static int sbp2_agent_reset(struct fw_unit *unit) |
| { |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_device *sd = unit->device.driver_data; |
| struct fw_transaction *t; |
| static u32 zero; |
| |
| t = kzalloc(sizeof(*t), GFP_ATOMIC); |
| if (t == NULL) |
| return -ENOMEM; |
| |
| fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, |
| sd->node_id, sd->generation, SCODE_400, |
| sd->command_block_agent_address + SBP2_AGENT_RESET, |
| &zero, sizeof(zero), complete_agent_reset_write, t); |
| |
| return 0; |
| } |
| |
| static void sbp2_reconnect(struct work_struct *work); |
| static struct scsi_host_template scsi_driver_template; |
| |
| static void |
| release_sbp2_device(struct kref *kref) |
| { |
| struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref); |
| struct Scsi_Host *host = |
| container_of((void *)sd, struct Scsi_Host, hostdata[0]); |
| |
| sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation, |
| SBP2_LOGOUT_REQUEST, sd->login_id, NULL); |
| |
| scsi_remove_host(host); |
| fw_core_remove_address_handler(&sd->address_handler); |
| fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id); |
| put_device(&sd->unit->device); |
| scsi_host_put(host); |
| } |
| |
| static void sbp2_login(struct work_struct *work) |
| { |
| struct sbp2_device *sd = |
| container_of(work, struct sbp2_device, work.work); |
| struct Scsi_Host *host = |
| container_of((void *)sd, struct Scsi_Host, hostdata[0]); |
| struct fw_unit *unit = sd->unit; |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_login_response response; |
| int generation, node_id, local_node_id, lun, retval; |
| |
| /* FIXME: Make this work for multi-lun devices. */ |
| lun = 0; |
| |
| generation = device->card->generation; |
| node_id = device->node->node_id; |
| local_node_id = device->card->local_node->node_id; |
| |
| if (sbp2_send_management_orb(unit, node_id, generation, |
| SBP2_LOGIN_REQUEST, lun, &response) < 0) { |
| if (sd->retries++ < 5) { |
| schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5)); |
| } else { |
| fw_error("failed to login to %s\n", |
| unit->device.bus_id); |
| kref_put(&sd->kref, release_sbp2_device); |
| } |
| return; |
| } |
| |
| sd->generation = generation; |
| sd->node_id = node_id; |
| sd->address_high = local_node_id << 16; |
| |
| /* Get command block agent offset and login id. */ |
| sd->command_block_agent_address = |
| ((u64) (response.command_block_agent.high & 0xffff) << 32) | |
| response.command_block_agent.low; |
| sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response); |
| |
| fw_notify("logged in to sbp2 unit %s (%d retries)\n", |
| unit->device.bus_id, sd->retries); |
| fw_notify(" - management_agent_address: 0x%012llx\n", |
| (unsigned long long) sd->management_agent_address); |
| fw_notify(" - command_block_agent_address: 0x%012llx\n", |
| (unsigned long long) sd->command_block_agent_address); |
| fw_notify(" - status write address: 0x%012llx\n", |
| (unsigned long long) sd->address_handler.offset); |
| |
| #if 0 |
| /* FIXME: The linux1394 sbp2 does this last step. */ |
| sbp2_set_busy_timeout(scsi_id); |
| #endif |
| |
| PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect); |
| sbp2_agent_reset(unit); |
| |
| /* FIXME: Loop over luns here. */ |
| lun = 0; |
| retval = scsi_add_device(host, 0, 0, lun); |
| if (retval < 0) { |
| sbp2_send_management_orb(unit, sd->node_id, sd->generation, |
| SBP2_LOGOUT_REQUEST, sd->login_id, |
| NULL); |
| /* |
| * Set this back to sbp2_login so we fall back and |
| * retry login on bus reset. |
| */ |
| PREPARE_DELAYED_WORK(&sd->work, sbp2_login); |
| } |
| kref_put(&sd->kref, release_sbp2_device); |
| } |
| |
| static int sbp2_probe(struct device *dev) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_device *sd; |
| struct fw_csr_iterator ci; |
| struct Scsi_Host *host; |
| int i, key, value, err; |
| u32 model, firmware_revision; |
| |
| err = -ENOMEM; |
| host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd)); |
| if (host == NULL) |
| goto fail; |
| |
| sd = (struct sbp2_device *) host->hostdata; |
| unit->device.driver_data = sd; |
| sd->unit = unit; |
| INIT_LIST_HEAD(&sd->orb_list); |
| kref_init(&sd->kref); |
| |
| sd->address_handler.length = 0x100; |
| sd->address_handler.address_callback = sbp2_status_write; |
| sd->address_handler.callback_data = sd; |
| |
| err = fw_core_add_address_handler(&sd->address_handler, |
| &fw_high_memory_region); |
| if (err < 0) |
| goto fail_host; |
| |
| err = fw_device_enable_phys_dma(device); |
| if (err < 0) |
| goto fail_address_handler; |
| |
| err = scsi_add_host(host, &unit->device); |
| if (err < 0) |
| goto fail_address_handler; |
| |
| /* |
| * Scan unit directory to get management agent address, |
| * firmware revison and model. Initialize firmware_revision |
| * and model to values that wont match anything in our table. |
| */ |
| firmware_revision = 0xff000000; |
| model = 0xff000000; |
| fw_csr_iterator_init(&ci, unit->directory); |
| while (fw_csr_iterator_next(&ci, &key, &value)) { |
| switch (key) { |
| case CSR_DEPENDENT_INFO | CSR_OFFSET: |
| sd->management_agent_address = |
| 0xfffff0000000ULL + 4 * value; |
| break; |
| case SBP2_FIRMWARE_REVISION: |
| firmware_revision = value; |
| break; |
| case CSR_MODEL: |
| model = value; |
| break; |
| } |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { |
| if (sbp2_workarounds_table[i].firmware_revision != |
| (firmware_revision & 0xffffff00)) |
| continue; |
| if (sbp2_workarounds_table[i].model != model && |
| sbp2_workarounds_table[i].model != ~0) |
| continue; |
| sd->workarounds |= sbp2_workarounds_table[i].workarounds; |
| break; |
| } |
| |
| if (sd->workarounds) |
| fw_notify("Workarounds for node %s: 0x%x " |
| "(firmware_revision 0x%06x, model_id 0x%06x)\n", |
| unit->device.bus_id, |
| sd->workarounds, firmware_revision, model); |
| |
| get_device(&unit->device); |
| |
| /* |
| * We schedule work to do the login so we can easily |
| * reschedule retries. Always get the ref before scheduling |
| * work. |
| */ |
| INIT_DELAYED_WORK(&sd->work, sbp2_login); |
| if (schedule_delayed_work(&sd->work, 0)) |
| kref_get(&sd->kref); |
| |
| return 0; |
| |
| fail_address_handler: |
| fw_core_remove_address_handler(&sd->address_handler); |
| fail_host: |
| scsi_host_put(host); |
| fail: |
| return err; |
| } |
| |
| static int sbp2_remove(struct device *dev) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| struct sbp2_device *sd = unit->device.driver_data; |
| |
| kref_put(&sd->kref, release_sbp2_device); |
| |
| return 0; |
| } |
| |
| static void sbp2_reconnect(struct work_struct *work) |
| { |
| struct sbp2_device *sd = |
| container_of(work, struct sbp2_device, work.work); |
| struct fw_unit *unit = sd->unit; |
| struct fw_device *device = fw_device(unit->device.parent); |
| int generation, node_id, local_node_id; |
| |
| generation = device->card->generation; |
| node_id = device->node->node_id; |
| local_node_id = device->card->local_node->node_id; |
| |
| if (sbp2_send_management_orb(unit, node_id, generation, |
| SBP2_RECONNECT_REQUEST, |
| sd->login_id, NULL) < 0) { |
| if (sd->retries++ >= 5) { |
| fw_error("failed to reconnect to %s\n", |
| unit->device.bus_id); |
| /* Fall back and try to log in again. */ |
| sd->retries = 0; |
| PREPARE_DELAYED_WORK(&sd->work, sbp2_login); |
| } |
| schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5)); |
| return; |
| } |
| |
| sd->generation = generation; |
| sd->node_id = node_id; |
| sd->address_high = local_node_id << 16; |
| |
| fw_notify("reconnected to unit %s (%d retries)\n", |
| unit->device.bus_id, sd->retries); |
| sbp2_agent_reset(unit); |
| sbp2_cancel_orbs(unit); |
| kref_put(&sd->kref, release_sbp2_device); |
| } |
| |
| static void sbp2_update(struct fw_unit *unit) |
| { |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_device *sd = unit->device.driver_data; |
| |
| sd->retries = 0; |
| fw_device_enable_phys_dma(device); |
| if (schedule_delayed_work(&sd->work, 0)) |
| kref_get(&sd->kref); |
| } |
| |
| #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e |
| #define SBP2_SW_VERSION_ENTRY 0x00010483 |
| |
| static const struct fw_device_id sbp2_id_table[] = { |
| { |
| .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION, |
| .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, |
| .version = SBP2_SW_VERSION_ENTRY, |
| }, |
| { } |
| }; |
| |
| static struct fw_driver sbp2_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = sbp2_driver_name, |
| .bus = &fw_bus_type, |
| .probe = sbp2_probe, |
| .remove = sbp2_remove, |
| }, |
| .update = sbp2_update, |
| .id_table = sbp2_id_table, |
| }; |
| |
| static unsigned int |
| sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) |
| { |
| int sam_status; |
| |
| sense_data[0] = 0x70; |
| sense_data[1] = 0x0; |
| sense_data[2] = sbp2_status[1]; |
| sense_data[3] = sbp2_status[4]; |
| sense_data[4] = sbp2_status[5]; |
| sense_data[5] = sbp2_status[6]; |
| sense_data[6] = sbp2_status[7]; |
| sense_data[7] = 10; |
| sense_data[8] = sbp2_status[8]; |
| sense_data[9] = sbp2_status[9]; |
| sense_data[10] = sbp2_status[10]; |
| sense_data[11] = sbp2_status[11]; |
| sense_data[12] = sbp2_status[2]; |
| sense_data[13] = sbp2_status[3]; |
| sense_data[14] = sbp2_status[12]; |
| sense_data[15] = sbp2_status[13]; |
| |
| sam_status = sbp2_status[0] & 0x3f; |
| |
| switch (sam_status) { |
| case SAM_STAT_GOOD: |
| case SAM_STAT_CHECK_CONDITION: |
| case SAM_STAT_CONDITION_MET: |
| case SAM_STAT_BUSY: |
| case SAM_STAT_RESERVATION_CONFLICT: |
| case SAM_STAT_COMMAND_TERMINATED: |
| return DID_OK << 16 | sam_status; |
| |
| default: |
| return DID_ERROR << 16; |
| } |
| } |
| |
| static void |
| complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status) |
| { |
| struct sbp2_command_orb *orb = (struct sbp2_command_orb *)base_orb; |
| struct fw_unit *unit = orb->unit; |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct scatterlist *sg; |
| int result; |
| |
| if (status != NULL) { |
| if (STATUS_GET_DEAD(*status)) |
| sbp2_agent_reset(unit); |
| |
| switch (STATUS_GET_RESPONSE(*status)) { |
| case SBP2_STATUS_REQUEST_COMPLETE: |
| result = DID_OK << 16; |
| break; |
| case SBP2_STATUS_TRANSPORT_FAILURE: |
| result = DID_BUS_BUSY << 16; |
| break; |
| case SBP2_STATUS_ILLEGAL_REQUEST: |
| case SBP2_STATUS_VENDOR_DEPENDENT: |
| default: |
| result = DID_ERROR << 16; |
| break; |
| } |
| |
| if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) |
| result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), |
| orb->cmd->sense_buffer); |
| } else { |
| /* |
| * If the orb completes with status == NULL, something |
| * went wrong, typically a bus reset happened mid-orb |
| * or when sending the write (less likely). |
| */ |
| result = DID_BUS_BUSY << 16; |
| } |
| |
| dma_unmap_single(device->card->device, orb->base.request_bus, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| |
| if (orb->cmd->use_sg > 0) { |
| sg = (struct scatterlist *)orb->cmd->request_buffer; |
| dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg, |
| orb->cmd->sc_data_direction); |
| } |
| |
| if (orb->page_table_bus != 0) |
| dma_unmap_single(device->card->device, orb->page_table_bus, |
| sizeof(orb->page_table_bus), DMA_TO_DEVICE); |
| |
| orb->cmd->result = result; |
| orb->done(orb->cmd); |
| kfree(orb); |
| } |
| |
| static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb) |
| { |
| struct sbp2_device *sd = |
| (struct sbp2_device *)orb->cmd->device->host->hostdata; |
| struct fw_unit *unit = sd->unit; |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct scatterlist *sg; |
| int sg_len, l, i, j, count; |
| size_t size; |
| dma_addr_t sg_addr; |
| |
| sg = (struct scatterlist *)orb->cmd->request_buffer; |
| count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg, |
| orb->cmd->sc_data_direction); |
| if (count == 0) |
| goto fail; |
| |
| /* |
| * Handle the special case where there is only one element in |
| * the scatter list by converting it to an immediate block |
| * request. This is also a workaround for broken devices such |
| * as the second generation iPod which doesn't support page |
| * tables. |
| */ |
| if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) { |
| orb->request.data_descriptor.high = sd->address_high; |
| orb->request.data_descriptor.low = sg_dma_address(sg); |
| orb->request.misc |= |
| COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)); |
| return 0; |
| } |
| |
| /* |
| * Convert the scatterlist to an sbp2 page table. If any |
| * scatterlist entries are too big for sbp2, we split them as we |
| * go. Even if we ask the block I/O layer to not give us sg |
| * elements larger than 65535 bytes, some IOMMUs may merge sg elements |
| * during DMA mapping, and Linux currently doesn't prevent this. |
| */ |
| for (i = 0, j = 0; i < count; i++) { |
| sg_len = sg_dma_len(sg + i); |
| sg_addr = sg_dma_address(sg + i); |
| while (sg_len) { |
| l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH); |
| orb->page_table[j].low = sg_addr; |
| orb->page_table[j].high = (l << 16); |
| sg_addr += l; |
| sg_len -= l; |
| j++; |
| } |
| } |
| |
| size = sizeof(orb->page_table[0]) * j; |
| |
| /* |
| * The data_descriptor pointer is the one case where we need |
| * to fill in the node ID part of the address. All other |
| * pointers assume that the data referenced reside on the |
| * initiator (i.e. us), but data_descriptor can refer to data |
| * on other nodes so we need to put our ID in descriptor.high. |
| */ |
| |
| orb->page_table_bus = |
| dma_map_single(device->card->device, orb->page_table, |
| size, DMA_TO_DEVICE); |
| if (dma_mapping_error(orb->page_table_bus)) |
| goto fail_page_table; |
| orb->request.data_descriptor.high = sd->address_high; |
| orb->request.data_descriptor.low = orb->page_table_bus; |
| orb->request.misc |= |
| COMMAND_ORB_PAGE_TABLE_PRESENT | |
| COMMAND_ORB_DATA_SIZE(j); |
| |
| fw_memcpy_to_be32(orb->page_table, orb->page_table, size); |
| |
| return 0; |
| |
| fail_page_table: |
| dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg, |
| orb->cmd->sc_data_direction); |
| fail: |
| return -ENOMEM; |
| } |
| |
| /* SCSI stack integration */ |
| |
| static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done) |
| { |
| struct sbp2_device *sd = |
| (struct sbp2_device *)cmd->device->host->hostdata; |
| struct fw_unit *unit = sd->unit; |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct sbp2_command_orb *orb; |
| |
| /* |
| * Bidirectional commands are not yet implemented, and unknown |
| * transfer direction not handled. |
| */ |
| if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { |
| fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); |
| cmd->result = DID_ERROR << 16; |
| done(cmd); |
| return 0; |
| } |
| |
| orb = kzalloc(sizeof(*orb), GFP_ATOMIC); |
| if (orb == NULL) { |
| fw_notify("failed to alloc orb\n"); |
| goto fail_alloc; |
| } |
| |
| /* Initialize rcode to something not RCODE_COMPLETE. */ |
| orb->base.rcode = -1; |
| orb->base.request_bus = |
| dma_map_single(device->card->device, &orb->request, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| if (dma_mapping_error(orb->base.request_bus)) |
| goto fail_mapping; |
| |
| orb->unit = unit; |
| orb->done = done; |
| orb->cmd = cmd; |
| |
| orb->request.next.high = SBP2_ORB_NULL; |
| orb->request.next.low = 0x0; |
| /* |
| * At speed 100 we can do 512 bytes per packet, at speed 200, |
| * 1024 bytes per packet etc. The SBP-2 max_payload field |
| * specifies the max payload size as 2 ^ (max_payload + 2), so |
| * if we set this to max_speed + 7, we get the right value. |
| */ |
| orb->request.misc = |
| COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) | |
| COMMAND_ORB_SPEED(device->max_speed) | |
| COMMAND_ORB_NOTIFY; |
| |
| if (cmd->sc_data_direction == DMA_FROM_DEVICE) |
| orb->request.misc |= |
| COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA); |
| else if (cmd->sc_data_direction == DMA_TO_DEVICE) |
| orb->request.misc |= |
| COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA); |
| |
| if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0) |
| goto fail_map_payload; |
| |
| fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request)); |
| |
| memset(orb->request.command_block, |
| 0, sizeof(orb->request.command_block)); |
| memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd)); |
| |
| orb->base.callback = complete_command_orb; |
| |
| sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation, |
| sd->command_block_agent_address + SBP2_ORB_POINTER); |
| |
| return 0; |
| |
| fail_map_payload: |
| dma_unmap_single(device->card->device, orb->base.request_bus, |
| sizeof(orb->request), DMA_TO_DEVICE); |
| fail_mapping: |
| kfree(orb); |
| fail_alloc: |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| |
| static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) |
| { |
| struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata; |
| |
| sdev->allow_restart = 1; |
| |
| if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36) |
| sdev->inquiry_len = 36; |
| return 0; |
| } |
| |
| static int sbp2_scsi_slave_configure(struct scsi_device *sdev) |
| { |
| struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata; |
| struct fw_unit *unit = sd->unit; |
| |
| sdev->use_10_for_rw = 1; |
| |
| if (sdev->type == TYPE_ROM) |
| sdev->use_10_for_ms = 1; |
| if (sdev->type == TYPE_DISK && |
| sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) |
| sdev->skip_ms_page_8 = 1; |
| if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) { |
| fw_notify("setting fix_capacity for %s\n", unit->device.bus_id); |
| sdev->fix_capacity = 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Called by scsi stack when something has really gone wrong. Usually |
| * called when a command has timed-out for some reason. |
| */ |
| static int sbp2_scsi_abort(struct scsi_cmnd *cmd) |
| { |
| struct sbp2_device *sd = |
| (struct sbp2_device *)cmd->device->host->hostdata; |
| struct fw_unit *unit = sd->unit; |
| |
| fw_notify("sbp2_scsi_abort\n"); |
| sbp2_agent_reset(unit); |
| sbp2_cancel_orbs(unit); |
| |
| return SUCCESS; |
| } |
| |
| /* |
| * Format of /sys/bus/scsi/devices/.../ieee1394_id: |
| * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) |
| * |
| * This is the concatenation of target port identifier and logical unit |
| * identifier as per SAM-2...SAM-4 annex A. |
| */ |
| static ssize_t |
| sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_device *sdev = to_scsi_device(dev); |
| struct sbp2_device *sd; |
| struct fw_unit *unit; |
| struct fw_device *device; |
| u32 directory_id; |
| struct fw_csr_iterator ci; |
| int key, value, lun; |
| |
| if (!sdev) |
| return 0; |
| sd = (struct sbp2_device *)sdev->host->hostdata; |
| unit = sd->unit; |
| device = fw_device(unit->device.parent); |
| |
| /* implicit directory ID */ |
| directory_id = ((unit->directory - device->config_rom) * 4 |
| + CSR_CONFIG_ROM) & 0xffffff; |
| |
| /* explicit directory ID, overrides implicit ID if present */ |
| fw_csr_iterator_init(&ci, unit->directory); |
| while (fw_csr_iterator_next(&ci, &key, &value)) |
| if (key == CSR_DIRECTORY_ID) { |
| directory_id = value; |
| break; |
| } |
| |
| /* FIXME: Make this work for multi-lun devices. */ |
| lun = 0; |
| |
| return sprintf(buf, "%08x%08x:%06x:%04x\n", |
| device->config_rom[3], device->config_rom[4], |
| directory_id, lun); |
| } |
| |
| static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); |
| |
| static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { |
| &dev_attr_ieee1394_id, |
| NULL |
| }; |
| |
| static struct scsi_host_template scsi_driver_template = { |
| .module = THIS_MODULE, |
| .name = "SBP-2 IEEE-1394", |
| .proc_name = (char *)sbp2_driver_name, |
| .queuecommand = sbp2_scsi_queuecommand, |
| .slave_alloc = sbp2_scsi_slave_alloc, |
| .slave_configure = sbp2_scsi_slave_configure, |
| .eh_abort_handler = sbp2_scsi_abort, |
| .this_id = -1, |
| .sg_tablesize = SG_ALL, |
| .use_clustering = ENABLE_CLUSTERING, |
| .cmd_per_lun = 1, |
| .can_queue = 1, |
| .sdev_attrs = sbp2_scsi_sysfs_attrs, |
| }; |
| |
| MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); |
| MODULE_DESCRIPTION("SCSI over IEEE1394"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); |
| |
| /* Provide a module alias so root-on-sbp2 initrds don't break. */ |
| #ifndef CONFIG_IEEE1394_SBP2_MODULE |
| MODULE_ALIAS("sbp2"); |
| #endif |
| |
| static int __init sbp2_init(void) |
| { |
| return driver_register(&sbp2_driver.driver); |
| } |
| |
| static void __exit sbp2_cleanup(void) |
| { |
| driver_unregister(&sbp2_driver.driver); |
| } |
| |
| module_init(sbp2_init); |
| module_exit(sbp2_cleanup); |