| /* |
| * Copyright (c) 2008 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/nl80211.h> |
| #include "ath9k.h" |
| |
| #define ATH_PCI_VERSION "0.1" |
| |
| static char *dev_info = "ath9k"; |
| |
| MODULE_AUTHOR("Atheros Communications"); |
| MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); |
| MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| static int modparam_nohwcrypt; |
| module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444); |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption"); |
| |
| /* We use the hw_value as an index into our private channel structure */ |
| |
| #define CHAN2G(_freq, _idx) { \ |
| .center_freq = (_freq), \ |
| .hw_value = (_idx), \ |
| .max_power = 30, \ |
| } |
| |
| #define CHAN5G(_freq, _idx) { \ |
| .band = IEEE80211_BAND_5GHZ, \ |
| .center_freq = (_freq), \ |
| .hw_value = (_idx), \ |
| .max_power = 30, \ |
| } |
| |
| /* Some 2 GHz radios are actually tunable on 2312-2732 |
| * on 5 MHz steps, we support the channels which we know |
| * we have calibration data for all cards though to make |
| * this static */ |
| static struct ieee80211_channel ath9k_2ghz_chantable[] = { |
| CHAN2G(2412, 0), /* Channel 1 */ |
| CHAN2G(2417, 1), /* Channel 2 */ |
| CHAN2G(2422, 2), /* Channel 3 */ |
| CHAN2G(2427, 3), /* Channel 4 */ |
| CHAN2G(2432, 4), /* Channel 5 */ |
| CHAN2G(2437, 5), /* Channel 6 */ |
| CHAN2G(2442, 6), /* Channel 7 */ |
| CHAN2G(2447, 7), /* Channel 8 */ |
| CHAN2G(2452, 8), /* Channel 9 */ |
| CHAN2G(2457, 9), /* Channel 10 */ |
| CHAN2G(2462, 10), /* Channel 11 */ |
| CHAN2G(2467, 11), /* Channel 12 */ |
| CHAN2G(2472, 12), /* Channel 13 */ |
| CHAN2G(2484, 13), /* Channel 14 */ |
| }; |
| |
| /* Some 5 GHz radios are actually tunable on XXXX-YYYY |
| * on 5 MHz steps, we support the channels which we know |
| * we have calibration data for all cards though to make |
| * this static */ |
| static struct ieee80211_channel ath9k_5ghz_chantable[] = { |
| /* _We_ call this UNII 1 */ |
| CHAN5G(5180, 14), /* Channel 36 */ |
| CHAN5G(5200, 15), /* Channel 40 */ |
| CHAN5G(5220, 16), /* Channel 44 */ |
| CHAN5G(5240, 17), /* Channel 48 */ |
| /* _We_ call this UNII 2 */ |
| CHAN5G(5260, 18), /* Channel 52 */ |
| CHAN5G(5280, 19), /* Channel 56 */ |
| CHAN5G(5300, 20), /* Channel 60 */ |
| CHAN5G(5320, 21), /* Channel 64 */ |
| /* _We_ call this "Middle band" */ |
| CHAN5G(5500, 22), /* Channel 100 */ |
| CHAN5G(5520, 23), /* Channel 104 */ |
| CHAN5G(5540, 24), /* Channel 108 */ |
| CHAN5G(5560, 25), /* Channel 112 */ |
| CHAN5G(5580, 26), /* Channel 116 */ |
| CHAN5G(5600, 27), /* Channel 120 */ |
| CHAN5G(5620, 28), /* Channel 124 */ |
| CHAN5G(5640, 29), /* Channel 128 */ |
| CHAN5G(5660, 30), /* Channel 132 */ |
| CHAN5G(5680, 31), /* Channel 136 */ |
| CHAN5G(5700, 32), /* Channel 140 */ |
| /* _We_ call this UNII 3 */ |
| CHAN5G(5745, 33), /* Channel 149 */ |
| CHAN5G(5765, 34), /* Channel 153 */ |
| CHAN5G(5785, 35), /* Channel 157 */ |
| CHAN5G(5805, 36), /* Channel 161 */ |
| CHAN5G(5825, 37), /* Channel 165 */ |
| }; |
| |
| static void ath_cache_conf_rate(struct ath_softc *sc, |
| struct ieee80211_conf *conf) |
| { |
| switch (conf->channel->band) { |
| case IEEE80211_BAND_2GHZ: |
| if (conf_is_ht20(conf)) |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT20]; |
| else if (conf_is_ht40_minus(conf)) |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS]; |
| else if (conf_is_ht40_plus(conf)) |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS]; |
| else |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11G]; |
| break; |
| case IEEE80211_BAND_5GHZ: |
| if (conf_is_ht20(conf)) |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT20]; |
| else if (conf_is_ht40_minus(conf)) |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS]; |
| else if (conf_is_ht40_plus(conf)) |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS]; |
| else |
| sc->cur_rate_table = |
| sc->hw_rate_table[ATH9K_MODE_11A]; |
| break; |
| default: |
| BUG_ON(1); |
| break; |
| } |
| } |
| |
| static void ath_update_txpow(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| u32 txpow; |
| |
| if (sc->curtxpow != sc->config.txpowlimit) { |
| ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit); |
| /* read back in case value is clamped */ |
| ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow); |
| sc->curtxpow = txpow; |
| } |
| } |
| |
| static u8 parse_mpdudensity(u8 mpdudensity) |
| { |
| /* |
| * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": |
| * 0 for no restriction |
| * 1 for 1/4 us |
| * 2 for 1/2 us |
| * 3 for 1 us |
| * 4 for 2 us |
| * 5 for 4 us |
| * 6 for 8 us |
| * 7 for 16 us |
| */ |
| switch (mpdudensity) { |
| case 0: |
| return 0; |
| case 1: |
| case 2: |
| case 3: |
| /* Our lower layer calculations limit our precision to |
| 1 microsecond */ |
| return 1; |
| case 4: |
| return 2; |
| case 5: |
| return 4; |
| case 6: |
| return 8; |
| case 7: |
| return 16; |
| default: |
| return 0; |
| } |
| } |
| |
| static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band) |
| { |
| struct ath_rate_table *rate_table = NULL; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_rate *rate; |
| int i, maxrates; |
| |
| switch (band) { |
| case IEEE80211_BAND_2GHZ: |
| rate_table = sc->hw_rate_table[ATH9K_MODE_11G]; |
| break; |
| case IEEE80211_BAND_5GHZ: |
| rate_table = sc->hw_rate_table[ATH9K_MODE_11A]; |
| break; |
| default: |
| break; |
| } |
| |
| if (rate_table == NULL) |
| return; |
| |
| sband = &sc->sbands[band]; |
| rate = sc->rates[band]; |
| |
| if (rate_table->rate_cnt > ATH_RATE_MAX) |
| maxrates = ATH_RATE_MAX; |
| else |
| maxrates = rate_table->rate_cnt; |
| |
| for (i = 0; i < maxrates; i++) { |
| rate[i].bitrate = rate_table->info[i].ratekbps / 100; |
| rate[i].hw_value = rate_table->info[i].ratecode; |
| if (rate_table->info[i].short_preamble) { |
| rate[i].hw_value_short = rate_table->info[i].ratecode | |
| rate_table->info[i].short_preamble; |
| rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE; |
| } |
| sband->n_bitrates++; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n", |
| rate[i].bitrate / 10, rate[i].hw_value); |
| } |
| } |
| |
| /* |
| * Set/change channels. If the channel is really being changed, it's done |
| * by reseting the chip. To accomplish this we must first cleanup any pending |
| * DMA, then restart stuff. |
| */ |
| static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| bool fastcc = true, stopped; |
| struct ieee80211_hw *hw = sc->hw; |
| struct ieee80211_channel *channel = hw->conf.channel; |
| int r; |
| |
| if (sc->sc_flags & SC_OP_INVALID) |
| return -EIO; |
| |
| ath9k_ps_wakeup(sc); |
| |
| /* |
| * This is only performed if the channel settings have |
| * actually changed. |
| * |
| * To switch channels clear any pending DMA operations; |
| * wait long enough for the RX fifo to drain, reset the |
| * hardware at the new frequency, and then re-enable |
| * the relevant bits of the h/w. |
| */ |
| ath9k_hw_set_interrupts(ah, 0); |
| ath_drain_all_txq(sc, false); |
| stopped = ath_stoprecv(sc); |
| |
| /* XXX: do not flush receive queue here. We don't want |
| * to flush data frames already in queue because of |
| * changing channel. */ |
| |
| if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET)) |
| fastcc = false; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, |
| "(%u MHz) -> (%u MHz), chanwidth: %d\n", |
| sc->sc_ah->curchan->channel, |
| channel->center_freq, sc->tx_chan_width); |
| |
| spin_lock_bh(&sc->sc_resetlock); |
| |
| r = ath9k_hw_reset(ah, hchan, fastcc); |
| if (r) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to reset channel (%u Mhz) " |
| "reset status %u\n", |
| channel->center_freq, r); |
| spin_unlock_bh(&sc->sc_resetlock); |
| return r; |
| } |
| spin_unlock_bh(&sc->sc_resetlock); |
| |
| sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE; |
| sc->sc_flags &= ~SC_OP_FULL_RESET; |
| |
| if (ath_startrecv(sc) != 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to restart recv logic\n"); |
| return -EIO; |
| } |
| |
| ath_cache_conf_rate(sc, &hw->conf); |
| ath_update_txpow(sc); |
| ath9k_hw_set_interrupts(ah, sc->imask); |
| ath9k_ps_restore(sc); |
| return 0; |
| } |
| |
| /* |
| * This routine performs the periodic noise floor calibration function |
| * that is used to adjust and optimize the chip performance. This |
| * takes environmental changes (location, temperature) into account. |
| * When the task is complete, it reschedules itself depending on the |
| * appropriate interval that was calculated. |
| */ |
| static void ath_ani_calibrate(unsigned long data) |
| { |
| struct ath_softc *sc = (struct ath_softc *)data; |
| struct ath_hw *ah = sc->sc_ah; |
| bool longcal = false; |
| bool shortcal = false; |
| bool aniflag = false; |
| unsigned int timestamp = jiffies_to_msecs(jiffies); |
| u32 cal_interval, short_cal_interval; |
| |
| short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ? |
| ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL; |
| |
| /* |
| * don't calibrate when we're scanning. |
| * we are most likely not on our home channel. |
| */ |
| if (sc->sc_flags & SC_OP_SCANNING) |
| goto set_timer; |
| |
| /* Long calibration runs independently of short calibration. */ |
| if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) { |
| longcal = true; |
| DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies); |
| sc->ani.longcal_timer = timestamp; |
| } |
| |
| /* Short calibration applies only while caldone is false */ |
| if (!sc->ani.caldone) { |
| if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) { |
| shortcal = true; |
| DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies); |
| sc->ani.shortcal_timer = timestamp; |
| sc->ani.resetcal_timer = timestamp; |
| } |
| } else { |
| if ((timestamp - sc->ani.resetcal_timer) >= |
| ATH_RESTART_CALINTERVAL) { |
| sc->ani.caldone = ath9k_hw_reset_calvalid(ah); |
| if (sc->ani.caldone) |
| sc->ani.resetcal_timer = timestamp; |
| } |
| } |
| |
| /* Verify whether we must check ANI */ |
| if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) { |
| aniflag = true; |
| sc->ani.checkani_timer = timestamp; |
| } |
| |
| /* Skip all processing if there's nothing to do. */ |
| if (longcal || shortcal || aniflag) { |
| /* Call ANI routine if necessary */ |
| if (aniflag) |
| ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan); |
| |
| /* Perform calibration if necessary */ |
| if (longcal || shortcal) { |
| bool iscaldone = false; |
| |
| if (ath9k_hw_calibrate(ah, ah->curchan, |
| sc->rx_chainmask, longcal, |
| &iscaldone)) { |
| if (longcal) |
| sc->ani.noise_floor = |
| ath9k_hw_getchan_noise(ah, |
| ah->curchan); |
| |
| DPRINTF(sc, ATH_DBG_ANI, |
| "calibrate chan %u/%x nf: %d\n", |
| ah->curchan->channel, |
| ah->curchan->channelFlags, |
| sc->ani.noise_floor); |
| } else { |
| DPRINTF(sc, ATH_DBG_ANY, |
| "calibrate chan %u/%x failed\n", |
| ah->curchan->channel, |
| ah->curchan->channelFlags); |
| } |
| sc->ani.caldone = iscaldone; |
| } |
| } |
| |
| set_timer: |
| /* |
| * Set timer interval based on previous results. |
| * The interval must be the shortest necessary to satisfy ANI, |
| * short calibration and long calibration. |
| */ |
| cal_interval = ATH_LONG_CALINTERVAL; |
| if (sc->sc_ah->config.enable_ani) |
| cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL); |
| if (!sc->ani.caldone) |
| cal_interval = min(cal_interval, (u32)short_cal_interval); |
| |
| mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval)); |
| } |
| |
| /* |
| * Update tx/rx chainmask. For legacy association, |
| * hard code chainmask to 1x1, for 11n association, use |
| * the chainmask configuration, for bt coexistence, use |
| * the chainmask configuration even in legacy mode. |
| */ |
| static void ath_update_chainmask(struct ath_softc *sc, int is_ht) |
| { |
| sc->sc_flags |= SC_OP_CHAINMASK_UPDATE; |
| if (is_ht || |
| (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) { |
| sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask; |
| sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask; |
| } else { |
| sc->tx_chainmask = 1; |
| sc->rx_chainmask = 1; |
| } |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n", |
| sc->tx_chainmask, sc->rx_chainmask); |
| } |
| |
| static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta) |
| { |
| struct ath_node *an; |
| |
| an = (struct ath_node *)sta->drv_priv; |
| |
| if (sc->sc_flags & SC_OP_TXAGGR) |
| ath_tx_node_init(sc, an); |
| |
| an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + |
| sta->ht_cap.ampdu_factor); |
| an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density); |
| } |
| |
| static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta) |
| { |
| struct ath_node *an = (struct ath_node *)sta->drv_priv; |
| |
| if (sc->sc_flags & SC_OP_TXAGGR) |
| ath_tx_node_cleanup(sc, an); |
| } |
| |
| static void ath9k_tasklet(unsigned long data) |
| { |
| struct ath_softc *sc = (struct ath_softc *)data; |
| u32 status = sc->intrstatus; |
| |
| if (status & ATH9K_INT_FATAL) { |
| /* need a chip reset */ |
| ath_reset(sc, false); |
| return; |
| } else { |
| |
| if (status & |
| (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) { |
| spin_lock_bh(&sc->rx.rxflushlock); |
| ath_rx_tasklet(sc, 0); |
| spin_unlock_bh(&sc->rx.rxflushlock); |
| } |
| /* XXX: optimize this */ |
| if (status & ATH9K_INT_TX) |
| ath_tx_tasklet(sc); |
| } |
| |
| /* re-enable hardware interrupt */ |
| ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); |
| } |
| |
| irqreturn_t ath_isr(int irq, void *dev) |
| { |
| struct ath_softc *sc = dev; |
| struct ath_hw *ah = sc->sc_ah; |
| enum ath9k_int status; |
| bool sched = false; |
| |
| do { |
| if (sc->sc_flags & SC_OP_INVALID) { |
| /* |
| * The hardware is not ready/present, don't |
| * touch anything. Note this can happen early |
| * on if the IRQ is shared. |
| */ |
| return IRQ_NONE; |
| } |
| if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */ |
| return IRQ_NONE; |
| } |
| |
| /* |
| * Figure out the reason(s) for the interrupt. Note |
| * that the hal returns a pseudo-ISR that may include |
| * bits we haven't explicitly enabled so we mask the |
| * value to insure we only process bits we requested. |
| */ |
| ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */ |
| |
| status &= sc->imask; /* discard unasked-for bits */ |
| |
| /* |
| * If there are no status bits set, then this interrupt was not |
| * for me (should have been caught above). |
| */ |
| if (!status) |
| return IRQ_NONE; |
| |
| sc->intrstatus = status; |
| ath9k_ps_wakeup(sc); |
| |
| if (status & ATH9K_INT_FATAL) { |
| /* need a chip reset */ |
| sched = true; |
| } else if (status & ATH9K_INT_RXORN) { |
| /* need a chip reset */ |
| sched = true; |
| } else { |
| if (status & ATH9K_INT_SWBA) { |
| /* schedule a tasklet for beacon handling */ |
| tasklet_schedule(&sc->bcon_tasklet); |
| } |
| if (status & ATH9K_INT_RXEOL) { |
| /* |
| * NB: the hardware should re-read the link when |
| * RXE bit is written, but it doesn't work |
| * at least on older hardware revs. |
| */ |
| sched = true; |
| } |
| |
| if (status & ATH9K_INT_TXURN) |
| /* bump tx trigger level */ |
| ath9k_hw_updatetxtriglevel(ah, true); |
| /* XXX: optimize this */ |
| if (status & ATH9K_INT_RX) |
| sched = true; |
| if (status & ATH9K_INT_TX) |
| sched = true; |
| if (status & ATH9K_INT_BMISS) |
| sched = true; |
| /* carrier sense timeout */ |
| if (status & ATH9K_INT_CST) |
| sched = true; |
| if (status & ATH9K_INT_MIB) { |
| /* |
| * Disable interrupts until we service the MIB |
| * interrupt; otherwise it will continue to |
| * fire. |
| */ |
| ath9k_hw_set_interrupts(ah, 0); |
| /* |
| * Let the hal handle the event. We assume |
| * it will clear whatever condition caused |
| * the interrupt. |
| */ |
| ath9k_hw_procmibevent(ah, &sc->nodestats); |
| ath9k_hw_set_interrupts(ah, sc->imask); |
| } |
| if (status & ATH9K_INT_TIM_TIMER) { |
| if (!(ah->caps.hw_caps & |
| ATH9K_HW_CAP_AUTOSLEEP)) { |
| /* Clear RxAbort bit so that we can |
| * receive frames */ |
| ath9k_hw_setpower(ah, ATH9K_PM_AWAKE); |
| ath9k_hw_setrxabort(ah, 0); |
| sched = true; |
| sc->sc_flags |= SC_OP_WAIT_FOR_BEACON; |
| } |
| } |
| if (status & ATH9K_INT_TSFOOR) { |
| /* FIXME: Handle this interrupt for power save */ |
| sched = true; |
| } |
| } |
| ath9k_ps_restore(sc); |
| } while (0); |
| |
| ath_debug_stat_interrupt(sc, status); |
| |
| if (sched) { |
| /* turn off every interrupt except SWBA */ |
| ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA)); |
| tasklet_schedule(&sc->intr_tq); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static u32 ath_get_extchanmode(struct ath_softc *sc, |
| struct ieee80211_channel *chan, |
| enum nl80211_channel_type channel_type) |
| { |
| u32 chanmode = 0; |
| |
| switch (chan->band) { |
| case IEEE80211_BAND_2GHZ: |
| switch(channel_type) { |
| case NL80211_CHAN_NO_HT: |
| case NL80211_CHAN_HT20: |
| chanmode = CHANNEL_G_HT20; |
| break; |
| case NL80211_CHAN_HT40PLUS: |
| chanmode = CHANNEL_G_HT40PLUS; |
| break; |
| case NL80211_CHAN_HT40MINUS: |
| chanmode = CHANNEL_G_HT40MINUS; |
| break; |
| } |
| break; |
| case IEEE80211_BAND_5GHZ: |
| switch(channel_type) { |
| case NL80211_CHAN_NO_HT: |
| case NL80211_CHAN_HT20: |
| chanmode = CHANNEL_A_HT20; |
| break; |
| case NL80211_CHAN_HT40PLUS: |
| chanmode = CHANNEL_A_HT40PLUS; |
| break; |
| case NL80211_CHAN_HT40MINUS: |
| chanmode = CHANNEL_A_HT40MINUS; |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return chanmode; |
| } |
| |
| static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key, |
| struct ath9k_keyval *hk, const u8 *addr, |
| bool authenticator) |
| { |
| const u8 *key_rxmic; |
| const u8 *key_txmic; |
| |
| key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY; |
| key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY; |
| |
| if (addr == NULL) { |
| /* |
| * Group key installation - only two key cache entries are used |
| * regardless of splitmic capability since group key is only |
| * used either for TX or RX. |
| */ |
| if (authenticator) { |
| memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); |
| memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic)); |
| } else { |
| memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); |
| memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic)); |
| } |
| return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr); |
| } |
| if (!sc->splitmic) { |
| /* TX and RX keys share the same key cache entry. */ |
| memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); |
| memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic)); |
| return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr); |
| } |
| |
| /* Separate key cache entries for TX and RX */ |
| |
| /* TX key goes at first index, RX key at +32. */ |
| memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); |
| if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) { |
| /* TX MIC entry failed. No need to proceed further */ |
| DPRINTF(sc, ATH_DBG_KEYCACHE, |
| "Setting TX MIC Key Failed\n"); |
| return 0; |
| } |
| |
| memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); |
| /* XXX delete tx key on failure? */ |
| return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr); |
| } |
| |
| static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc) |
| { |
| int i; |
| |
| for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) { |
| if (test_bit(i, sc->keymap) || |
| test_bit(i + 64, sc->keymap)) |
| continue; /* At least one part of TKIP key allocated */ |
| if (sc->splitmic && |
| (test_bit(i + 32, sc->keymap) || |
| test_bit(i + 64 + 32, sc->keymap))) |
| continue; /* At least one part of TKIP key allocated */ |
| |
| /* Found a free slot for a TKIP key */ |
| return i; |
| } |
| return -1; |
| } |
| |
| static int ath_reserve_key_cache_slot(struct ath_softc *sc) |
| { |
| int i; |
| |
| /* First, try to find slots that would not be available for TKIP. */ |
| if (sc->splitmic) { |
| for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) { |
| if (!test_bit(i, sc->keymap) && |
| (test_bit(i + 32, sc->keymap) || |
| test_bit(i + 64, sc->keymap) || |
| test_bit(i + 64 + 32, sc->keymap))) |
| return i; |
| if (!test_bit(i + 32, sc->keymap) && |
| (test_bit(i, sc->keymap) || |
| test_bit(i + 64, sc->keymap) || |
| test_bit(i + 64 + 32, sc->keymap))) |
| return i + 32; |
| if (!test_bit(i + 64, sc->keymap) && |
| (test_bit(i , sc->keymap) || |
| test_bit(i + 32, sc->keymap) || |
| test_bit(i + 64 + 32, sc->keymap))) |
| return i + 64; |
| if (!test_bit(i + 64 + 32, sc->keymap) && |
| (test_bit(i, sc->keymap) || |
| test_bit(i + 32, sc->keymap) || |
| test_bit(i + 64, sc->keymap))) |
| return i + 64 + 32; |
| } |
| } else { |
| for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) { |
| if (!test_bit(i, sc->keymap) && |
| test_bit(i + 64, sc->keymap)) |
| return i; |
| if (test_bit(i, sc->keymap) && |
| !test_bit(i + 64, sc->keymap)) |
| return i + 64; |
| } |
| } |
| |
| /* No partially used TKIP slots, pick any available slot */ |
| for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) { |
| /* Do not allow slots that could be needed for TKIP group keys |
| * to be used. This limitation could be removed if we know that |
| * TKIP will not be used. */ |
| if (i >= 64 && i < 64 + IEEE80211_WEP_NKID) |
| continue; |
| if (sc->splitmic) { |
| if (i >= 32 && i < 32 + IEEE80211_WEP_NKID) |
| continue; |
| if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID) |
| continue; |
| } |
| |
| if (!test_bit(i, sc->keymap)) |
| return i; /* Found a free slot for a key */ |
| } |
| |
| /* No free slot found */ |
| return -1; |
| } |
| |
| static int ath_key_config(struct ath_softc *sc, |
| struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta, |
| struct ieee80211_key_conf *key) |
| { |
| struct ath9k_keyval hk; |
| const u8 *mac = NULL; |
| int ret = 0; |
| int idx; |
| |
| memset(&hk, 0, sizeof(hk)); |
| |
| switch (key->alg) { |
| case ALG_WEP: |
| hk.kv_type = ATH9K_CIPHER_WEP; |
| break; |
| case ALG_TKIP: |
| hk.kv_type = ATH9K_CIPHER_TKIP; |
| break; |
| case ALG_CCMP: |
| hk.kv_type = ATH9K_CIPHER_AES_CCM; |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| hk.kv_len = key->keylen; |
| memcpy(hk.kv_val, key->key, key->keylen); |
| |
| if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { |
| /* For now, use the default keys for broadcast keys. This may |
| * need to change with virtual interfaces. */ |
| idx = key->keyidx; |
| } else if (key->keyidx) { |
| if (WARN_ON(!sta)) |
| return -EOPNOTSUPP; |
| mac = sta->addr; |
| |
| if (vif->type != NL80211_IFTYPE_AP) { |
| /* Only keyidx 0 should be used with unicast key, but |
| * allow this for client mode for now. */ |
| idx = key->keyidx; |
| } else |
| return -EIO; |
| } else { |
| if (WARN_ON(!sta)) |
| return -EOPNOTSUPP; |
| mac = sta->addr; |
| |
| if (key->alg == ALG_TKIP) |
| idx = ath_reserve_key_cache_slot_tkip(sc); |
| else |
| idx = ath_reserve_key_cache_slot(sc); |
| if (idx < 0) |
| return -ENOSPC; /* no free key cache entries */ |
| } |
| |
| if (key->alg == ALG_TKIP) |
| ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac, |
| vif->type == NL80211_IFTYPE_AP); |
| else |
| ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac); |
| |
| if (!ret) |
| return -EIO; |
| |
| set_bit(idx, sc->keymap); |
| if (key->alg == ALG_TKIP) { |
| set_bit(idx + 64, sc->keymap); |
| if (sc->splitmic) { |
| set_bit(idx + 32, sc->keymap); |
| set_bit(idx + 64 + 32, sc->keymap); |
| } |
| } |
| |
| return idx; |
| } |
| |
| static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key) |
| { |
| ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx); |
| if (key->hw_key_idx < IEEE80211_WEP_NKID) |
| return; |
| |
| clear_bit(key->hw_key_idx, sc->keymap); |
| if (key->alg != ALG_TKIP) |
| return; |
| |
| clear_bit(key->hw_key_idx + 64, sc->keymap); |
| if (sc->splitmic) { |
| clear_bit(key->hw_key_idx + 32, sc->keymap); |
| clear_bit(key->hw_key_idx + 64 + 32, sc->keymap); |
| } |
| } |
| |
| static void setup_ht_cap(struct ath_softc *sc, |
| struct ieee80211_sta_ht_cap *ht_info) |
| { |
| #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */ |
| #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */ |
| |
| ht_info->ht_supported = true; |
| ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | |
| IEEE80211_HT_CAP_SM_PS | |
| IEEE80211_HT_CAP_SGI_40 | |
| IEEE80211_HT_CAP_DSSSCCK40; |
| |
| ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536; |
| ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8; |
| |
| /* set up supported mcs set */ |
| memset(&ht_info->mcs, 0, sizeof(ht_info->mcs)); |
| |
| switch(sc->rx_chainmask) { |
| case 1: |
| ht_info->mcs.rx_mask[0] = 0xff; |
| break; |
| case 3: |
| case 5: |
| case 7: |
| default: |
| ht_info->mcs.rx_mask[0] = 0xff; |
| ht_info->mcs.rx_mask[1] = 0xff; |
| break; |
| } |
| |
| ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; |
| } |
| |
| static void ath9k_bss_assoc_info(struct ath_softc *sc, |
| struct ieee80211_vif *vif, |
| struct ieee80211_bss_conf *bss_conf) |
| { |
| struct ath_vif *avp = (void *)vif->drv_priv; |
| |
| if (bss_conf->assoc) { |
| DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n", |
| bss_conf->aid, sc->curbssid); |
| |
| /* New association, store aid */ |
| if (avp->av_opmode == NL80211_IFTYPE_STATION) { |
| sc->curaid = bss_conf->aid; |
| ath9k_hw_write_associd(sc); |
| } |
| |
| /* Configure the beacon */ |
| ath_beacon_config(sc, vif); |
| |
| /* Reset rssi stats */ |
| sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; |
| sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; |
| sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; |
| sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER; |
| |
| /* Start ANI */ |
| mod_timer(&sc->ani.timer, |
| jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL)); |
| } else { |
| DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n"); |
| sc->curaid = 0; |
| } |
| } |
| |
| /********************************/ |
| /* LED functions */ |
| /********************************/ |
| |
| static void ath_led_blink_work(struct work_struct *work) |
| { |
| struct ath_softc *sc = container_of(work, struct ath_softc, |
| ath_led_blink_work.work); |
| |
| if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED)) |
| return; |
| ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, |
| (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0); |
| |
| queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work, |
| (sc->sc_flags & SC_OP_LED_ON) ? |
| msecs_to_jiffies(sc->led_off_duration) : |
| msecs_to_jiffies(sc->led_on_duration)); |
| |
| sc->led_on_duration = |
| max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25); |
| sc->led_off_duration = |
| max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10); |
| sc->led_on_cnt = sc->led_off_cnt = 0; |
| if (sc->sc_flags & SC_OP_LED_ON) |
| sc->sc_flags &= ~SC_OP_LED_ON; |
| else |
| sc->sc_flags |= SC_OP_LED_ON; |
| } |
| |
| static void ath_led_brightness(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev); |
| struct ath_softc *sc = led->sc; |
| |
| switch (brightness) { |
| case LED_OFF: |
| if (led->led_type == ATH_LED_ASSOC || |
| led->led_type == ATH_LED_RADIO) { |
| ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, |
| (led->led_type == ATH_LED_RADIO)); |
| sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; |
| if (led->led_type == ATH_LED_RADIO) |
| sc->sc_flags &= ~SC_OP_LED_ON; |
| } else { |
| sc->led_off_cnt++; |
| } |
| break; |
| case LED_FULL: |
| if (led->led_type == ATH_LED_ASSOC) { |
| sc->sc_flags |= SC_OP_LED_ASSOCIATED; |
| queue_delayed_work(sc->hw->workqueue, |
| &sc->ath_led_blink_work, 0); |
| } else if (led->led_type == ATH_LED_RADIO) { |
| ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0); |
| sc->sc_flags |= SC_OP_LED_ON; |
| } else { |
| sc->led_on_cnt++; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int ath_register_led(struct ath_softc *sc, struct ath_led *led, |
| char *trigger) |
| { |
| int ret; |
| |
| led->sc = sc; |
| led->led_cdev.name = led->name; |
| led->led_cdev.default_trigger = trigger; |
| led->led_cdev.brightness_set = ath_led_brightness; |
| |
| ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev); |
| if (ret) |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Failed to register led:%s", led->name); |
| else |
| led->registered = 1; |
| return ret; |
| } |
| |
| static void ath_unregister_led(struct ath_led *led) |
| { |
| if (led->registered) { |
| led_classdev_unregister(&led->led_cdev); |
| led->registered = 0; |
| } |
| } |
| |
| static void ath_deinit_leds(struct ath_softc *sc) |
| { |
| cancel_delayed_work_sync(&sc->ath_led_blink_work); |
| ath_unregister_led(&sc->assoc_led); |
| sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; |
| ath_unregister_led(&sc->tx_led); |
| ath_unregister_led(&sc->rx_led); |
| ath_unregister_led(&sc->radio_led); |
| ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); |
| } |
| |
| static void ath_init_leds(struct ath_softc *sc) |
| { |
| char *trigger; |
| int ret; |
| |
| /* Configure gpio 1 for output */ |
| ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN, |
| AR_GPIO_OUTPUT_MUX_AS_OUTPUT); |
| /* LED off, active low */ |
| ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); |
| |
| INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work); |
| |
| trigger = ieee80211_get_radio_led_name(sc->hw); |
| snprintf(sc->radio_led.name, sizeof(sc->radio_led.name), |
| "ath9k-%s::radio", wiphy_name(sc->hw->wiphy)); |
| ret = ath_register_led(sc, &sc->radio_led, trigger); |
| sc->radio_led.led_type = ATH_LED_RADIO; |
| if (ret) |
| goto fail; |
| |
| trigger = ieee80211_get_assoc_led_name(sc->hw); |
| snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name), |
| "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy)); |
| ret = ath_register_led(sc, &sc->assoc_led, trigger); |
| sc->assoc_led.led_type = ATH_LED_ASSOC; |
| if (ret) |
| goto fail; |
| |
| trigger = ieee80211_get_tx_led_name(sc->hw); |
| snprintf(sc->tx_led.name, sizeof(sc->tx_led.name), |
| "ath9k-%s::tx", wiphy_name(sc->hw->wiphy)); |
| ret = ath_register_led(sc, &sc->tx_led, trigger); |
| sc->tx_led.led_type = ATH_LED_TX; |
| if (ret) |
| goto fail; |
| |
| trigger = ieee80211_get_rx_led_name(sc->hw); |
| snprintf(sc->rx_led.name, sizeof(sc->rx_led.name), |
| "ath9k-%s::rx", wiphy_name(sc->hw->wiphy)); |
| ret = ath_register_led(sc, &sc->rx_led, trigger); |
| sc->rx_led.led_type = ATH_LED_RX; |
| if (ret) |
| goto fail; |
| |
| return; |
| |
| fail: |
| ath_deinit_leds(sc); |
| } |
| |
| #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) |
| |
| /*******************/ |
| /* Rfkill */ |
| /*******************/ |
| |
| static void ath_radio_enable(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ieee80211_channel *channel = sc->hw->conf.channel; |
| int r; |
| |
| ath9k_ps_wakeup(sc); |
| spin_lock_bh(&sc->sc_resetlock); |
| |
| r = ath9k_hw_reset(ah, ah->curchan, false); |
| |
| if (r) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to reset channel %u (%uMhz) ", |
| "reset status %u\n", |
| channel->center_freq, r); |
| } |
| spin_unlock_bh(&sc->sc_resetlock); |
| |
| ath_update_txpow(sc); |
| if (ath_startrecv(sc) != 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to restart recv logic\n"); |
| return; |
| } |
| |
| if (sc->sc_flags & SC_OP_BEACONS) |
| ath_beacon_config(sc, NULL); /* restart beacons */ |
| |
| /* Re-Enable interrupts */ |
| ath9k_hw_set_interrupts(ah, sc->imask); |
| |
| /* Enable LED */ |
| ath9k_hw_cfg_output(ah, ATH_LED_PIN, |
| AR_GPIO_OUTPUT_MUX_AS_OUTPUT); |
| ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0); |
| |
| ieee80211_wake_queues(sc->hw); |
| ath9k_ps_restore(sc); |
| } |
| |
| static void ath_radio_disable(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ieee80211_channel *channel = sc->hw->conf.channel; |
| int r; |
| |
| ath9k_ps_wakeup(sc); |
| ieee80211_stop_queues(sc->hw); |
| |
| /* Disable LED */ |
| ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1); |
| ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN); |
| |
| /* Disable interrupts */ |
| ath9k_hw_set_interrupts(ah, 0); |
| |
| ath_drain_all_txq(sc, false); /* clear pending tx frames */ |
| ath_stoprecv(sc); /* turn off frame recv */ |
| ath_flushrecv(sc); /* flush recv queue */ |
| |
| spin_lock_bh(&sc->sc_resetlock); |
| r = ath9k_hw_reset(ah, ah->curchan, false); |
| if (r) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to reset channel %u (%uMhz) " |
| "reset status %u\n", |
| channel->center_freq, r); |
| } |
| spin_unlock_bh(&sc->sc_resetlock); |
| |
| ath9k_hw_phy_disable(ah); |
| ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); |
| ath9k_ps_restore(sc); |
| } |
| |
| static bool ath_is_rfkill_set(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| |
| return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) == |
| ah->rfkill_polarity; |
| } |
| |
| /* h/w rfkill poll function */ |
| static void ath_rfkill_poll(struct work_struct *work) |
| { |
| struct ath_softc *sc = container_of(work, struct ath_softc, |
| rf_kill.rfkill_poll.work); |
| bool radio_on; |
| |
| if (sc->sc_flags & SC_OP_INVALID) |
| return; |
| |
| radio_on = !ath_is_rfkill_set(sc); |
| |
| /* |
| * enable/disable radio only when there is a |
| * state change in RF switch |
| */ |
| if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) { |
| enum rfkill_state state; |
| |
| if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) { |
| state = radio_on ? RFKILL_STATE_SOFT_BLOCKED |
| : RFKILL_STATE_HARD_BLOCKED; |
| } else if (radio_on) { |
| ath_radio_enable(sc); |
| state = RFKILL_STATE_UNBLOCKED; |
| } else { |
| ath_radio_disable(sc); |
| state = RFKILL_STATE_HARD_BLOCKED; |
| } |
| |
| if (state == RFKILL_STATE_HARD_BLOCKED) |
| sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED; |
| else |
| sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED; |
| |
| rfkill_force_state(sc->rf_kill.rfkill, state); |
| } |
| |
| queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll, |
| msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL)); |
| } |
| |
| /* s/w rfkill handler */ |
| static int ath_sw_toggle_radio(void *data, enum rfkill_state state) |
| { |
| struct ath_softc *sc = data; |
| |
| switch (state) { |
| case RFKILL_STATE_SOFT_BLOCKED: |
| if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED | |
| SC_OP_RFKILL_SW_BLOCKED))) |
| ath_radio_disable(sc); |
| sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED; |
| return 0; |
| case RFKILL_STATE_UNBLOCKED: |
| if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) { |
| sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED; |
| if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) { |
| DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the" |
| "radio as it is disabled by h/w\n"); |
| return -EPERM; |
| } |
| ath_radio_enable(sc); |
| } |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* Init s/w rfkill */ |
| static int ath_init_sw_rfkill(struct ath_softc *sc) |
| { |
| sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy), |
| RFKILL_TYPE_WLAN); |
| if (!sc->rf_kill.rfkill) { |
| DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n"); |
| return -ENOMEM; |
| } |
| |
| snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name), |
| "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy)); |
| sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name; |
| sc->rf_kill.rfkill->data = sc; |
| sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio; |
| sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED; |
| sc->rf_kill.rfkill->user_claim_unsupported = 1; |
| |
| return 0; |
| } |
| |
| /* Deinitialize rfkill */ |
| static void ath_deinit_rfkill(struct ath_softc *sc) |
| { |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) |
| cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll); |
| |
| if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) { |
| rfkill_unregister(sc->rf_kill.rfkill); |
| sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED; |
| sc->rf_kill.rfkill = NULL; |
| } |
| } |
| |
| static int ath_start_rfkill_poll(struct ath_softc *sc) |
| { |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) |
| queue_delayed_work(sc->hw->workqueue, |
| &sc->rf_kill.rfkill_poll, 0); |
| |
| if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) { |
| if (rfkill_register(sc->rf_kill.rfkill)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to register rfkill\n"); |
| rfkill_free(sc->rf_kill.rfkill); |
| |
| /* Deinitialize the device */ |
| ath_cleanup(sc); |
| return -EIO; |
| } else { |
| sc->sc_flags |= SC_OP_RFKILL_REGISTERED; |
| } |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_RFKILL */ |
| |
| void ath_cleanup(struct ath_softc *sc) |
| { |
| ath_detach(sc); |
| free_irq(sc->irq, sc); |
| ath_bus_cleanup(sc); |
| kfree(sc->sec_wiphy); |
| ieee80211_free_hw(sc->hw); |
| } |
| |
| void ath_detach(struct ath_softc *sc) |
| { |
| struct ieee80211_hw *hw = sc->hw; |
| int i = 0; |
| |
| ath9k_ps_wakeup(sc); |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n"); |
| |
| #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) |
| ath_deinit_rfkill(sc); |
| #endif |
| ath_deinit_leds(sc); |
| |
| for (i = 0; i < sc->num_sec_wiphy; i++) { |
| struct ath_wiphy *aphy = sc->sec_wiphy[i]; |
| if (aphy == NULL) |
| continue; |
| sc->sec_wiphy[i] = NULL; |
| ieee80211_unregister_hw(aphy->hw); |
| ieee80211_free_hw(aphy->hw); |
| } |
| ieee80211_unregister_hw(hw); |
| ath_rx_cleanup(sc); |
| ath_tx_cleanup(sc); |
| |
| tasklet_kill(&sc->intr_tq); |
| tasklet_kill(&sc->bcon_tasklet); |
| |
| if (!(sc->sc_flags & SC_OP_INVALID)) |
| ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE); |
| |
| /* cleanup tx queues */ |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) |
| if (ATH_TXQ_SETUP(sc, i)) |
| ath_tx_cleanupq(sc, &sc->tx.txq[i]); |
| |
| ath9k_hw_detach(sc->sc_ah); |
| ath9k_exit_debug(sc); |
| ath9k_ps_restore(sc); |
| } |
| |
| static int ath_init(u16 devid, struct ath_softc *sc) |
| { |
| struct ath_hw *ah = NULL; |
| int status; |
| int error = 0, i; |
| int csz = 0; |
| |
| /* XXX: hardware will not be ready until ath_open() being called */ |
| sc->sc_flags |= SC_OP_INVALID; |
| |
| if (ath9k_init_debug(sc) < 0) |
| printk(KERN_ERR "Unable to create debugfs files\n"); |
| |
| spin_lock_init(&sc->wiphy_lock); |
| spin_lock_init(&sc->sc_resetlock); |
| mutex_init(&sc->mutex); |
| tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc); |
| tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet, |
| (unsigned long)sc); |
| |
| /* |
| * Cache line size is used to size and align various |
| * structures used to communicate with the hardware. |
| */ |
| ath_read_cachesize(sc, &csz); |
| /* XXX assert csz is non-zero */ |
| sc->cachelsz = csz << 2; /* convert to bytes */ |
| |
| ah = ath9k_hw_attach(devid, sc, &status); |
| if (ah == NULL) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to attach hardware; HAL status %d\n", status); |
| error = -ENXIO; |
| goto bad; |
| } |
| sc->sc_ah = ah; |
| |
| /* Get the hardware key cache size. */ |
| sc->keymax = ah->caps.keycache_size; |
| if (sc->keymax > ATH_KEYMAX) { |
| DPRINTF(sc, ATH_DBG_KEYCACHE, |
| "Warning, using only %u entries in %u key cache\n", |
| ATH_KEYMAX, sc->keymax); |
| sc->keymax = ATH_KEYMAX; |
| } |
| |
| /* |
| * Reset the key cache since some parts do not |
| * reset the contents on initial power up. |
| */ |
| for (i = 0; i < sc->keymax; i++) |
| ath9k_hw_keyreset(ah, (u16) i); |
| |
| if (ath9k_regd_init(sc->sc_ah)) |
| goto bad; |
| |
| /* default to MONITOR mode */ |
| sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR; |
| |
| /* Setup rate tables */ |
| |
| ath_rate_attach(sc); |
| ath_setup_rates(sc, IEEE80211_BAND_2GHZ); |
| ath_setup_rates(sc, IEEE80211_BAND_5GHZ); |
| |
| /* |
| * Allocate hardware transmit queues: one queue for |
| * beacon frames and one data queue for each QoS |
| * priority. Note that the hal handles reseting |
| * these queues at the needed time. |
| */ |
| sc->beacon.beaconq = ath_beaconq_setup(ah); |
| if (sc->beacon.beaconq == -1) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to setup a beacon xmit queue\n"); |
| error = -EIO; |
| goto bad2; |
| } |
| sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0); |
| if (sc->beacon.cabq == NULL) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to setup CAB xmit queue\n"); |
| error = -EIO; |
| goto bad2; |
| } |
| |
| sc->config.cabqReadytime = ATH_CABQ_READY_TIME; |
| ath_cabq_update(sc); |
| |
| for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++) |
| sc->tx.hwq_map[i] = -1; |
| |
| /* Setup data queues */ |
| /* NB: ensure BK queue is the lowest priority h/w queue */ |
| if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to setup xmit queue for BK traffic\n"); |
| error = -EIO; |
| goto bad2; |
| } |
| |
| if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to setup xmit queue for BE traffic\n"); |
| error = -EIO; |
| goto bad2; |
| } |
| if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to setup xmit queue for VI traffic\n"); |
| error = -EIO; |
| goto bad2; |
| } |
| if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to setup xmit queue for VO traffic\n"); |
| error = -EIO; |
| goto bad2; |
| } |
| |
| /* Initializes the noise floor to a reasonable default value. |
| * Later on this will be updated during ANI processing. */ |
| |
| sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR; |
| setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc); |
| |
| if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, |
| ATH9K_CIPHER_TKIP, NULL)) { |
| /* |
| * Whether we should enable h/w TKIP MIC. |
| * XXX: if we don't support WME TKIP MIC, then we wouldn't |
| * report WMM capable, so it's always safe to turn on |
| * TKIP MIC in this case. |
| */ |
| ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC, |
| 0, 1, NULL); |
| } |
| |
| /* |
| * Check whether the separate key cache entries |
| * are required to handle both tx+rx MIC keys. |
| * With split mic keys the number of stations is limited |
| * to 27 otherwise 59. |
| */ |
| if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, |
| ATH9K_CIPHER_TKIP, NULL) |
| && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, |
| ATH9K_CIPHER_MIC, NULL) |
| && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT, |
| 0, NULL)) |
| sc->splitmic = 1; |
| |
| /* turn on mcast key search if possible */ |
| if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL)) |
| (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1, |
| 1, NULL); |
| |
| sc->config.txpowlimit = ATH_TXPOWER_MAX; |
| |
| /* 11n Capabilities */ |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) { |
| sc->sc_flags |= SC_OP_TXAGGR; |
| sc->sc_flags |= SC_OP_RXAGGR; |
| } |
| |
| sc->tx_chainmask = ah->caps.tx_chainmask; |
| sc->rx_chainmask = ah->caps.rx_chainmask; |
| |
| ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL); |
| sc->rx.defant = ath9k_hw_getdefantenna(ah); |
| |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) |
| memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN); |
| |
| sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */ |
| |
| /* initialize beacon slots */ |
| for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) { |
| sc->beacon.bslot[i] = NULL; |
| sc->beacon.bslot_aphy[i] = NULL; |
| } |
| |
| /* save MISC configurations */ |
| sc->config.swBeaconProcess = 1; |
| |
| /* setup channels and rates */ |
| |
| sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable; |
| sc->sbands[IEEE80211_BAND_2GHZ].bitrates = |
| sc->rates[IEEE80211_BAND_2GHZ]; |
| sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ; |
| sc->sbands[IEEE80211_BAND_2GHZ].n_channels = |
| ARRAY_SIZE(ath9k_2ghz_chantable); |
| |
| if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) { |
| sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable; |
| sc->sbands[IEEE80211_BAND_5GHZ].bitrates = |
| sc->rates[IEEE80211_BAND_5GHZ]; |
| sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ; |
| sc->sbands[IEEE80211_BAND_5GHZ].n_channels = |
| ARRAY_SIZE(ath9k_5ghz_chantable); |
| } |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX) |
| ath9k_hw_btcoex_enable(sc->sc_ah); |
| |
| return 0; |
| bad2: |
| /* cleanup tx queues */ |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) |
| if (ATH_TXQ_SETUP(sc, i)) |
| ath_tx_cleanupq(sc, &sc->tx.txq[i]); |
| bad: |
| if (ah) |
| ath9k_hw_detach(ah); |
| ath9k_exit_debug(sc); |
| |
| return error; |
| } |
| |
| void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw) |
| { |
| hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | |
| IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | |
| IEEE80211_HW_SIGNAL_DBM | |
| IEEE80211_HW_AMPDU_AGGREGATION | |
| IEEE80211_HW_SUPPORTS_PS | |
| IEEE80211_HW_PS_NULLFUNC_STACK; |
| |
| if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt) |
| hw->flags |= IEEE80211_HW_MFP_CAPABLE; |
| |
| hw->wiphy->interface_modes = |
| BIT(NL80211_IFTYPE_AP) | |
| BIT(NL80211_IFTYPE_STATION) | |
| BIT(NL80211_IFTYPE_ADHOC); |
| |
| hw->wiphy->reg_notifier = ath9k_reg_notifier; |
| hw->wiphy->strict_regulatory = true; |
| |
| hw->queues = 4; |
| hw->max_rates = 4; |
| hw->channel_change_time = 5000; |
| hw->max_rate_tries = ATH_11N_TXMAXTRY; |
| hw->sta_data_size = sizeof(struct ath_node); |
| hw->vif_data_size = sizeof(struct ath_vif); |
| |
| hw->rate_control_algorithm = "ath9k_rate_control"; |
| |
| hw->wiphy->bands[IEEE80211_BAND_2GHZ] = |
| &sc->sbands[IEEE80211_BAND_2GHZ]; |
| if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) |
| hw->wiphy->bands[IEEE80211_BAND_5GHZ] = |
| &sc->sbands[IEEE80211_BAND_5GHZ]; |
| } |
| |
| int ath_attach(u16 devid, struct ath_softc *sc) |
| { |
| struct ieee80211_hw *hw = sc->hw; |
| const struct ieee80211_regdomain *regd; |
| int error = 0, i; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n"); |
| |
| error = ath_init(devid, sc); |
| if (error != 0) |
| return error; |
| |
| /* get mac address from hardware and set in mac80211 */ |
| |
| SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr); |
| |
| ath_set_hw_capab(sc, hw); |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) { |
| setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap); |
| if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) |
| setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap); |
| } |
| |
| /* initialize tx/rx engine */ |
| error = ath_tx_init(sc, ATH_TXBUF); |
| if (error != 0) |
| goto error_attach; |
| |
| error = ath_rx_init(sc, ATH_RXBUF); |
| if (error != 0) |
| goto error_attach; |
| |
| #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) |
| /* Initialze h/w Rfkill */ |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) |
| INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll); |
| |
| /* Initialize s/w rfkill */ |
| error = ath_init_sw_rfkill(sc); |
| if (error) |
| goto error_attach; |
| #endif |
| |
| if (ath9k_is_world_regd(sc->sc_ah)) { |
| /* Anything applied here (prior to wiphy registration) gets |
| * saved on the wiphy orig_* parameters */ |
| regd = ath9k_world_regdomain(sc->sc_ah); |
| hw->wiphy->custom_regulatory = true; |
| hw->wiphy->strict_regulatory = false; |
| } else { |
| /* This gets applied in the case of the absense of CRDA, |
| * it's our own custom world regulatory domain, similar to |
| * cfg80211's but we enable passive scanning */ |
| regd = ath9k_default_world_regdomain(); |
| } |
| wiphy_apply_custom_regulatory(hw->wiphy, regd); |
| ath9k_reg_apply_radar_flags(hw->wiphy); |
| ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT); |
| |
| error = ieee80211_register_hw(hw); |
| |
| if (!ath9k_is_world_regd(sc->sc_ah)) { |
| error = regulatory_hint(hw->wiphy, |
| sc->sc_ah->regulatory.alpha2); |
| if (error) |
| goto error_attach; |
| } |
| |
| /* Initialize LED control */ |
| ath_init_leds(sc); |
| |
| |
| return 0; |
| |
| error_attach: |
| /* cleanup tx queues */ |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) |
| if (ATH_TXQ_SETUP(sc, i)) |
| ath_tx_cleanupq(sc, &sc->tx.txq[i]); |
| |
| ath9k_hw_detach(sc->sc_ah); |
| ath9k_exit_debug(sc); |
| |
| return error; |
| } |
| |
| int ath_reset(struct ath_softc *sc, bool retry_tx) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ieee80211_hw *hw = sc->hw; |
| int r; |
| |
| ath9k_hw_set_interrupts(ah, 0); |
| ath_drain_all_txq(sc, retry_tx); |
| ath_stoprecv(sc); |
| ath_flushrecv(sc); |
| |
| spin_lock_bh(&sc->sc_resetlock); |
| r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false); |
| if (r) |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to reset hardware; reset status %u\n", r); |
| spin_unlock_bh(&sc->sc_resetlock); |
| |
| if (ath_startrecv(sc) != 0) |
| DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n"); |
| |
| /* |
| * We may be doing a reset in response to a request |
| * that changes the channel so update any state that |
| * might change as a result. |
| */ |
| ath_cache_conf_rate(sc, &hw->conf); |
| |
| ath_update_txpow(sc); |
| |
| if (sc->sc_flags & SC_OP_BEACONS) |
| ath_beacon_config(sc, NULL); /* restart beacons */ |
| |
| ath9k_hw_set_interrupts(ah, sc->imask); |
| |
| if (retry_tx) { |
| int i; |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (ATH_TXQ_SETUP(sc, i)) { |
| spin_lock_bh(&sc->tx.txq[i].axq_lock); |
| ath_txq_schedule(sc, &sc->tx.txq[i]); |
| spin_unlock_bh(&sc->tx.txq[i].axq_lock); |
| } |
| } |
| } |
| |
| return r; |
| } |
| |
| /* |
| * This function will allocate both the DMA descriptor structure, and the |
| * buffers it contains. These are used to contain the descriptors used |
| * by the system. |
| */ |
| int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd, |
| struct list_head *head, const char *name, |
| int nbuf, int ndesc) |
| { |
| #define DS2PHYS(_dd, _ds) \ |
| ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) |
| #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0) |
| #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096) |
| |
| struct ath_desc *ds; |
| struct ath_buf *bf; |
| int i, bsize, error; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n", |
| name, nbuf, ndesc); |
| |
| /* ath_desc must be a multiple of DWORDs */ |
| if ((sizeof(struct ath_desc) % 4) != 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n"); |
| ASSERT((sizeof(struct ath_desc) % 4) == 0); |
| error = -ENOMEM; |
| goto fail; |
| } |
| |
| dd->dd_name = name; |
| dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; |
| |
| /* |
| * Need additional DMA memory because we can't use |
| * descriptors that cross the 4K page boundary. Assume |
| * one skipped descriptor per 4K page. |
| */ |
| if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { |
| u32 ndesc_skipped = |
| ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len); |
| u32 dma_len; |
| |
| while (ndesc_skipped) { |
| dma_len = ndesc_skipped * sizeof(struct ath_desc); |
| dd->dd_desc_len += dma_len; |
| |
| ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len); |
| }; |
| } |
| |
| /* allocate descriptors */ |
| dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, |
| &dd->dd_desc_paddr, GFP_ATOMIC); |
| if (dd->dd_desc == NULL) { |
| error = -ENOMEM; |
| goto fail; |
| } |
| ds = dd->dd_desc; |
| DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n", |
| dd->dd_name, ds, (u32) dd->dd_desc_len, |
| ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len); |
| |
| /* allocate buffers */ |
| bsize = sizeof(struct ath_buf) * nbuf; |
| bf = kmalloc(bsize, GFP_KERNEL); |
| if (bf == NULL) { |
| error = -ENOMEM; |
| goto fail2; |
| } |
| memset(bf, 0, bsize); |
| dd->dd_bufptr = bf; |
| |
| INIT_LIST_HEAD(head); |
| for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { |
| bf->bf_desc = ds; |
| bf->bf_daddr = DS2PHYS(dd, ds); |
| |
| if (!(sc->sc_ah->caps.hw_caps & |
| ATH9K_HW_CAP_4KB_SPLITTRANS)) { |
| /* |
| * Skip descriptor addresses which can cause 4KB |
| * boundary crossing (addr + length) with a 32 dword |
| * descriptor fetch. |
| */ |
| while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) { |
| ASSERT((caddr_t) bf->bf_desc < |
| ((caddr_t) dd->dd_desc + |
| dd->dd_desc_len)); |
| |
| ds += ndesc; |
| bf->bf_desc = ds; |
| bf->bf_daddr = DS2PHYS(dd, ds); |
| } |
| } |
| list_add_tail(&bf->list, head); |
| } |
| return 0; |
| fail2: |
| dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, |
| dd->dd_desc_paddr); |
| fail: |
| memset(dd, 0, sizeof(*dd)); |
| return error; |
| #undef ATH_DESC_4KB_BOUND_CHECK |
| #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED |
| #undef DS2PHYS |
| } |
| |
| void ath_descdma_cleanup(struct ath_softc *sc, |
| struct ath_descdma *dd, |
| struct list_head *head) |
| { |
| dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, |
| dd->dd_desc_paddr); |
| |
| INIT_LIST_HEAD(head); |
| kfree(dd->dd_bufptr); |
| memset(dd, 0, sizeof(*dd)); |
| } |
| |
| int ath_get_hal_qnum(u16 queue, struct ath_softc *sc) |
| { |
| int qnum; |
| |
| switch (queue) { |
| case 0: |
| qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO]; |
| break; |
| case 1: |
| qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI]; |
| break; |
| case 2: |
| qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE]; |
| break; |
| case 3: |
| qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK]; |
| break; |
| default: |
| qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE]; |
| break; |
| } |
| |
| return qnum; |
| } |
| |
| int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc) |
| { |
| int qnum; |
| |
| switch (queue) { |
| case ATH9K_WME_AC_VO: |
| qnum = 0; |
| break; |
| case ATH9K_WME_AC_VI: |
| qnum = 1; |
| break; |
| case ATH9K_WME_AC_BE: |
| qnum = 2; |
| break; |
| case ATH9K_WME_AC_BK: |
| qnum = 3; |
| break; |
| default: |
| qnum = -1; |
| break; |
| } |
| |
| return qnum; |
| } |
| |
| /* XXX: Remove me once we don't depend on ath9k_channel for all |
| * this redundant data */ |
| static void ath9k_update_ichannel(struct ath_softc *sc, |
| struct ath9k_channel *ichan) |
| { |
| struct ieee80211_hw *hw = sc->hw; |
| struct ieee80211_channel *chan = hw->conf.channel; |
| struct ieee80211_conf *conf = &hw->conf; |
| |
| ichan->channel = chan->center_freq; |
| ichan->chan = chan; |
| |
| if (chan->band == IEEE80211_BAND_2GHZ) { |
| ichan->chanmode = CHANNEL_G; |
| ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM; |
| } else { |
| ichan->chanmode = CHANNEL_A; |
| ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM; |
| } |
| |
| sc->tx_chan_width = ATH9K_HT_MACMODE_20; |
| |
| if (conf_is_ht(conf)) { |
| if (conf_is_ht40(conf)) |
| sc->tx_chan_width = ATH9K_HT_MACMODE_2040; |
| |
| ichan->chanmode = ath_get_extchanmode(sc, chan, |
| conf->channel_type); |
| } |
| } |
| |
| /**********************/ |
| /* mac80211 callbacks */ |
| /**********************/ |
| |
| static int ath9k_start(struct ieee80211_hw *hw) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| struct ieee80211_channel *curchan = hw->conf.channel; |
| struct ath9k_channel *init_channel; |
| int r, pos; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with " |
| "initial channel: %d MHz\n", curchan->center_freq); |
| |
| mutex_lock(&sc->mutex); |
| |
| /* setup initial channel */ |
| |
| pos = curchan->hw_value; |
| |
| init_channel = &sc->sc_ah->channels[pos]; |
| ath9k_update_ichannel(sc, init_channel); |
| |
| /* Reset SERDES registers */ |
| ath9k_hw_configpcipowersave(sc->sc_ah, 0); |
| |
| /* |
| * The basic interface to setting the hardware in a good |
| * state is ``reset''. On return the hardware is known to |
| * be powered up and with interrupts disabled. This must |
| * be followed by initialization of the appropriate bits |
| * and then setup of the interrupt mask. |
| */ |
| spin_lock_bh(&sc->sc_resetlock); |
| r = ath9k_hw_reset(sc->sc_ah, init_channel, false); |
| if (r) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to reset hardware; reset status %u " |
| "(freq %u MHz)\n", r, |
| curchan->center_freq); |
| spin_unlock_bh(&sc->sc_resetlock); |
| goto mutex_unlock; |
| } |
| spin_unlock_bh(&sc->sc_resetlock); |
| |
| /* |
| * This is needed only to setup initial state |
| * but it's best done after a reset. |
| */ |
| ath_update_txpow(sc); |
| |
| /* |
| * Setup the hardware after reset: |
| * The receive engine is set going. |
| * Frame transmit is handled entirely |
| * in the frame output path; there's nothing to do |
| * here except setup the interrupt mask. |
| */ |
| if (ath_startrecv(sc) != 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to start recv logic\n"); |
| r = -EIO; |
| goto mutex_unlock; |
| } |
| |
| /* Setup our intr mask. */ |
| sc->imask = ATH9K_INT_RX | ATH9K_INT_TX |
| | ATH9K_INT_RXEOL | ATH9K_INT_RXORN |
| | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL; |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT) |
| sc->imask |= ATH9K_INT_GTT; |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) |
| sc->imask |= ATH9K_INT_CST; |
| |
| ath_cache_conf_rate(sc, &hw->conf); |
| |
| sc->sc_flags &= ~SC_OP_INVALID; |
| |
| /* Disable BMISS interrupt when we're not associated */ |
| sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS); |
| ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); |
| |
| ieee80211_wake_queues(hw); |
| |
| #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) |
| r = ath_start_rfkill_poll(sc); |
| #endif |
| |
| mutex_unlock: |
| mutex_unlock(&sc->mutex); |
| |
| return r; |
| } |
| |
| static int ath9k_tx(struct ieee80211_hw *hw, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| struct ath_tx_control txctl; |
| int hdrlen, padsize; |
| |
| memset(&txctl, 0, sizeof(struct ath_tx_control)); |
| |
| /* |
| * As a temporary workaround, assign seq# here; this will likely need |
| * to be cleaned up to work better with Beacon transmission and virtual |
| * BSSes. |
| */ |
| if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) |
| sc->tx.seq_no += 0x10; |
| hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); |
| hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); |
| } |
| |
| /* Add the padding after the header if this is not already done */ |
| hdrlen = ieee80211_get_hdrlen_from_skb(skb); |
| if (hdrlen & 3) { |
| padsize = hdrlen % 4; |
| if (skb_headroom(skb) < padsize) |
| return -1; |
| skb_push(skb, padsize); |
| memmove(skb->data, skb->data + padsize, hdrlen); |
| } |
| |
| /* Check if a tx queue is available */ |
| |
| txctl.txq = ath_test_get_txq(sc, skb); |
| if (!txctl.txq) |
| goto exit; |
| |
| DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb); |
| |
| if (ath_tx_start(hw, skb, &txctl) != 0) { |
| DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n"); |
| goto exit; |
| } |
| |
| return 0; |
| exit: |
| dev_kfree_skb_any(skb); |
| return 0; |
| } |
| |
| static void ath9k_stop(struct ieee80211_hw *hw) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| if (sc->sc_flags & SC_OP_INVALID) { |
| DPRINTF(sc, ATH_DBG_ANY, "Device not present\n"); |
| return; |
| } |
| |
| mutex_lock(&sc->mutex); |
| |
| ieee80211_stop_queues(hw); |
| |
| /* make sure h/w will not generate any interrupt |
| * before setting the invalid flag. */ |
| ath9k_hw_set_interrupts(sc->sc_ah, 0); |
| |
| if (!(sc->sc_flags & SC_OP_INVALID)) { |
| ath_drain_all_txq(sc, false); |
| ath_stoprecv(sc); |
| ath9k_hw_phy_disable(sc->sc_ah); |
| } else |
| sc->rx.rxlink = NULL; |
| |
| #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) |
| cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll); |
| #endif |
| /* disable HAL and put h/w to sleep */ |
| ath9k_hw_disable(sc->sc_ah); |
| ath9k_hw_configpcipowersave(sc->sc_ah, 1); |
| |
| sc->sc_flags |= SC_OP_INVALID; |
| |
| mutex_unlock(&sc->mutex); |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n"); |
| } |
| |
| static int ath9k_add_interface(struct ieee80211_hw *hw, |
| struct ieee80211_if_init_conf *conf) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| struct ath_vif *avp = (void *)conf->vif->drv_priv; |
| enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED; |
| int ret = 0; |
| |
| mutex_lock(&sc->mutex); |
| |
| if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) && |
| sc->nvifs > 0) { |
| ret = -ENOBUFS; |
| goto out; |
| } |
| |
| switch (conf->type) { |
| case NL80211_IFTYPE_STATION: |
| ic_opmode = NL80211_IFTYPE_STATION; |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| if (sc->nbcnvifs >= ATH_BCBUF) { |
| ret = -ENOBUFS; |
| goto out; |
| } |
| ic_opmode = NL80211_IFTYPE_ADHOC; |
| break; |
| case NL80211_IFTYPE_AP: |
| if (sc->nbcnvifs >= ATH_BCBUF) { |
| ret = -ENOBUFS; |
| goto out; |
| } |
| ic_opmode = NL80211_IFTYPE_AP; |
| break; |
| default: |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Interface type %d not yet supported\n", conf->type); |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode); |
| |
| /* Set the VIF opmode */ |
| avp->av_opmode = ic_opmode; |
| avp->av_bslot = -1; |
| |
| sc->nvifs++; |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) |
| ath9k_set_bssid_mask(hw); |
| |
| if (sc->nvifs > 1) |
| goto out; /* skip global settings for secondary vif */ |
| |
| if (ic_opmode == NL80211_IFTYPE_AP) { |
| ath9k_hw_set_tsfadjust(sc->sc_ah, 1); |
| sc->sc_flags |= SC_OP_TSF_RESET; |
| } |
| |
| /* Set the device opmode */ |
| sc->sc_ah->opmode = ic_opmode; |
| |
| /* |
| * Enable MIB interrupts when there are hardware phy counters. |
| * Note we only do this (at the moment) for station mode. |
| */ |
| if ((conf->type == NL80211_IFTYPE_STATION) || |
| (conf->type == NL80211_IFTYPE_ADHOC)) { |
| if (ath9k_hw_phycounters(sc->sc_ah)) |
| sc->imask |= ATH9K_INT_MIB; |
| sc->imask |= ATH9K_INT_TSFOOR; |
| } |
| |
| /* |
| * Some hardware processes the TIM IE and fires an |
| * interrupt when the TIM bit is set. For hardware |
| * that does, if not overridden by configuration, |
| * enable the TIM interrupt when operating as station. |
| */ |
| if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) && |
| (conf->type == NL80211_IFTYPE_STATION) && |
| !sc->config.swBeaconProcess) |
| sc->imask |= ATH9K_INT_TIM; |
| |
| ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); |
| |
| if (conf->type == NL80211_IFTYPE_AP) { |
| /* TODO: is this a suitable place to start ANI for AP mode? */ |
| /* Start ANI */ |
| mod_timer(&sc->ani.timer, |
| jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL)); |
| } |
| |
| out: |
| mutex_unlock(&sc->mutex); |
| return ret; |
| } |
| |
| static void ath9k_remove_interface(struct ieee80211_hw *hw, |
| struct ieee80211_if_init_conf *conf) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| struct ath_vif *avp = (void *)conf->vif->drv_priv; |
| int i; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n"); |
| |
| mutex_lock(&sc->mutex); |
| |
| /* Stop ANI */ |
| del_timer_sync(&sc->ani.timer); |
| |
| /* Reclaim beacon resources */ |
| if (sc->sc_ah->opmode == NL80211_IFTYPE_AP || |
| sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) { |
| ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); |
| ath_beacon_return(sc, avp); |
| } |
| |
| sc->sc_flags &= ~SC_OP_BEACONS; |
| |
| for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) { |
| if (sc->beacon.bslot[i] == conf->vif) { |
| printk(KERN_DEBUG "%s: vif had allocated beacon " |
| "slot\n", __func__); |
| sc->beacon.bslot[i] = NULL; |
| sc->beacon.bslot_aphy[i] = NULL; |
| } |
| } |
| |
| sc->nvifs--; |
| |
| mutex_unlock(&sc->mutex); |
| } |
| |
| static int ath9k_config(struct ieee80211_hw *hw, u32 changed) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| struct ieee80211_conf *conf = &hw->conf; |
| |
| mutex_lock(&sc->mutex); |
| |
| if (changed & IEEE80211_CONF_CHANGE_PS) { |
| if (conf->flags & IEEE80211_CONF_PS) { |
| if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) { |
| sc->imask |= ATH9K_INT_TIM_TIMER; |
| ath9k_hw_set_interrupts(sc->sc_ah, |
| sc->imask); |
| } |
| ath9k_hw_setrxabort(sc->sc_ah, 1); |
| ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP); |
| } else { |
| ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE); |
| ath9k_hw_setrxabort(sc->sc_ah, 0); |
| sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON; |
| if (sc->imask & ATH9K_INT_TIM_TIMER) { |
| sc->imask &= ~ATH9K_INT_TIM_TIMER; |
| ath9k_hw_set_interrupts(sc->sc_ah, |
| sc->imask); |
| } |
| } |
| } |
| |
| if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { |
| struct ieee80211_channel *curchan = hw->conf.channel; |
| int pos = curchan->hw_value; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n", |
| curchan->center_freq); |
| |
| /* XXX: remove me eventualy */ |
| ath9k_update_ichannel(sc, &sc->sc_ah->channels[pos]); |
| |
| ath_update_chainmask(sc, conf_is_ht(conf)); |
| |
| if (ath_set_channel(sc, &sc->sc_ah->channels[pos]) < 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n"); |
| mutex_unlock(&sc->mutex); |
| return -EINVAL; |
| } |
| } |
| |
| if (changed & IEEE80211_CONF_CHANGE_POWER) |
| sc->config.txpowlimit = 2 * conf->power_level; |
| |
| /* |
| * The HW TSF has to be reset when the beacon interval changes. |
| * We set the flag here, and ath_beacon_config_ap() would take this |
| * into account when it gets called through the subsequent |
| * config_interface() call - with IFCC_BEACON in the changed field. |
| */ |
| |
| if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL) |
| sc->sc_flags |= SC_OP_TSF_RESET; |
| |
| mutex_unlock(&sc->mutex); |
| |
| return 0; |
| } |
| |
| static int ath9k_config_interface(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| struct ieee80211_if_conf *conf) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_vif *avp = (void *)vif->drv_priv; |
| u32 rfilt = 0; |
| int error, i; |
| |
| mutex_lock(&sc->mutex); |
| |
| /* TODO: Need to decide which hw opmode to use for multi-interface |
| * cases */ |
| if (vif->type == NL80211_IFTYPE_AP && |
| ah->opmode != NL80211_IFTYPE_AP) { |
| ah->opmode = NL80211_IFTYPE_STATION; |
| ath9k_hw_setopmode(ah); |
| memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN); |
| sc->curaid = 0; |
| ath9k_hw_write_associd(sc); |
| /* Request full reset to get hw opmode changed properly */ |
| sc->sc_flags |= SC_OP_FULL_RESET; |
| } |
| |
| if ((conf->changed & IEEE80211_IFCC_BSSID) && |
| !is_zero_ether_addr(conf->bssid)) { |
| switch (vif->type) { |
| case NL80211_IFTYPE_STATION: |
| case NL80211_IFTYPE_ADHOC: |
| /* Set BSSID */ |
| memcpy(sc->curbssid, conf->bssid, ETH_ALEN); |
| memcpy(avp->bssid, conf->bssid, ETH_ALEN); |
| sc->curaid = 0; |
| ath9k_hw_write_associd(sc); |
| |
| /* Set aggregation protection mode parameters */ |
| sc->config.ath_aggr_prot = 0; |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, |
| "RX filter 0x%x bssid %pM aid 0x%x\n", |
| rfilt, sc->curbssid, sc->curaid); |
| |
| /* need to reconfigure the beacon */ |
| sc->sc_flags &= ~SC_OP_BEACONS ; |
| |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if ((vif->type == NL80211_IFTYPE_ADHOC) || |
| (vif->type == NL80211_IFTYPE_AP)) { |
| if ((conf->changed & IEEE80211_IFCC_BEACON) || |
| (conf->changed & IEEE80211_IFCC_BEACON_ENABLED && |
| conf->enable_beacon)) { |
| /* |
| * Allocate and setup the beacon frame. |
| * |
| * Stop any previous beacon DMA. This may be |
| * necessary, for example, when an ibss merge |
| * causes reconfiguration; we may be called |
| * with beacon transmission active. |
| */ |
| ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); |
| |
| error = ath_beacon_alloc(aphy, vif); |
| if (error != 0) { |
| mutex_unlock(&sc->mutex); |
| return error; |
| } |
| |
| ath_beacon_config(sc, vif); |
| } |
| } |
| |
| /* Check for WLAN_CAPABILITY_PRIVACY ? */ |
| if ((avp->av_opmode != NL80211_IFTYPE_STATION)) { |
| for (i = 0; i < IEEE80211_WEP_NKID; i++) |
| if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i)) |
| ath9k_hw_keysetmac(sc->sc_ah, |
| (u16)i, |
| sc->curbssid); |
| } |
| |
| /* Only legacy IBSS for now */ |
| if (vif->type == NL80211_IFTYPE_ADHOC) |
| ath_update_chainmask(sc, 0); |
| |
| mutex_unlock(&sc->mutex); |
| |
| return 0; |
| } |
| |
| #define SUPPORTED_FILTERS \ |
| (FIF_PROMISC_IN_BSS | \ |
| FIF_ALLMULTI | \ |
| FIF_CONTROL | \ |
| FIF_OTHER_BSS | \ |
| FIF_BCN_PRBRESP_PROMISC | \ |
| FIF_FCSFAIL) |
| |
| /* FIXME: sc->sc_full_reset ? */ |
| static void ath9k_configure_filter(struct ieee80211_hw *hw, |
| unsigned int changed_flags, |
| unsigned int *total_flags, |
| int mc_count, |
| struct dev_mc_list *mclist) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| u32 rfilt; |
| |
| changed_flags &= SUPPORTED_FILTERS; |
| *total_flags &= SUPPORTED_FILTERS; |
| |
| sc->rx.rxfilter = *total_flags; |
| rfilt = ath_calcrxfilter(sc); |
| ath9k_hw_setrxfilter(sc->sc_ah, rfilt); |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter); |
| } |
| |
| static void ath9k_sta_notify(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| enum sta_notify_cmd cmd, |
| struct ieee80211_sta *sta) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| switch (cmd) { |
| case STA_NOTIFY_ADD: |
| ath_node_attach(sc, sta); |
| break; |
| case STA_NOTIFY_REMOVE: |
| ath_node_detach(sc, sta); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue, |
| const struct ieee80211_tx_queue_params *params) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| struct ath9k_tx_queue_info qi; |
| int ret = 0, qnum; |
| |
| if (queue >= WME_NUM_AC) |
| return 0; |
| |
| mutex_lock(&sc->mutex); |
| |
| qi.tqi_aifs = params->aifs; |
| qi.tqi_cwmin = params->cw_min; |
| qi.tqi_cwmax = params->cw_max; |
| qi.tqi_burstTime = params->txop; |
| qnum = ath_get_hal_qnum(queue, sc); |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, |
| "Configure tx [queue/halq] [%d/%d], " |
| "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n", |
| queue, qnum, params->aifs, params->cw_min, |
| params->cw_max, params->txop); |
| |
| ret = ath_txq_update(sc, qnum, &qi); |
| if (ret) |
| DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n"); |
| |
| mutex_unlock(&sc->mutex); |
| |
| return ret; |
| } |
| |
| static int ath9k_set_key(struct ieee80211_hw *hw, |
| enum set_key_cmd cmd, |
| struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta, |
| struct ieee80211_key_conf *key) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| int ret = 0; |
| |
| if (modparam_nohwcrypt) |
| return -ENOSPC; |
| |
| mutex_lock(&sc->mutex); |
| ath9k_ps_wakeup(sc); |
| DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n"); |
| |
| switch (cmd) { |
| case SET_KEY: |
| ret = ath_key_config(sc, vif, sta, key); |
| if (ret >= 0) { |
| key->hw_key_idx = ret; |
| /* push IV and Michael MIC generation to stack */ |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; |
| if (key->alg == ALG_TKIP) |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; |
| if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP) |
| key->flags |= IEEE80211_KEY_FLAG_SW_MGMT; |
| ret = 0; |
| } |
| break; |
| case DISABLE_KEY: |
| ath_key_delete(sc, key); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| ath9k_ps_restore(sc); |
| mutex_unlock(&sc->mutex); |
| |
| return ret; |
| } |
| |
| static void ath9k_bss_info_changed(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| struct ieee80211_bss_conf *bss_conf, |
| u32 changed) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| mutex_lock(&sc->mutex); |
| |
| if (changed & BSS_CHANGED_ERP_PREAMBLE) { |
| DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n", |
| bss_conf->use_short_preamble); |
| if (bss_conf->use_short_preamble) |
| sc->sc_flags |= SC_OP_PREAMBLE_SHORT; |
| else |
| sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT; |
| } |
| |
| if (changed & BSS_CHANGED_ERP_CTS_PROT) { |
| DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n", |
| bss_conf->use_cts_prot); |
| if (bss_conf->use_cts_prot && |
| hw->conf.channel->band != IEEE80211_BAND_5GHZ) |
| sc->sc_flags |= SC_OP_PROTECT_ENABLE; |
| else |
| sc->sc_flags &= ~SC_OP_PROTECT_ENABLE; |
| } |
| |
| if (changed & BSS_CHANGED_ASSOC) { |
| DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n", |
| bss_conf->assoc); |
| ath9k_bss_assoc_info(sc, vif, bss_conf); |
| } |
| |
| mutex_unlock(&sc->mutex); |
| } |
| |
| static u64 ath9k_get_tsf(struct ieee80211_hw *hw) |
| { |
| u64 tsf; |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| mutex_lock(&sc->mutex); |
| tsf = ath9k_hw_gettsf64(sc->sc_ah); |
| mutex_unlock(&sc->mutex); |
| |
| return tsf; |
| } |
| |
| static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| mutex_lock(&sc->mutex); |
| ath9k_hw_settsf64(sc->sc_ah, tsf); |
| mutex_unlock(&sc->mutex); |
| } |
| |
| static void ath9k_reset_tsf(struct ieee80211_hw *hw) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| mutex_lock(&sc->mutex); |
| ath9k_hw_reset_tsf(sc->sc_ah); |
| mutex_unlock(&sc->mutex); |
| } |
| |
| static int ath9k_ampdu_action(struct ieee80211_hw *hw, |
| enum ieee80211_ampdu_mlme_action action, |
| struct ieee80211_sta *sta, |
| u16 tid, u16 *ssn) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| int ret = 0; |
| |
| switch (action) { |
| case IEEE80211_AMPDU_RX_START: |
| if (!(sc->sc_flags & SC_OP_RXAGGR)) |
| ret = -ENOTSUPP; |
| break; |
| case IEEE80211_AMPDU_RX_STOP: |
| break; |
| case IEEE80211_AMPDU_TX_START: |
| ret = ath_tx_aggr_start(sc, sta, tid, ssn); |
| if (ret < 0) |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to start TX aggregation\n"); |
| else |
| ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid); |
| break; |
| case IEEE80211_AMPDU_TX_STOP: |
| ret = ath_tx_aggr_stop(sc, sta, tid); |
| if (ret < 0) |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to stop TX aggregation\n"); |
| |
| ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid); |
| break; |
| case IEEE80211_AMPDU_TX_RESUME: |
| ath_tx_aggr_resume(sc, sta, tid); |
| break; |
| default: |
| DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n"); |
| } |
| |
| return ret; |
| } |
| |
| static void ath9k_sw_scan_start(struct ieee80211_hw *hw) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| mutex_lock(&sc->mutex); |
| sc->sc_flags |= SC_OP_SCANNING; |
| mutex_unlock(&sc->mutex); |
| } |
| |
| static void ath9k_sw_scan_complete(struct ieee80211_hw *hw) |
| { |
| struct ath_wiphy *aphy = hw->priv; |
| struct ath_softc *sc = aphy->sc; |
| |
| mutex_lock(&sc->mutex); |
| sc->sc_flags &= ~SC_OP_SCANNING; |
| mutex_unlock(&sc->mutex); |
| } |
| |
| struct ieee80211_ops ath9k_ops = { |
| .tx = ath9k_tx, |
| .start = ath9k_start, |
| .stop = ath9k_stop, |
| .add_interface = ath9k_add_interface, |
| .remove_interface = ath9k_remove_interface, |
| .config = ath9k_config, |
| .config_interface = ath9k_config_interface, |
| .configure_filter = ath9k_configure_filter, |
| .sta_notify = ath9k_sta_notify, |
| .conf_tx = ath9k_conf_tx, |
| .bss_info_changed = ath9k_bss_info_changed, |
| .set_key = ath9k_set_key, |
| .get_tsf = ath9k_get_tsf, |
| .set_tsf = ath9k_set_tsf, |
| .reset_tsf = ath9k_reset_tsf, |
| .ampdu_action = ath9k_ampdu_action, |
| .sw_scan_start = ath9k_sw_scan_start, |
| .sw_scan_complete = ath9k_sw_scan_complete, |
| }; |
| |
| static struct { |
| u32 version; |
| const char * name; |
| } ath_mac_bb_names[] = { |
| { AR_SREV_VERSION_5416_PCI, "5416" }, |
| { AR_SREV_VERSION_5416_PCIE, "5418" }, |
| { AR_SREV_VERSION_9100, "9100" }, |
| { AR_SREV_VERSION_9160, "9160" }, |
| { AR_SREV_VERSION_9280, "9280" }, |
| { AR_SREV_VERSION_9285, "9285" } |
| }; |
| |
| static struct { |
| u16 version; |
| const char * name; |
| } ath_rf_names[] = { |
| { 0, "5133" }, |
| { AR_RAD5133_SREV_MAJOR, "5133" }, |
| { AR_RAD5122_SREV_MAJOR, "5122" }, |
| { AR_RAD2133_SREV_MAJOR, "2133" }, |
| { AR_RAD2122_SREV_MAJOR, "2122" } |
| }; |
| |
| /* |
| * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. |
| */ |
| const char * |
| ath_mac_bb_name(u32 mac_bb_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { |
| if (ath_mac_bb_names[i].version == mac_bb_version) { |
| return ath_mac_bb_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| /* |
| * Return the RF name. "????" is returned if the RF is unknown. |
| */ |
| const char * |
| ath_rf_name(u16 rf_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { |
| if (ath_rf_names[i].version == rf_version) { |
| return ath_rf_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| static int __init ath9k_init(void) |
| { |
| int error; |
| |
| /* Register rate control algorithm */ |
| error = ath_rate_control_register(); |
| if (error != 0) { |
| printk(KERN_ERR |
| "ath9k: Unable to register rate control " |
| "algorithm: %d\n", |
| error); |
| goto err_out; |
| } |
| |
| error = ath_pci_init(); |
| if (error < 0) { |
| printk(KERN_ERR |
| "ath9k: No PCI devices found, driver not installed.\n"); |
| error = -ENODEV; |
| goto err_rate_unregister; |
| } |
| |
| error = ath_ahb_init(); |
| if (error < 0) { |
| error = -ENODEV; |
| goto err_pci_exit; |
| } |
| |
| return 0; |
| |
| err_pci_exit: |
| ath_pci_exit(); |
| |
| err_rate_unregister: |
| ath_rate_control_unregister(); |
| err_out: |
| return error; |
| } |
| module_init(ath9k_init); |
| |
| static void __exit ath9k_exit(void) |
| { |
| ath_ahb_exit(); |
| ath_pci_exit(); |
| ath_rate_control_unregister(); |
| printk(KERN_INFO "%s: Driver unloaded\n", dev_info); |
| } |
| module_exit(ath9k_exit); |