| #ifndef _ASM_IA64_PGTABLE_H |
| #define _ASM_IA64_PGTABLE_H |
| |
| /* |
| * This file contains the functions and defines necessary to modify and use |
| * the IA-64 page table tree. |
| * |
| * This hopefully works with any (fixed) IA-64 page-size, as defined |
| * in <asm/page.h>. |
| * |
| * Copyright (C) 1998-2005 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| */ |
| |
| |
| #include <asm/mman.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/system.h> |
| #include <asm/types.h> |
| |
| #define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ |
| |
| /* |
| * First, define the various bits in a PTE. Note that the PTE format |
| * matches the VHPT short format, the firt doubleword of the VHPD long |
| * format, and the first doubleword of the TLB insertion format. |
| */ |
| #define _PAGE_P_BIT 0 |
| #define _PAGE_A_BIT 5 |
| #define _PAGE_D_BIT 6 |
| |
| #define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ |
| #define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ |
| #define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ |
| #define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ |
| #define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ |
| #define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ |
| #define _PAGE_MA_MASK (0x7 << 2) |
| #define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ |
| #define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ |
| #define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ |
| #define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ |
| #define _PAGE_PL_MASK (3 << 7) |
| #define _PAGE_AR_R (0 << 9) /* read only */ |
| #define _PAGE_AR_RX (1 << 9) /* read & execute */ |
| #define _PAGE_AR_RW (2 << 9) /* read & write */ |
| #define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ |
| #define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ |
| #define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ |
| #define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ |
| #define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ |
| #define _PAGE_AR_MASK (7 << 9) |
| #define _PAGE_AR_SHIFT 9 |
| #define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ |
| #define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ |
| #define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) |
| #define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ |
| #define _PAGE_PROTNONE (__IA64_UL(1) << 63) |
| |
| /* Valid only for a PTE with the present bit cleared: */ |
| #define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ |
| |
| #define _PFN_MASK _PAGE_PPN_MASK |
| /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ |
| #define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) |
| |
| #define _PAGE_SIZE_4K 12 |
| #define _PAGE_SIZE_8K 13 |
| #define _PAGE_SIZE_16K 14 |
| #define _PAGE_SIZE_64K 16 |
| #define _PAGE_SIZE_256K 18 |
| #define _PAGE_SIZE_1M 20 |
| #define _PAGE_SIZE_4M 22 |
| #define _PAGE_SIZE_16M 24 |
| #define _PAGE_SIZE_64M 26 |
| #define _PAGE_SIZE_256M 28 |
| #define _PAGE_SIZE_1G 30 |
| #define _PAGE_SIZE_4G 32 |
| |
| #define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB |
| #define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB |
| #define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED |
| |
| /* |
| * How many pointers will a page table level hold expressed in shift |
| */ |
| #define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3) |
| |
| /* |
| * Definitions for fourth level: |
| */ |
| #define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) |
| |
| /* |
| * Definitions for third level: |
| * |
| * PMD_SHIFT determines the size of the area a third-level page table |
| * can map. |
| */ |
| #define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| #define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT)) |
| |
| #ifdef CONFIG_PGTABLE_4 |
| /* |
| * Definitions for second level: |
| * |
| * PUD_SHIFT determines the size of the area a second-level page table |
| * can map. |
| */ |
| #define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) |
| #define PUD_SIZE (1UL << PUD_SHIFT) |
| #define PUD_MASK (~(PUD_SIZE-1)) |
| #define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT)) |
| #endif |
| |
| /* |
| * Definitions for first level: |
| * |
| * PGDIR_SHIFT determines what a first-level page table entry can map. |
| */ |
| #ifdef CONFIG_PGTABLE_4 |
| #define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) |
| #else |
| #define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) |
| #endif |
| #define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| #define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT |
| #define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT) |
| #define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ |
| #define FIRST_USER_ADDRESS 0 |
| |
| /* |
| * All the normal masks have the "page accessed" bits on, as any time |
| * they are used, the page is accessed. They are cleared only by the |
| * page-out routines. |
| */ |
| #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) |
| #define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) |
| #define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) |
| #define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) |
| #define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) |
| #define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) |
| #define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) |
| #define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) |
| |
| # ifndef __ASSEMBLY__ |
| |
| #include <linux/sched.h> /* for mm_struct */ |
| #include <asm/bitops.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/processor.h> |
| |
| /* |
| * Next come the mappings that determine how mmap() protection bits |
| * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The |
| * _P version gets used for a private shared memory segment, the _S |
| * version gets used for a shared memory segment with MAP_SHARED on. |
| * In a private shared memory segment, we do a copy-on-write if a task |
| * attempts to write to the page. |
| */ |
| /* xwr */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY |
| #define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ |
| #define __P011 PAGE_READONLY /* ditto */ |
| #define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) |
| #define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) |
| #define __P110 PAGE_COPY_EXEC |
| #define __P111 PAGE_COPY_EXEC |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY |
| #define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ |
| #define __S011 PAGE_SHARED |
| #define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) |
| #define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) |
| #define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) |
| #define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) |
| |
| #define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| #ifdef CONFIG_PGTABLE_4 |
| #define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) |
| #endif |
| #define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| #define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) |
| |
| |
| /* |
| * Some definitions to translate between mem_map, PTEs, and page addresses: |
| */ |
| |
| |
| /* Quick test to see if ADDR is a (potentially) valid physical address. */ |
| static inline long |
| ia64_phys_addr_valid (unsigned long addr) |
| { |
| return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; |
| } |
| |
| /* |
| * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel |
| * memory. For the return value to be meaningful, ADDR must be >= |
| * PAGE_OFFSET. This operation can be relatively expensive (e.g., |
| * require a hash-, or multi-level tree-lookup or something of that |
| * sort) but it guarantees to return TRUE only if accessing the page |
| * at that address does not cause an error. Note that there may be |
| * addresses for which kern_addr_valid() returns FALSE even though an |
| * access would not cause an error (e.g., this is typically true for |
| * memory mapped I/O regions. |
| * |
| * XXX Need to implement this for IA-64. |
| */ |
| #define kern_addr_valid(addr) (1) |
| |
| |
| /* |
| * Now come the defines and routines to manage and access the three-level |
| * page table. |
| */ |
| |
| /* |
| * On some architectures, special things need to be done when setting |
| * the PTE in a page table. Nothing special needs to be on IA-64. |
| */ |
| #define set_pte(ptep, pteval) (*(ptep) = (pteval)) |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| |
| #define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) |
| #ifdef CONFIG_VIRTUAL_MEM_MAP |
| # define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) |
| # define VMALLOC_END vmalloc_end |
| extern unsigned long vmalloc_end; |
| #else |
| # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) |
| #endif |
| |
| /* fs/proc/kcore.c */ |
| #define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) |
| #define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) |
| |
| #define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) |
| #define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ |
| |
| /* |
| * Conversion functions: convert page frame number (pfn) and a protection value to a page |
| * table entry (pte). |
| */ |
| #define pfn_pte(pfn, pgprot) \ |
| ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) |
| |
| /* Extract pfn from pte. */ |
| #define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) |
| |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| /* This takes a physical page address that is used by the remapping functions */ |
| #define mk_pte_phys(physpage, pgprot) \ |
| ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) |
| |
| #define pte_modify(_pte, newprot) \ |
| (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) |
| |
| #define pte_none(pte) (!pte_val(pte)) |
| #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) |
| #define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) |
| /* pte_page() returns the "struct page *" corresponding to the PTE: */ |
| #define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) |
| #define pmd_present(pmd) (pmd_val(pmd) != 0UL) |
| #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) |
| #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) |
| #define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) |
| |
| #define pud_none(pud) (!pud_val(pud)) |
| #define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) |
| #define pud_present(pud) (pud_val(pud) != 0UL) |
| #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) |
| #define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) |
| #define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET)) |
| |
| #ifdef CONFIG_PGTABLE_4 |
| #define pgd_none(pgd) (!pgd_val(pgd)) |
| #define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd))) |
| #define pgd_present(pgd) (pgd_val(pgd) != 0UL) |
| #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) |
| #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) |
| #define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET)) |
| #endif |
| |
| /* |
| * The following have defined behavior only work if pte_present() is true. |
| */ |
| #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) |
| #define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) |
| #define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) |
| #define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) |
| #define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) |
| /* |
| * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the |
| * access rights: |
| */ |
| #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) |
| #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) |
| #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) |
| #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) |
| #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) |
| #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) |
| #define pte_mkhuge(pte) (__pte(pte_val(pte))) |
| |
| /* |
| * Make page protection values cacheable, uncacheable, or write- |
| * combining. Note that "protection" is really a misnomer here as the |
| * protection value contains the memory attribute bits, dirty bits, and |
| * various other bits as well. |
| */ |
| #define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) |
| #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) |
| #define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) |
| |
| struct file; |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot); |
| #define __HAVE_PHYS_MEM_ACCESS_PROT |
| |
| static inline unsigned long |
| pgd_index (unsigned long address) |
| { |
| unsigned long region = address >> 61; |
| unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); |
| |
| return (region << (PAGE_SHIFT - 6)) | l1index; |
| } |
| |
| /* The offset in the 1-level directory is given by the 3 region bits |
| (61..63) and the level-1 bits. */ |
| static inline pgd_t* |
| pgd_offset (struct mm_struct *mm, unsigned long address) |
| { |
| return mm->pgd + pgd_index(address); |
| } |
| |
| /* In the kernel's mapped region we completely ignore the region number |
| (since we know it's in region number 5). */ |
| #define pgd_offset_k(addr) \ |
| (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) |
| |
| /* Look up a pgd entry in the gate area. On IA-64, the gate-area |
| resides in the kernel-mapped segment, hence we use pgd_offset_k() |
| here. */ |
| #define pgd_offset_gate(mm, addr) pgd_offset_k(addr) |
| |
| #ifdef CONFIG_PGTABLE_4 |
| /* Find an entry in the second-level page table.. */ |
| #define pud_offset(dir,addr) \ |
| ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) |
| #endif |
| |
| /* Find an entry in the third-level page table.. */ |
| #define pmd_offset(dir,addr) \ |
| ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) |
| |
| /* |
| * Find an entry in the third-level page table. This looks more complicated than it |
| * should be because some platforms place page tables in high memory. |
| */ |
| #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) |
| #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) |
| #define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| /* atomic versions of the some PTE manipulations: */ |
| |
| static inline int |
| ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) |
| { |
| #ifdef CONFIG_SMP |
| if (!pte_young(*ptep)) |
| return 0; |
| return test_and_clear_bit(_PAGE_A_BIT, ptep); |
| #else |
| pte_t pte = *ptep; |
| if (!pte_young(pte)) |
| return 0; |
| set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); |
| return 1; |
| #endif |
| } |
| |
| static inline int |
| ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) |
| { |
| #ifdef CONFIG_SMP |
| if (!pte_dirty(*ptep)) |
| return 0; |
| return test_and_clear_bit(_PAGE_D_BIT, ptep); |
| #else |
| pte_t pte = *ptep; |
| if (!pte_dirty(pte)) |
| return 0; |
| set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); |
| return 1; |
| #endif |
| } |
| |
| static inline pte_t |
| ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| #ifdef CONFIG_SMP |
| return __pte(xchg((long *) ptep, 0)); |
| #else |
| pte_t pte = *ptep; |
| pte_clear(mm, addr, ptep); |
| return pte; |
| #endif |
| } |
| |
| static inline void |
| ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| #ifdef CONFIG_SMP |
| unsigned long new, old; |
| |
| do { |
| old = pte_val(*ptep); |
| new = pte_val(pte_wrprotect(__pte (old))); |
| } while (cmpxchg((unsigned long *) ptep, old, new) != old); |
| #else |
| pte_t old_pte = *ptep; |
| set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); |
| #endif |
| } |
| |
| static inline int |
| pte_same (pte_t a, pte_t b) |
| { |
| return pte_val(a) == pte_val(b); |
| } |
| |
| #define update_mmu_cache(vma, address, pte) do { } while (0) |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| extern void paging_init (void); |
| |
| /* |
| * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of |
| * bits in the swap-type field of the swap pte. It would be nice to |
| * enforce that, but we can't easily include <linux/swap.h> here. |
| * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). |
| * |
| * Format of swap pte: |
| * bit 0 : present bit (must be zero) |
| * bit 1 : _PAGE_FILE (must be zero) |
| * bits 2- 8: swap-type |
| * bits 9-62: swap offset |
| * bit 63 : _PAGE_PROTNONE bit |
| * |
| * Format of file pte: |
| * bit 0 : present bit (must be zero) |
| * bit 1 : _PAGE_FILE (must be one) |
| * bits 2-62: file_offset/PAGE_SIZE |
| * bit 63 : _PAGE_PROTNONE bit |
| */ |
| #define __swp_type(entry) (((entry).val >> 2) & 0x7f) |
| #define __swp_offset(entry) (((entry).val << 1) >> 10) |
| #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #define PTE_FILE_MAX_BITS 61 |
| #define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) |
| #define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; |
| extern struct page *zero_page_memmap_ptr; |
| #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) |
| |
| /* We provide our own get_unmapped_area to cope with VA holes for userland */ |
| #define HAVE_ARCH_UNMAPPED_AREA |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| #define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) |
| #define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) |
| #define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) |
| #endif |
| |
| /* |
| * IA-64 doesn't have any external MMU info: the page tables contain all the necessary |
| * information. However, we use this routine to take care of any (delayed) i-cache |
| * flushing that may be necessary. |
| */ |
| extern void lazy_mmu_prot_update (pte_t pte); |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| /* |
| * Update PTEP with ENTRY, which is guaranteed to be a less |
| * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and |
| * WRITABLE bits turned on, when the value at PTEP did not. The |
| * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. |
| * |
| * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without |
| * having to worry about races. On SMP machines, there are only two |
| * cases where this is true: |
| * |
| * (1) *PTEP has the PRESENT bit turned OFF |
| * (2) ENTRY has the DIRTY bit turned ON |
| * |
| * On ia64, we could implement this routine with a cmpxchg()-loop |
| * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. |
| * However, like on x86, we can get a more streamlined version by |
| * observing that it is OK to drop ACCESSED bit updates when |
| * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is |
| * result in an extra Access-bit fault, which would then turn on the |
| * ACCESSED bit in the low-level fault handler (iaccess_bit or |
| * daccess_bit in ivt.S). |
| */ |
| #ifdef CONFIG_SMP |
| # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ |
| ({ \ |
| int __changed = !pte_same(*(__ptep), __entry); \ |
| if (__changed && __safely_writable) { \ |
| set_pte(__ptep, __entry); \ |
| flush_tlb_page(__vma, __addr); \ |
| } \ |
| __changed; \ |
| }) |
| #else |
| # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ |
| ({ \ |
| int __changed = !pte_same(*(__ptep), __entry); \ |
| if (__changed) { \ |
| set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \ |
| flush_tlb_page(__vma, __addr); \ |
| } \ |
| __changed; \ |
| }) |
| #endif |
| |
| # ifdef CONFIG_VIRTUAL_MEM_MAP |
| /* arch mem_map init routine is needed due to holes in a virtual mem_map */ |
| # define __HAVE_ARCH_MEMMAP_INIT |
| extern void memmap_init (unsigned long size, int nid, unsigned long zone, |
| unsigned long start_pfn); |
| # endif /* CONFIG_VIRTUAL_MEM_MAP */ |
| # endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * Identity-mapped regions use a large page size. We'll call such large pages |
| * "granules". If you can think of a better name that's unambiguous, let me |
| * know... |
| */ |
| #if defined(CONFIG_IA64_GRANULE_64MB) |
| # define IA64_GRANULE_SHIFT _PAGE_SIZE_64M |
| #elif defined(CONFIG_IA64_GRANULE_16MB) |
| # define IA64_GRANULE_SHIFT _PAGE_SIZE_16M |
| #endif |
| #define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) |
| /* |
| * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): |
| */ |
| #define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M |
| #define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) |
| |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| /* These tell get_user_pages() that the first gate page is accessible from user-level. */ |
| #define FIXADDR_USER_START GATE_ADDR |
| #ifdef HAVE_BUGGY_SEGREL |
| # define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) |
| #else |
| # define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) |
| #endif |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| #define __HAVE_ARCH_PTE_SAME |
| #define __HAVE_ARCH_PGD_OFFSET_GATE |
| #define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE |
| |
| #ifndef CONFIG_PGTABLE_4 |
| #include <asm-generic/pgtable-nopud.h> |
| #endif |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* _ASM_IA64_PGTABLE_H */ |