blob: 03fe8265745f34cb175cc8653e4f003f77b28379 [file] [log] [blame]
/*
* Driver for Microtune MT2266 "Direct conversion low power broadband tuner"
*
* Copyright (c) 2007 Olivier DANET <odanet@caramail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "mt2266.h"
#define I2C_ADDRESS 0x60
#define REG_PART_REV 0
#define REG_TUNE 1
#define REG_BAND 6
#define REG_BANDWIDTH 8
#define REG_LOCK 0x12
#define PART_REV 0x85
struct mt2266_priv {
struct mt2266_config *cfg;
struct i2c_adapter *i2c;
u32 frequency;
u32 bandwidth;
};
/* Here, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2266: " args); printk("\n"); }} while (0)
// Reads a single register
static int mt2266_readreg(struct mt2266_priv *priv, u8 reg, u8 *val)
{
struct i2c_msg msg[2] = {
{ .addr = priv->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
};
if (i2c_transfer(priv->i2c, msg, 2) != 2) {
printk(KERN_WARNING "MT2266 I2C read failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a single register
static int mt2266_writereg(struct mt2266_priv *priv, u8 reg, u8 val)
{
u8 buf[2] = { reg, val };
struct i2c_msg msg = {
.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
};
if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "MT2266 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a set of consecutive registers
static int mt2266_writeregs(struct mt2266_priv *priv,u8 *buf, u8 len)
{
struct i2c_msg msg = {
.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
};
if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "MT2266 I2C write failed (len=%i)\n",(int)len);
return -EREMOTEIO;
}
return 0;
}
// Initialisation sequences
static u8 mt2266_init1[] = {
REG_TUNE,
0x00, 0x00, 0x28, 0x00, 0x52, 0x99, 0x3f };
static u8 mt2266_init2[] = {
0x17, 0x6d, 0x71, 0x61, 0xc0, 0xbf, 0xff, 0xdc, 0x00, 0x0a,
0xd4, 0x03, 0x64, 0x64, 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x7f, 0x5e, 0x3f, 0xff, 0xff, 0xff, 0x00, 0x77, 0x0f, 0x2d };
static u8 mt2266_init_8mhz[] = {
REG_BANDWIDTH,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 };
static u8 mt2266_init_7mhz[] = {
REG_BANDWIDTH,
0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32 };
static u8 mt2266_init_6mhz[] = {
REG_BANDWIDTH,
0xa7, 0xa7, 0xa7, 0xa7, 0xa7, 0xa7, 0xa7, 0xa7 };
#define FREF 30000 // Quartz oscillator 30 MHz
static int mt2266_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
{
struct mt2266_priv *priv;
int ret=0;
u32 freq;
u32 tune;
u8 lnaband;
u8 b[10];
int i;
priv = fe->tuner_priv;
mt2266_writereg(priv,0x17,0x6d);
mt2266_writereg(priv,0x1c,0xff);
freq = params->frequency / 1000; // Hz -> kHz
priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
priv->frequency = freq * 1000;
tune=2 * freq * (8192/16) / (FREF/16);
if (freq <= 495000) lnaband = 0xEE; else
if (freq <= 525000) lnaband = 0xDD; else
if (freq <= 550000) lnaband = 0xCC; else
if (freq <= 580000) lnaband = 0xBB; else
if (freq <= 605000) lnaband = 0xAA; else
if (freq <= 630000) lnaband = 0x99; else
if (freq <= 655000) lnaband = 0x88; else
if (freq <= 685000) lnaband = 0x77; else
if (freq <= 710000) lnaband = 0x66; else
if (freq <= 735000) lnaband = 0x55; else
if (freq <= 765000) lnaband = 0x44; else
if (freq <= 802000) lnaband = 0x33; else
if (freq <= 840000) lnaband = 0x22; else lnaband = 0x11;
msleep(100);
mt2266_writeregs(priv,(params->u.ofdm.bandwidth==BANDWIDTH_6_MHZ)?mt2266_init_6mhz:
(params->u.ofdm.bandwidth==BANDWIDTH_7_MHZ)?mt2266_init_7mhz:
mt2266_init_8mhz,sizeof(mt2266_init_8mhz));
b[0] = REG_TUNE;
b[1] = (tune >> 8) & 0x1F;
b[2] = tune & 0xFF;
b[3] = tune >> 13;
mt2266_writeregs(priv,b,4);
dprintk("set_parms: tune=%d band=%d",(int)tune,(int)lnaband);
dprintk("set_parms: [1..3]: %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3]);
b[0] = 0x05;
b[1] = 0x62;
b[2] = lnaband;
mt2266_writeregs(priv,b,3);
//Waits for pll lock or timeout
i = 0;
do {
mt2266_readreg(priv,REG_LOCK,b);
if ((b[0] & 0x40)==0x40)
break;
msleep(10);
i++;
} while (i<10);
dprintk("Lock when i=%i",(int)i);
return ret;
}
static void mt2266_calibrate(struct mt2266_priv *priv)
{
mt2266_writereg(priv,0x11,0x03);
mt2266_writereg(priv,0x11,0x01);
mt2266_writeregs(priv,mt2266_init1,sizeof(mt2266_init1));
mt2266_writeregs(priv,mt2266_init2,sizeof(mt2266_init2));
mt2266_writereg(priv,0x33,0x5e);
mt2266_writereg(priv,0x10,0x10);
mt2266_writereg(priv,0x10,0x00);
mt2266_writeregs(priv,mt2266_init_8mhz,sizeof(mt2266_init_8mhz));
msleep(25);
mt2266_writereg(priv,0x17,0x6d);
mt2266_writereg(priv,0x1c,0x00);
msleep(75);
mt2266_writereg(priv,0x17,0x6d);
mt2266_writereg(priv,0x1c,0xff);
}
static int mt2266_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct mt2266_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
static int mt2266_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
struct mt2266_priv *priv = fe->tuner_priv;
*bandwidth = priv->bandwidth;
return 0;
}
static int mt2266_init(struct dvb_frontend *fe)
{
struct mt2266_priv *priv = fe->tuner_priv;
mt2266_writereg(priv,0x17,0x6d);
mt2266_writereg(priv,0x1c,0xff);
return 0;
}
static int mt2266_sleep(struct dvb_frontend *fe)
{
struct mt2266_priv *priv = fe->tuner_priv;
mt2266_writereg(priv,0x17,0x6d);
mt2266_writereg(priv,0x1c,0x00);
return 0;
}
static int mt2266_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops mt2266_tuner_ops = {
.info = {
.name = "Microtune MT2266",
.frequency_min = 470000000,
.frequency_max = 860000000,
.frequency_step = 50000,
},
.release = mt2266_release,
.init = mt2266_init,
.sleep = mt2266_sleep,
.set_params = mt2266_set_params,
.get_frequency = mt2266_get_frequency,
.get_bandwidth = mt2266_get_bandwidth
};
struct dvb_frontend * mt2266_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2266_config *cfg)
{
struct mt2266_priv *priv = NULL;
u8 id = 0;
priv = kzalloc(sizeof(struct mt2266_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
priv->cfg = cfg;
priv->i2c = i2c;
if (mt2266_readreg(priv,0,&id) != 0) {
kfree(priv);
return NULL;
}
if (id != PART_REV) {
kfree(priv);
return NULL;
}
printk(KERN_INFO "MT2266: successfully identified\n");
memcpy(&fe->ops.tuner_ops, &mt2266_tuner_ops, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = priv;
mt2266_calibrate(priv);
return fe;
}
EXPORT_SYMBOL(mt2266_attach);
MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2266 silicon tuner driver");
MODULE_LICENSE("GPL");