| /* |
| * ppc-stub.c: KGDB support for the Linux kernel. |
| * |
| * adapted from arch/sparc/kernel/sparc-stub.c for the PowerPC |
| * some stuff borrowed from Paul Mackerras' xmon |
| * Copyright (C) 1998 Michael AK Tesch (tesch@cs.wisc.edu) |
| * |
| * Modifications to run under Linux |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * |
| * This file originally came from the gdb sources, and the |
| * copyright notices have been retained below. |
| */ |
| |
| /**************************************************************************** |
| |
| THIS SOFTWARE IS NOT COPYRIGHTED |
| |
| HP offers the following for use in the public domain. HP makes no |
| warranty with regard to the software or its performance and the |
| user accepts the software "AS IS" with all faults. |
| |
| HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD |
| TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
| OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ |
| * |
| * Module name: remcom.c $ |
| * Revision: 1.34 $ |
| * Date: 91/03/09 12:29:49 $ |
| * Contributor: Lake Stevens Instrument Division$ |
| * |
| * Description: low level support for gdb debugger. $ |
| * |
| * Considerations: only works on target hardware $ |
| * |
| * Written by: Glenn Engel $ |
| * ModuleState: Experimental $ |
| * |
| * NOTES: See Below $ |
| * |
| * Modified for SPARC by Stu Grossman, Cygnus Support. |
| * |
| * This code has been extensively tested on the Fujitsu SPARClite demo board. |
| * |
| * To enable debugger support, two things need to happen. One, a |
| * call to set_debug_traps() is necessary in order to allow any breakpoints |
| * or error conditions to be properly intercepted and reported to gdb. |
| * Two, a breakpoint needs to be generated to begin communication. This |
| * is most easily accomplished by a call to breakpoint(). Breakpoint() |
| * simulates a breakpoint by executing a trap #1. |
| * |
| ************* |
| * |
| * The following gdb commands are supported: |
| * |
| * command function Return value |
| * |
| * g return the value of the CPU registers hex data or ENN |
| * G set the value of the CPU registers OK or ENN |
| * qOffsets Get section offsets. Reply is Text=xxx;Data=yyy;Bss=zzz |
| * |
| * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN |
| * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN |
| * |
| * c Resume at current address SNN ( signal NN) |
| * cAA..AA Continue at address AA..AA SNN |
| * |
| * s Step one instruction SNN |
| * sAA..AA Step one instruction from AA..AA SNN |
| * |
| * k kill |
| * |
| * ? What was the last sigval ? SNN (signal NN) |
| * |
| * bBB..BB Set baud rate to BB..BB OK or BNN, then sets |
| * baud rate |
| * |
| * All commands and responses are sent with a packet which includes a |
| * checksum. A packet consists of |
| * |
| * $<packet info>#<checksum>. |
| * |
| * where |
| * <packet info> :: <characters representing the command or response> |
| * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>> |
| * |
| * When a packet is received, it is first acknowledged with either '+' or '-'. |
| * '+' indicates a successful transfer. '-' indicates a failed transfer. |
| * |
| * Example: |
| * |
| * Host: Reply: |
| * $m0,10#2a +$00010203040506070809101112131415#42 |
| * |
| ****************************************************************************/ |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| #include <linux/sysrq.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/system.h> |
| #include <asm/signal.h> |
| #include <asm/kgdb.h> |
| #include <asm/pgtable.h> |
| #include <asm/ptrace.h> |
| |
| void breakinst(void); |
| |
| /* |
| * BUFMAX defines the maximum number of characters in inbound/outbound buffers |
| * at least NUMREGBYTES*2 are needed for register packets |
| */ |
| #define BUFMAX 2048 |
| static char remcomInBuffer[BUFMAX]; |
| static char remcomOutBuffer[BUFMAX]; |
| |
| static int initialized; |
| static int kgdb_active; |
| static int kgdb_started; |
| static u_int fault_jmp_buf[100]; |
| static int kdebug; |
| |
| |
| static const char hexchars[]="0123456789abcdef"; |
| |
| /* Place where we save old trap entries for restoration - sparc*/ |
| /* struct tt_entry kgdb_savettable[256]; */ |
| /* typedef void (*trapfunc_t)(void); */ |
| |
| static void kgdb_fault_handler(struct pt_regs *regs); |
| static int handle_exception (struct pt_regs *regs); |
| |
| #if 0 |
| /* Install an exception handler for kgdb */ |
| static void exceptionHandler(int tnum, unsigned int *tfunc) |
| { |
| /* We are dorking with a live trap table, all irqs off */ |
| } |
| #endif |
| |
| int |
| kgdb_setjmp(long *buf) |
| { |
| asm ("mflr 0; stw 0,0(%0);" |
| "stw 1,4(%0); stw 2,8(%0);" |
| "mfcr 0; stw 0,12(%0);" |
| "stmw 13,16(%0)" |
| : : "r" (buf)); |
| /* XXX should save fp regs as well */ |
| return 0; |
| } |
| void |
| kgdb_longjmp(long *buf, int val) |
| { |
| if (val == 0) |
| val = 1; |
| asm ("lmw 13,16(%0);" |
| "lwz 0,12(%0); mtcrf 0x38,0;" |
| "lwz 0,0(%0); lwz 1,4(%0); lwz 2,8(%0);" |
| "mtlr 0; mr 3,%1" |
| : : "r" (buf), "r" (val)); |
| } |
| /* Convert ch from a hex digit to an int */ |
| static int |
| hex(unsigned char ch) |
| { |
| if (ch >= 'a' && ch <= 'f') |
| return ch-'a'+10; |
| if (ch >= '0' && ch <= '9') |
| return ch-'0'; |
| if (ch >= 'A' && ch <= 'F') |
| return ch-'A'+10; |
| return -1; |
| } |
| |
| /* Convert the memory pointed to by mem into hex, placing result in buf. |
| * Return a pointer to the last char put in buf (null), in case of mem fault, |
| * return 0. |
| */ |
| static unsigned char * |
| mem2hex(const char *mem, char *buf, int count) |
| { |
| unsigned char ch; |
| unsigned short tmp_s; |
| unsigned long tmp_l; |
| |
| if (kgdb_setjmp((long*)fault_jmp_buf) == 0) { |
| debugger_fault_handler = kgdb_fault_handler; |
| |
| /* Accessing 16 bit and 32 bit objects in a single |
| ** load instruction is required to avoid bad side |
| ** effects for some IO registers. |
| */ |
| |
| if ((count == 2) && (((long)mem & 1) == 0)) { |
| tmp_s = *(unsigned short *)mem; |
| mem += 2; |
| *buf++ = hexchars[(tmp_s >> 12) & 0xf]; |
| *buf++ = hexchars[(tmp_s >> 8) & 0xf]; |
| *buf++ = hexchars[(tmp_s >> 4) & 0xf]; |
| *buf++ = hexchars[tmp_s & 0xf]; |
| |
| } else if ((count == 4) && (((long)mem & 3) == 0)) { |
| tmp_l = *(unsigned int *)mem; |
| mem += 4; |
| *buf++ = hexchars[(tmp_l >> 28) & 0xf]; |
| *buf++ = hexchars[(tmp_l >> 24) & 0xf]; |
| *buf++ = hexchars[(tmp_l >> 20) & 0xf]; |
| *buf++ = hexchars[(tmp_l >> 16) & 0xf]; |
| *buf++ = hexchars[(tmp_l >> 12) & 0xf]; |
| *buf++ = hexchars[(tmp_l >> 8) & 0xf]; |
| *buf++ = hexchars[(tmp_l >> 4) & 0xf]; |
| *buf++ = hexchars[tmp_l & 0xf]; |
| |
| } else { |
| while (count-- > 0) { |
| ch = *mem++; |
| *buf++ = hexchars[ch >> 4]; |
| *buf++ = hexchars[ch & 0xf]; |
| } |
| } |
| |
| } else { |
| /* error condition */ |
| } |
| debugger_fault_handler = NULL; |
| *buf = 0; |
| return buf; |
| } |
| |
| /* convert the hex array pointed to by buf into binary to be placed in mem |
| * return a pointer to the character AFTER the last byte written. |
| */ |
| static char * |
| hex2mem(char *buf, char *mem, int count) |
| { |
| unsigned char ch; |
| int i; |
| char *orig_mem; |
| unsigned short tmp_s; |
| unsigned long tmp_l; |
| |
| orig_mem = mem; |
| |
| if (kgdb_setjmp((long*)fault_jmp_buf) == 0) { |
| debugger_fault_handler = kgdb_fault_handler; |
| |
| /* Accessing 16 bit and 32 bit objects in a single |
| ** store instruction is required to avoid bad side |
| ** effects for some IO registers. |
| */ |
| |
| if ((count == 2) && (((long)mem & 1) == 0)) { |
| tmp_s = hex(*buf++) << 12; |
| tmp_s |= hex(*buf++) << 8; |
| tmp_s |= hex(*buf++) << 4; |
| tmp_s |= hex(*buf++); |
| |
| *(unsigned short *)mem = tmp_s; |
| mem += 2; |
| |
| } else if ((count == 4) && (((long)mem & 3) == 0)) { |
| tmp_l = hex(*buf++) << 28; |
| tmp_l |= hex(*buf++) << 24; |
| tmp_l |= hex(*buf++) << 20; |
| tmp_l |= hex(*buf++) << 16; |
| tmp_l |= hex(*buf++) << 12; |
| tmp_l |= hex(*buf++) << 8; |
| tmp_l |= hex(*buf++) << 4; |
| tmp_l |= hex(*buf++); |
| |
| *(unsigned long *)mem = tmp_l; |
| mem += 4; |
| |
| } else { |
| for (i=0; i<count; i++) { |
| ch = hex(*buf++) << 4; |
| ch |= hex(*buf++); |
| *mem++ = ch; |
| } |
| } |
| |
| |
| /* |
| ** Flush the data cache, invalidate the instruction cache. |
| */ |
| flush_icache_range((int)orig_mem, (int)orig_mem + count - 1); |
| |
| } else { |
| /* error condition */ |
| } |
| debugger_fault_handler = NULL; |
| return mem; |
| } |
| |
| /* |
| * While we find nice hex chars, build an int. |
| * Return number of chars processed. |
| */ |
| static int |
| hexToInt(char **ptr, int *intValue) |
| { |
| int numChars = 0; |
| int hexValue; |
| |
| *intValue = 0; |
| |
| if (kgdb_setjmp((long*)fault_jmp_buf) == 0) { |
| debugger_fault_handler = kgdb_fault_handler; |
| while (**ptr) { |
| hexValue = hex(**ptr); |
| if (hexValue < 0) |
| break; |
| |
| *intValue = (*intValue << 4) | hexValue; |
| numChars ++; |
| |
| (*ptr)++; |
| } |
| } else { |
| /* error condition */ |
| } |
| debugger_fault_handler = NULL; |
| |
| return (numChars); |
| } |
| |
| /* scan for the sequence $<data>#<checksum> */ |
| static void |
| getpacket(char *buffer) |
| { |
| unsigned char checksum; |
| unsigned char xmitcsum; |
| int i; |
| int count; |
| unsigned char ch; |
| |
| do { |
| /* wait around for the start character, ignore all other |
| * characters */ |
| while ((ch = (getDebugChar() & 0x7f)) != '$') ; |
| |
| checksum = 0; |
| xmitcsum = -1; |
| |
| count = 0; |
| |
| /* now, read until a # or end of buffer is found */ |
| while (count < BUFMAX) { |
| ch = getDebugChar() & 0x7f; |
| if (ch == '#') |
| break; |
| checksum = checksum + ch; |
| buffer[count] = ch; |
| count = count + 1; |
| } |
| |
| if (count >= BUFMAX) |
| continue; |
| |
| buffer[count] = 0; |
| |
| if (ch == '#') { |
| xmitcsum = hex(getDebugChar() & 0x7f) << 4; |
| xmitcsum |= hex(getDebugChar() & 0x7f); |
| if (checksum != xmitcsum) |
| putDebugChar('-'); /* failed checksum */ |
| else { |
| putDebugChar('+'); /* successful transfer */ |
| /* if a sequence char is present, reply the ID */ |
| if (buffer[2] == ':') { |
| putDebugChar(buffer[0]); |
| putDebugChar(buffer[1]); |
| /* remove sequence chars from buffer */ |
| count = strlen(buffer); |
| for (i=3; i <= count; i++) |
| buffer[i-3] = buffer[i]; |
| } |
| } |
| } |
| } while (checksum != xmitcsum); |
| } |
| |
| /* send the packet in buffer. */ |
| static void putpacket(unsigned char *buffer) |
| { |
| unsigned char checksum; |
| int count; |
| unsigned char ch, recv; |
| |
| /* $<packet info>#<checksum>. */ |
| do { |
| putDebugChar('$'); |
| checksum = 0; |
| count = 0; |
| |
| while ((ch = buffer[count])) { |
| putDebugChar(ch); |
| checksum += ch; |
| count += 1; |
| } |
| |
| putDebugChar('#'); |
| putDebugChar(hexchars[checksum >> 4]); |
| putDebugChar(hexchars[checksum & 0xf]); |
| recv = getDebugChar(); |
| } while ((recv & 0x7f) != '+'); |
| } |
| |
| static void kgdb_flush_cache_all(void) |
| { |
| flush_instruction_cache(); |
| } |
| |
| /* Set up exception handlers for tracing and breakpoints |
| * [could be called kgdb_init()] |
| */ |
| void set_debug_traps(void) |
| { |
| #if 0 |
| unsigned char c; |
| |
| save_and_cli(flags); |
| |
| /* In case GDB is started before us, ack any packets (presumably |
| * "$?#xx") sitting there. |
| * |
| * I've found this code causes more problems than it solves, |
| * so that's why it's commented out. GDB seems to work fine |
| * now starting either before or after the kernel -bwb |
| */ |
| |
| while((c = getDebugChar()) != '$'); |
| while((c = getDebugChar()) != '#'); |
| c = getDebugChar(); /* eat first csum byte */ |
| c = getDebugChar(); /* eat second csum byte */ |
| putDebugChar('+'); /* ack it */ |
| #endif |
| debugger = kgdb; |
| debugger_bpt = kgdb_bpt; |
| debugger_sstep = kgdb_sstep; |
| debugger_iabr_match = kgdb_iabr_match; |
| debugger_dabr_match = kgdb_dabr_match; |
| |
| initialized = 1; |
| } |
| |
| static void kgdb_fault_handler(struct pt_regs *regs) |
| { |
| kgdb_longjmp((long*)fault_jmp_buf, 1); |
| } |
| |
| int kgdb_bpt(struct pt_regs *regs) |
| { |
| return handle_exception(regs); |
| } |
| |
| int kgdb_sstep(struct pt_regs *regs) |
| { |
| return handle_exception(regs); |
| } |
| |
| void kgdb(struct pt_regs *regs) |
| { |
| handle_exception(regs); |
| } |
| |
| int kgdb_iabr_match(struct pt_regs *regs) |
| { |
| printk(KERN_ERR "kgdb doesn't support iabr, what?!?\n"); |
| return handle_exception(regs); |
| } |
| |
| int kgdb_dabr_match(struct pt_regs *regs) |
| { |
| printk(KERN_ERR "kgdb doesn't support dabr, what?!?\n"); |
| return handle_exception(regs); |
| } |
| |
| /* Convert the hardware trap type code to a unix signal number. */ |
| /* |
| * This table contains the mapping between PowerPC hardware trap types, and |
| * signals, which are primarily what GDB understands. |
| */ |
| static struct hard_trap_info |
| { |
| unsigned int tt; /* Trap type code for powerpc */ |
| unsigned char signo; /* Signal that we map this trap into */ |
| } hard_trap_info[] = { |
| #if defined(CONFIG_40x) || defined(CONFIG_BOOKE) |
| { 0x100, SIGINT }, /* critical input interrupt */ |
| { 0x200, SIGSEGV }, /* machine check */ |
| { 0x300, SIGSEGV }, /* data storage */ |
| { 0x400, SIGBUS }, /* instruction storage */ |
| { 0x500, SIGINT }, /* interrupt */ |
| { 0x600, SIGBUS }, /* alignment */ |
| { 0x700, SIGILL }, /* program */ |
| { 0x800, SIGILL }, /* reserved */ |
| { 0x900, SIGILL }, /* reserved */ |
| { 0xa00, SIGILL }, /* reserved */ |
| { 0xb00, SIGILL }, /* reserved */ |
| { 0xc00, SIGCHLD }, /* syscall */ |
| { 0xd00, SIGILL }, /* reserved */ |
| { 0xe00, SIGILL }, /* reserved */ |
| { 0xf00, SIGILL }, /* reserved */ |
| /* |
| ** 0x1000 PIT |
| ** 0x1010 FIT |
| ** 0x1020 watchdog |
| ** 0x1100 data TLB miss |
| ** 0x1200 instruction TLB miss |
| */ |
| { 0x2002, SIGTRAP}, /* debug */ |
| #else |
| { 0x200, SIGSEGV }, /* machine check */ |
| { 0x300, SIGSEGV }, /* address error (store) */ |
| { 0x400, SIGBUS }, /* instruction bus error */ |
| { 0x500, SIGINT }, /* interrupt */ |
| { 0x600, SIGBUS }, /* alingment */ |
| { 0x700, SIGTRAP }, /* breakpoint trap */ |
| { 0x800, SIGFPE }, /* fpu unavail */ |
| { 0x900, SIGALRM }, /* decrementer */ |
| { 0xa00, SIGILL }, /* reserved */ |
| { 0xb00, SIGILL }, /* reserved */ |
| { 0xc00, SIGCHLD }, /* syscall */ |
| { 0xd00, SIGTRAP }, /* single-step/watch */ |
| { 0xe00, SIGFPE }, /* fp assist */ |
| #endif |
| { 0, 0} /* Must be last */ |
| |
| }; |
| |
| static int computeSignal(unsigned int tt) |
| { |
| struct hard_trap_info *ht; |
| |
| for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| if (ht->tt == tt) |
| return ht->signo; |
| |
| return SIGHUP; /* default for things we don't know about */ |
| } |
| |
| #define PC_REGNUM 64 |
| #define SP_REGNUM 1 |
| |
| /* |
| * This function does all command processing for interfacing to gdb. |
| */ |
| static int |
| handle_exception (struct pt_regs *regs) |
| { |
| int sigval; |
| int addr; |
| int length; |
| char *ptr; |
| unsigned int msr; |
| |
| /* We don't handle user-mode breakpoints. */ |
| if (user_mode(regs)) |
| return 0; |
| |
| if (debugger_fault_handler) { |
| debugger_fault_handler(regs); |
| panic("kgdb longjump failed!\n"); |
| } |
| if (kgdb_active) { |
| printk(KERN_ERR "interrupt while in kgdb, returning\n"); |
| return 0; |
| } |
| |
| kgdb_active = 1; |
| kgdb_started = 1; |
| |
| #ifdef KGDB_DEBUG |
| printk("kgdb: entering handle_exception; trap [0x%x]\n", |
| (unsigned int)regs->trap); |
| #endif |
| |
| kgdb_interruptible(0); |
| lock_kernel(); |
| msr = mfmsr(); |
| mtmsr(msr & ~MSR_EE); /* disable interrupts */ |
| |
| if (regs->nip == (unsigned long)breakinst) { |
| /* Skip over breakpoint trap insn */ |
| regs->nip += 4; |
| } |
| |
| /* reply to host that an exception has occurred */ |
| sigval = computeSignal(regs->trap); |
| ptr = remcomOutBuffer; |
| |
| *ptr++ = 'T'; |
| *ptr++ = hexchars[sigval >> 4]; |
| *ptr++ = hexchars[sigval & 0xf]; |
| *ptr++ = hexchars[PC_REGNUM >> 4]; |
| *ptr++ = hexchars[PC_REGNUM & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)®s->nip, ptr, 4); |
| *ptr++ = ';'; |
| *ptr++ = hexchars[SP_REGNUM >> 4]; |
| *ptr++ = hexchars[SP_REGNUM & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex(((char *)regs) + SP_REGNUM*4, ptr, 4); |
| *ptr++ = ';'; |
| *ptr++ = 0; |
| |
| putpacket(remcomOutBuffer); |
| if (kdebug) |
| printk("remcomOutBuffer: %s\n", remcomOutBuffer); |
| |
| /* XXX We may want to add some features dealing with poking the |
| * XXX page tables, ... (look at sparc-stub.c for more info) |
| * XXX also required hacking to the gdb sources directly... |
| */ |
| |
| while (1) { |
| remcomOutBuffer[0] = 0; |
| |
| getpacket(remcomInBuffer); |
| switch (remcomInBuffer[0]) { |
| case '?': /* report most recent signal */ |
| remcomOutBuffer[0] = 'S'; |
| remcomOutBuffer[1] = hexchars[sigval >> 4]; |
| remcomOutBuffer[2] = hexchars[sigval & 0xf]; |
| remcomOutBuffer[3] = 0; |
| break; |
| #if 0 |
| case 'q': /* this screws up gdb for some reason...*/ |
| { |
| extern long _start, sdata, __bss_start; |
| |
| ptr = &remcomInBuffer[1]; |
| if (strncmp(ptr, "Offsets", 7) != 0) |
| break; |
| |
| ptr = remcomOutBuffer; |
| sprintf(ptr, "Text=%8.8x;Data=%8.8x;Bss=%8.8x", |
| &_start, &sdata, &__bss_start); |
| break; |
| } |
| #endif |
| case 'd': |
| /* toggle debug flag */ |
| kdebug ^= 1; |
| break; |
| |
| case 'g': /* return the value of the CPU registers. |
| * some of them are non-PowerPC names :( |
| * they are stored in gdb like: |
| * struct { |
| * u32 gpr[32]; |
| * f64 fpr[32]; |
| * u32 pc, ps, cnd, lr; (ps=msr) |
| * u32 cnt, xer, mq; |
| * } |
| */ |
| { |
| int i; |
| ptr = remcomOutBuffer; |
| /* General Purpose Regs */ |
| ptr = mem2hex((char *)regs, ptr, 32 * 4); |
| /* Floating Point Regs - FIXME */ |
| /*ptr = mem2hex((char *), ptr, 32 * 8);*/ |
| for(i=0; i<(32*8*2); i++) { /* 2chars/byte */ |
| ptr[i] = '0'; |
| } |
| ptr += 32*8*2; |
| /* pc, msr, cr, lr, ctr, xer, (mq is unused) */ |
| ptr = mem2hex((char *)®s->nip, ptr, 4); |
| ptr = mem2hex((char *)®s->msr, ptr, 4); |
| ptr = mem2hex((char *)®s->ccr, ptr, 4); |
| ptr = mem2hex((char *)®s->link, ptr, 4); |
| ptr = mem2hex((char *)®s->ctr, ptr, 4); |
| ptr = mem2hex((char *)®s->xer, ptr, 4); |
| } |
| break; |
| |
| case 'G': /* set the value of the CPU registers */ |
| { |
| ptr = &remcomInBuffer[1]; |
| |
| /* |
| * If the stack pointer has moved, you should pray. |
| * (cause only god can help you). |
| */ |
| |
| /* General Purpose Regs */ |
| hex2mem(ptr, (char *)regs, 32 * 4); |
| |
| /* Floating Point Regs - FIXME?? */ |
| /*ptr = hex2mem(ptr, ??, 32 * 8);*/ |
| ptr += 32*8*2; |
| |
| /* pc, msr, cr, lr, ctr, xer, (mq is unused) */ |
| ptr = hex2mem(ptr, (char *)®s->nip, 4); |
| ptr = hex2mem(ptr, (char *)®s->msr, 4); |
| ptr = hex2mem(ptr, (char *)®s->ccr, 4); |
| ptr = hex2mem(ptr, (char *)®s->link, 4); |
| ptr = hex2mem(ptr, (char *)®s->ctr, 4); |
| ptr = hex2mem(ptr, (char *)®s->xer, 4); |
| |
| strcpy(remcomOutBuffer,"OK"); |
| } |
| break; |
| case 'H': |
| /* don't do anything, yet, just acknowledge */ |
| hexToInt(&ptr, &addr); |
| strcpy(remcomOutBuffer,"OK"); |
| break; |
| |
| case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ |
| /* Try to read %x,%x. */ |
| |
| ptr = &remcomInBuffer[1]; |
| |
| if (hexToInt(&ptr, &addr) && *ptr++ == ',' |
| && hexToInt(&ptr, &length)) { |
| if (mem2hex((char *)addr, remcomOutBuffer, |
| length)) |
| break; |
| strcpy(remcomOutBuffer, "E03"); |
| } else |
| strcpy(remcomOutBuffer, "E01"); |
| break; |
| |
| case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ |
| /* Try to read '%x,%x:'. */ |
| |
| ptr = &remcomInBuffer[1]; |
| |
| if (hexToInt(&ptr, &addr) && *ptr++ == ',' |
| && hexToInt(&ptr, &length) |
| && *ptr++ == ':') { |
| if (hex2mem(ptr, (char *)addr, length)) |
| strcpy(remcomOutBuffer, "OK"); |
| else |
| strcpy(remcomOutBuffer, "E03"); |
| flush_icache_range(addr, addr+length); |
| } else |
| strcpy(remcomOutBuffer, "E02"); |
| break; |
| |
| |
| case 'k': /* kill the program, actually just continue */ |
| case 'c': /* cAA..AA Continue; address AA..AA optional */ |
| /* try to read optional parameter, pc unchanged if no parm */ |
| |
| ptr = &remcomInBuffer[1]; |
| if (hexToInt(&ptr, &addr)) |
| regs->nip = addr; |
| |
| /* Need to flush the instruction cache here, as we may have deposited a |
| * breakpoint, and the icache probably has no way of knowing that a data ref to |
| * some location may have changed something that is in the instruction cache. |
| */ |
| kgdb_flush_cache_all(); |
| mtmsr(msr); |
| |
| kgdb_interruptible(1); |
| unlock_kernel(); |
| kgdb_active = 0; |
| if (kdebug) { |
| printk("remcomInBuffer: %s\n", remcomInBuffer); |
| printk("remcomOutBuffer: %s\n", remcomOutBuffer); |
| } |
| return 1; |
| |
| case 's': |
| kgdb_flush_cache_all(); |
| #if defined(CONFIG_40x) || defined(CONFIG_BOOKE) |
| mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC); |
| regs->msr |= MSR_DE; |
| #else |
| regs->msr |= MSR_SE; |
| #endif |
| unlock_kernel(); |
| kgdb_active = 0; |
| if (kdebug) { |
| printk("remcomInBuffer: %s\n", remcomInBuffer); |
| printk("remcomOutBuffer: %s\n", remcomOutBuffer); |
| } |
| return 1; |
| |
| case 'r': /* Reset (if user process..exit ???)*/ |
| panic("kgdb reset."); |
| break; |
| } /* switch */ |
| if (remcomOutBuffer[0] && kdebug) { |
| printk("remcomInBuffer: %s\n", remcomInBuffer); |
| printk("remcomOutBuffer: %s\n", remcomOutBuffer); |
| } |
| /* reply to the request */ |
| putpacket(remcomOutBuffer); |
| } /* while(1) */ |
| } |
| |
| /* This function will generate a breakpoint exception. It is used at the |
| beginning of a program to sync up with a debugger and can be used |
| otherwise as a quick means to stop program execution and "break" into |
| the debugger. */ |
| |
| void |
| breakpoint(void) |
| { |
| if (!initialized) { |
| printk("breakpoint() called b4 kgdb init\n"); |
| return; |
| } |
| |
| asm(" .globl breakinst \n\ |
| breakinst: .long 0x7d821008"); |
| } |
| |
| #ifdef CONFIG_KGDB_CONSOLE |
| /* Output string in GDB O-packet format if GDB has connected. If nothing |
| output, returns 0 (caller must then handle output). */ |
| int |
| kgdb_output_string (const char* s, unsigned int count) |
| { |
| char buffer[512]; |
| |
| if (!kgdb_started) |
| return 0; |
| |
| count = (count <= (sizeof(buffer) / 2 - 2)) |
| ? count : (sizeof(buffer) / 2 - 2); |
| |
| buffer[0] = 'O'; |
| mem2hex (s, &buffer[1], count); |
| putpacket(buffer); |
| |
| return 1; |
| } |
| #endif |
| |
| static void sysrq_handle_gdb(int key, struct pt_regs *pt_regs, |
| struct tty_struct *tty) |
| { |
| printk("Entering GDB stub\n"); |
| breakpoint(); |
| } |
| static struct sysrq_key_op sysrq_gdb_op = { |
| .handler = sysrq_handle_gdb, |
| .help_msg = "Gdb", |
| .action_msg = "GDB", |
| }; |
| |
| static int gdb_register_sysrq(void) |
| { |
| printk("Registering GDB sysrq handler\n"); |
| register_sysrq_key('g', &sysrq_gdb_op); |
| return 0; |
| } |
| module_init(gdb_register_sysrq); |