| /* |
| * Implement CPU time clocks for the POSIX clock interface. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/posix-timers.h> |
| #include <linux/errno.h> |
| #include <linux/math64.h> |
| #include <asm/uaccess.h> |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Allocate the thread_group_cputime structure appropriately for SMP kernels |
| * and fill in the current values of the fields. Called from copy_signal() |
| * via thread_group_cputime_clone_thread() when adding a second or subsequent |
| * thread to a thread group. Assumes interrupts are enabled when called. |
| */ |
| int thread_group_cputime_alloc_smp(struct task_struct *tsk) |
| { |
| struct signal_struct *sig = tsk->signal; |
| struct task_cputime *cputime; |
| |
| /* |
| * If we have multiple threads and we don't already have a |
| * per-CPU task_cputime struct, allocate one and fill it in with |
| * the times accumulated so far. |
| */ |
| if (sig->cputime.totals) |
| return 0; |
| cputime = alloc_percpu(struct task_cputime); |
| if (cputime == NULL) |
| return -ENOMEM; |
| read_lock(&tasklist_lock); |
| spin_lock_irq(&tsk->sighand->siglock); |
| if (sig->cputime.totals) { |
| spin_unlock_irq(&tsk->sighand->siglock); |
| read_unlock(&tasklist_lock); |
| free_percpu(cputime); |
| return 0; |
| } |
| sig->cputime.totals = cputime; |
| cputime = per_cpu_ptr(sig->cputime.totals, get_cpu()); |
| cputime->utime = tsk->utime; |
| cputime->stime = tsk->stime; |
| cputime->sum_exec_runtime = tsk->se.sum_exec_runtime; |
| put_cpu_no_resched(); |
| spin_unlock_irq(&tsk->sighand->siglock); |
| read_unlock(&tasklist_lock); |
| return 0; |
| } |
| |
| /** |
| * thread_group_cputime_smp - Sum the thread group time fields across all CPUs. |
| * |
| * @tsk: The task we use to identify the thread group. |
| * @times: task_cputime structure in which we return the summed fields. |
| * |
| * Walk the list of CPUs to sum the per-CPU time fields in the thread group |
| * time structure. |
| */ |
| void thread_group_cputime_smp( |
| struct task_struct *tsk, |
| struct task_cputime *times) |
| { |
| struct signal_struct *sig; |
| int i; |
| struct task_cputime *tot; |
| |
| sig = tsk->signal; |
| if (unlikely(!sig) || !sig->cputime.totals) { |
| times->utime = tsk->utime; |
| times->stime = tsk->stime; |
| times->sum_exec_runtime = tsk->se.sum_exec_runtime; |
| return; |
| } |
| times->stime = times->utime = cputime_zero; |
| times->sum_exec_runtime = 0; |
| for_each_possible_cpu(i) { |
| tot = per_cpu_ptr(tsk->signal->cputime.totals, i); |
| times->utime = cputime_add(times->utime, tot->utime); |
| times->stime = cputime_add(times->stime, tot->stime); |
| times->sum_exec_runtime += tot->sum_exec_runtime; |
| } |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * Called after updating RLIMIT_CPU to set timer expiration if necessary. |
| */ |
| void update_rlimit_cpu(unsigned long rlim_new) |
| { |
| cputime_t cputime; |
| |
| cputime = secs_to_cputime(rlim_new); |
| if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || |
| cputime_lt(current->signal->it_prof_expires, cputime)) { |
| spin_lock_irq(¤t->sighand->siglock); |
| set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
| spin_unlock_irq(¤t->sighand->siglock); |
| } |
| } |
| |
| static int check_clock(const clockid_t which_clock) |
| { |
| int error = 0; |
| struct task_struct *p; |
| const pid_t pid = CPUCLOCK_PID(which_clock); |
| |
| if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) |
| return -EINVAL; |
| |
| if (pid == 0) |
| return 0; |
| |
| read_lock(&tasklist_lock); |
| p = find_task_by_vpid(pid); |
| if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? |
| same_thread_group(p, current) : thread_group_leader(p))) { |
| error = -EINVAL; |
| } |
| read_unlock(&tasklist_lock); |
| |
| return error; |
| } |
| |
| static inline union cpu_time_count |
| timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
| { |
| union cpu_time_count ret; |
| ret.sched = 0; /* high half always zero when .cpu used */ |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
| } else { |
| ret.cpu = timespec_to_cputime(tp); |
| } |
| return ret; |
| } |
| |
| static void sample_to_timespec(const clockid_t which_clock, |
| union cpu_time_count cpu, |
| struct timespec *tp) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) |
| *tp = ns_to_timespec(cpu.sched); |
| else |
| cputime_to_timespec(cpu.cpu, tp); |
| } |
| |
| static inline int cpu_time_before(const clockid_t which_clock, |
| union cpu_time_count now, |
| union cpu_time_count then) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| return now.sched < then.sched; |
| } else { |
| return cputime_lt(now.cpu, then.cpu); |
| } |
| } |
| static inline void cpu_time_add(const clockid_t which_clock, |
| union cpu_time_count *acc, |
| union cpu_time_count val) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| acc->sched += val.sched; |
| } else { |
| acc->cpu = cputime_add(acc->cpu, val.cpu); |
| } |
| } |
| static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
| union cpu_time_count a, |
| union cpu_time_count b) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| a.sched -= b.sched; |
| } else { |
| a.cpu = cputime_sub(a.cpu, b.cpu); |
| } |
| return a; |
| } |
| |
| /* |
| * Divide and limit the result to res >= 1 |
| * |
| * This is necessary to prevent signal delivery starvation, when the result of |
| * the division would be rounded down to 0. |
| */ |
| static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div) |
| { |
| cputime_t res = cputime_div(time, div); |
| |
| return max_t(cputime_t, res, 1); |
| } |
| |
| /* |
| * Update expiry time from increment, and increase overrun count, |
| * given the current clock sample. |
| */ |
| static void bump_cpu_timer(struct k_itimer *timer, |
| union cpu_time_count now) |
| { |
| int i; |
| |
| if (timer->it.cpu.incr.sched == 0) |
| return; |
| |
| if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { |
| unsigned long long delta, incr; |
| |
| if (now.sched < timer->it.cpu.expires.sched) |
| return; |
| incr = timer->it.cpu.incr.sched; |
| delta = now.sched + incr - timer->it.cpu.expires.sched; |
| /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
| for (i = 0; incr < delta - incr; i++) |
| incr = incr << 1; |
| for (; i >= 0; incr >>= 1, i--) { |
| if (delta < incr) |
| continue; |
| timer->it.cpu.expires.sched += incr; |
| timer->it_overrun += 1 << i; |
| delta -= incr; |
| } |
| } else { |
| cputime_t delta, incr; |
| |
| if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) |
| return; |
| incr = timer->it.cpu.incr.cpu; |
| delta = cputime_sub(cputime_add(now.cpu, incr), |
| timer->it.cpu.expires.cpu); |
| /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
| for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) |
| incr = cputime_add(incr, incr); |
| for (; i >= 0; incr = cputime_halve(incr), i--) { |
| if (cputime_lt(delta, incr)) |
| continue; |
| timer->it.cpu.expires.cpu = |
| cputime_add(timer->it.cpu.expires.cpu, incr); |
| timer->it_overrun += 1 << i; |
| delta = cputime_sub(delta, incr); |
| } |
| } |
| } |
| |
| static inline cputime_t prof_ticks(struct task_struct *p) |
| { |
| return cputime_add(p->utime, p->stime); |
| } |
| static inline cputime_t virt_ticks(struct task_struct *p) |
| { |
| return p->utime; |
| } |
| |
| int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
| { |
| int error = check_clock(which_clock); |
| if (!error) { |
| tp->tv_sec = 0; |
| tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| /* |
| * If sched_clock is using a cycle counter, we |
| * don't have any idea of its true resolution |
| * exported, but it is much more than 1s/HZ. |
| */ |
| tp->tv_nsec = 1; |
| } |
| } |
| return error; |
| } |
| |
| int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) |
| { |
| /* |
| * You can never reset a CPU clock, but we check for other errors |
| * in the call before failing with EPERM. |
| */ |
| int error = check_clock(which_clock); |
| if (error == 0) { |
| error = -EPERM; |
| } |
| return error; |
| } |
| |
| |
| /* |
| * Sample a per-thread clock for the given task. |
| */ |
| static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
| union cpu_time_count *cpu) |
| { |
| switch (CPUCLOCK_WHICH(which_clock)) { |
| default: |
| return -EINVAL; |
| case CPUCLOCK_PROF: |
| cpu->cpu = prof_ticks(p); |
| break; |
| case CPUCLOCK_VIRT: |
| cpu->cpu = virt_ticks(p); |
| break; |
| case CPUCLOCK_SCHED: |
| cpu->sched = task_sched_runtime(p); |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Sample a process (thread group) clock for the given group_leader task. |
| * Must be called with tasklist_lock held for reading. |
| * Must be called with tasklist_lock held for reading, and p->sighand->siglock. |
| */ |
| static int cpu_clock_sample_group_locked(unsigned int clock_idx, |
| struct task_struct *p, |
| union cpu_time_count *cpu) |
| { |
| struct task_cputime cputime; |
| |
| thread_group_cputime(p, &cputime); |
| switch (clock_idx) { |
| default: |
| return -EINVAL; |
| case CPUCLOCK_PROF: |
| cpu->cpu = cputime_add(cputime.utime, cputime.stime); |
| break; |
| case CPUCLOCK_VIRT: |
| cpu->cpu = cputime.utime; |
| break; |
| case CPUCLOCK_SCHED: |
| cpu->sched = thread_group_sched_runtime(p); |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Sample a process (thread group) clock for the given group_leader task. |
| * Must be called with tasklist_lock held for reading. |
| */ |
| static int cpu_clock_sample_group(const clockid_t which_clock, |
| struct task_struct *p, |
| union cpu_time_count *cpu) |
| { |
| int ret; |
| unsigned long flags; |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p, |
| cpu); |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| return ret; |
| } |
| |
| |
| int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
| { |
| const pid_t pid = CPUCLOCK_PID(which_clock); |
| int error = -EINVAL; |
| union cpu_time_count rtn; |
| |
| if (pid == 0) { |
| /* |
| * Special case constant value for our own clocks. |
| * We don't have to do any lookup to find ourselves. |
| */ |
| if (CPUCLOCK_PERTHREAD(which_clock)) { |
| /* |
| * Sampling just ourselves we can do with no locking. |
| */ |
| error = cpu_clock_sample(which_clock, |
| current, &rtn); |
| } else { |
| read_lock(&tasklist_lock); |
| error = cpu_clock_sample_group(which_clock, |
| current, &rtn); |
| read_unlock(&tasklist_lock); |
| } |
| } else { |
| /* |
| * Find the given PID, and validate that the caller |
| * should be able to see it. |
| */ |
| struct task_struct *p; |
| rcu_read_lock(); |
| p = find_task_by_vpid(pid); |
| if (p) { |
| if (CPUCLOCK_PERTHREAD(which_clock)) { |
| if (same_thread_group(p, current)) { |
| error = cpu_clock_sample(which_clock, |
| p, &rtn); |
| } |
| } else { |
| read_lock(&tasklist_lock); |
| if (thread_group_leader(p) && p->signal) { |
| error = |
| cpu_clock_sample_group(which_clock, |
| p, &rtn); |
| } |
| read_unlock(&tasklist_lock); |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| if (error) |
| return error; |
| sample_to_timespec(which_clock, rtn, tp); |
| return 0; |
| } |
| |
| |
| /* |
| * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. |
| * This is called from sys_timer_create with the new timer already locked. |
| */ |
| int posix_cpu_timer_create(struct k_itimer *new_timer) |
| { |
| int ret = 0; |
| const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); |
| struct task_struct *p; |
| |
| if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) |
| return -EINVAL; |
| |
| INIT_LIST_HEAD(&new_timer->it.cpu.entry); |
| new_timer->it.cpu.incr.sched = 0; |
| new_timer->it.cpu.expires.sched = 0; |
| |
| read_lock(&tasklist_lock); |
| if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { |
| if (pid == 0) { |
| p = current; |
| } else { |
| p = find_task_by_vpid(pid); |
| if (p && !same_thread_group(p, current)) |
| p = NULL; |
| } |
| } else { |
| if (pid == 0) { |
| p = current->group_leader; |
| } else { |
| p = find_task_by_vpid(pid); |
| if (p && !thread_group_leader(p)) |
| p = NULL; |
| } |
| } |
| new_timer->it.cpu.task = p; |
| if (p) { |
| get_task_struct(p); |
| } else { |
| ret = -EINVAL; |
| } |
| read_unlock(&tasklist_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Clean up a CPU-clock timer that is about to be destroyed. |
| * This is called from timer deletion with the timer already locked. |
| * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| * and try again. (This happens when the timer is in the middle of firing.) |
| */ |
| int posix_cpu_timer_del(struct k_itimer *timer) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| int ret = 0; |
| |
| if (likely(p != NULL)) { |
| read_lock(&tasklist_lock); |
| if (unlikely(p->signal == NULL)) { |
| /* |
| * We raced with the reaping of the task. |
| * The deletion should have cleared us off the list. |
| */ |
| BUG_ON(!list_empty(&timer->it.cpu.entry)); |
| } else { |
| spin_lock(&p->sighand->siglock); |
| if (timer->it.cpu.firing) |
| ret = TIMER_RETRY; |
| else |
| list_del(&timer->it.cpu.entry); |
| spin_unlock(&p->sighand->siglock); |
| } |
| read_unlock(&tasklist_lock); |
| |
| if (!ret) |
| put_task_struct(p); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Clean out CPU timers still ticking when a thread exited. The task |
| * pointer is cleared, and the expiry time is replaced with the residual |
| * time for later timer_gettime calls to return. |
| * This must be called with the siglock held. |
| */ |
| static void cleanup_timers(struct list_head *head, |
| cputime_t utime, cputime_t stime, |
| unsigned long long sum_exec_runtime) |
| { |
| struct cpu_timer_list *timer, *next; |
| cputime_t ptime = cputime_add(utime, stime); |
| |
| list_for_each_entry_safe(timer, next, head, entry) { |
| list_del_init(&timer->entry); |
| if (cputime_lt(timer->expires.cpu, ptime)) { |
| timer->expires.cpu = cputime_zero; |
| } else { |
| timer->expires.cpu = cputime_sub(timer->expires.cpu, |
| ptime); |
| } |
| } |
| |
| ++head; |
| list_for_each_entry_safe(timer, next, head, entry) { |
| list_del_init(&timer->entry); |
| if (cputime_lt(timer->expires.cpu, utime)) { |
| timer->expires.cpu = cputime_zero; |
| } else { |
| timer->expires.cpu = cputime_sub(timer->expires.cpu, |
| utime); |
| } |
| } |
| |
| ++head; |
| list_for_each_entry_safe(timer, next, head, entry) { |
| list_del_init(&timer->entry); |
| if (timer->expires.sched < sum_exec_runtime) { |
| timer->expires.sched = 0; |
| } else { |
| timer->expires.sched -= sum_exec_runtime; |
| } |
| } |
| } |
| |
| /* |
| * These are both called with the siglock held, when the current thread |
| * is being reaped. When the final (leader) thread in the group is reaped, |
| * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. |
| */ |
| void posix_cpu_timers_exit(struct task_struct *tsk) |
| { |
| cleanup_timers(tsk->cpu_timers, |
| tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); |
| |
| } |
| void posix_cpu_timers_exit_group(struct task_struct *tsk) |
| { |
| struct task_cputime cputime; |
| |
| thread_group_cputime(tsk, &cputime); |
| cleanup_timers(tsk->signal->cpu_timers, |
| cputime.utime, cputime.stime, cputime.sum_exec_runtime); |
| } |
| |
| static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) |
| { |
| /* |
| * That's all for this thread or process. |
| * We leave our residual in expires to be reported. |
| */ |
| put_task_struct(timer->it.cpu.task); |
| timer->it.cpu.task = NULL; |
| timer->it.cpu.expires = cpu_time_sub(timer->it_clock, |
| timer->it.cpu.expires, |
| now); |
| } |
| |
| /* |
| * Insert the timer on the appropriate list before any timers that |
| * expire later. This must be called with the tasklist_lock held |
| * for reading, and interrupts disabled. |
| */ |
| static void arm_timer(struct k_itimer *timer, union cpu_time_count now) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| struct list_head *head, *listpos; |
| struct cpu_timer_list *const nt = &timer->it.cpu; |
| struct cpu_timer_list *next; |
| unsigned long i; |
| |
| head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? |
| p->cpu_timers : p->signal->cpu_timers); |
| head += CPUCLOCK_WHICH(timer->it_clock); |
| |
| BUG_ON(!irqs_disabled()); |
| spin_lock(&p->sighand->siglock); |
| |
| listpos = head; |
| if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { |
| list_for_each_entry(next, head, entry) { |
| if (next->expires.sched > nt->expires.sched) |
| break; |
| listpos = &next->entry; |
| } |
| } else { |
| list_for_each_entry(next, head, entry) { |
| if (cputime_gt(next->expires.cpu, nt->expires.cpu)) |
| break; |
| listpos = &next->entry; |
| } |
| } |
| list_add(&nt->entry, listpos); |
| |
| if (listpos == head) { |
| /* |
| * We are the new earliest-expiring timer. |
| * If we are a thread timer, there can always |
| * be a process timer telling us to stop earlier. |
| */ |
| |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| default: |
| BUG(); |
| case CPUCLOCK_PROF: |
| if (cputime_eq(p->cputime_expires.prof_exp, |
| cputime_zero) || |
| cputime_gt(p->cputime_expires.prof_exp, |
| nt->expires.cpu)) |
| p->cputime_expires.prof_exp = |
| nt->expires.cpu; |
| break; |
| case CPUCLOCK_VIRT: |
| if (cputime_eq(p->cputime_expires.virt_exp, |
| cputime_zero) || |
| cputime_gt(p->cputime_expires.virt_exp, |
| nt->expires.cpu)) |
| p->cputime_expires.virt_exp = |
| nt->expires.cpu; |
| break; |
| case CPUCLOCK_SCHED: |
| if (p->cputime_expires.sched_exp == 0 || |
| p->cputime_expires.sched_exp > |
| nt->expires.sched) |
| p->cputime_expires.sched_exp = |
| nt->expires.sched; |
| break; |
| } |
| } else { |
| /* |
| * For a process timer, set the cached expiration time. |
| */ |
| switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| default: |
| BUG(); |
| case CPUCLOCK_VIRT: |
| if (!cputime_eq(p->signal->it_virt_expires, |
| cputime_zero) && |
| cputime_lt(p->signal->it_virt_expires, |
| timer->it.cpu.expires.cpu)) |
| break; |
| p->signal->cputime_expires.virt_exp = |
| timer->it.cpu.expires.cpu; |
| break; |
| case CPUCLOCK_PROF: |
| if (!cputime_eq(p->signal->it_prof_expires, |
| cputime_zero) && |
| cputime_lt(p->signal->it_prof_expires, |
| timer->it.cpu.expires.cpu)) |
| break; |
| i = p->signal->rlim[RLIMIT_CPU].rlim_cur; |
| if (i != RLIM_INFINITY && |
| i <= cputime_to_secs(timer->it.cpu.expires.cpu)) |
| break; |
| p->signal->cputime_expires.prof_exp = |
| timer->it.cpu.expires.cpu; |
| break; |
| case CPUCLOCK_SCHED: |
| p->signal->cputime_expires.sched_exp = |
| timer->it.cpu.expires.sched; |
| break; |
| } |
| } |
| } |
| |
| spin_unlock(&p->sighand->siglock); |
| } |
| |
| /* |
| * The timer is locked, fire it and arrange for its reload. |
| */ |
| static void cpu_timer_fire(struct k_itimer *timer) |
| { |
| if (unlikely(timer->sigq == NULL)) { |
| /* |
| * This a special case for clock_nanosleep, |
| * not a normal timer from sys_timer_create. |
| */ |
| wake_up_process(timer->it_process); |
| timer->it.cpu.expires.sched = 0; |
| } else if (timer->it.cpu.incr.sched == 0) { |
| /* |
| * One-shot timer. Clear it as soon as it's fired. |
| */ |
| posix_timer_event(timer, 0); |
| timer->it.cpu.expires.sched = 0; |
| } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { |
| /* |
| * The signal did not get queued because the signal |
| * was ignored, so we won't get any callback to |
| * reload the timer. But we need to keep it |
| * ticking in case the signal is deliverable next time. |
| */ |
| posix_cpu_timer_schedule(timer); |
| } |
| } |
| |
| /* |
| * Guts of sys_timer_settime for CPU timers. |
| * This is called with the timer locked and interrupts disabled. |
| * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| * and try again. (This happens when the timer is in the middle of firing.) |
| */ |
| int posix_cpu_timer_set(struct k_itimer *timer, int flags, |
| struct itimerspec *new, struct itimerspec *old) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| union cpu_time_count old_expires, new_expires, val; |
| int ret; |
| |
| if (unlikely(p == NULL)) { |
| /* |
| * Timer refers to a dead task's clock. |
| */ |
| return -ESRCH; |
| } |
| |
| new_expires = timespec_to_sample(timer->it_clock, &new->it_value); |
| |
| read_lock(&tasklist_lock); |
| /* |
| * We need the tasklist_lock to protect against reaping that |
| * clears p->signal. If p has just been reaped, we can no |
| * longer get any information about it at all. |
| */ |
| if (unlikely(p->signal == NULL)) { |
| read_unlock(&tasklist_lock); |
| put_task_struct(p); |
| timer->it.cpu.task = NULL; |
| return -ESRCH; |
| } |
| |
| /* |
| * Disarm any old timer after extracting its expiry time. |
| */ |
| BUG_ON(!irqs_disabled()); |
| |
| ret = 0; |
| spin_lock(&p->sighand->siglock); |
| old_expires = timer->it.cpu.expires; |
| if (unlikely(timer->it.cpu.firing)) { |
| timer->it.cpu.firing = -1; |
| ret = TIMER_RETRY; |
| } else |
| list_del_init(&timer->it.cpu.entry); |
| spin_unlock(&p->sighand->siglock); |
| |
| /* |
| * We need to sample the current value to convert the new |
| * value from to relative and absolute, and to convert the |
| * old value from absolute to relative. To set a process |
| * timer, we need a sample to balance the thread expiry |
| * times (in arm_timer). With an absolute time, we must |
| * check if it's already passed. In short, we need a sample. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| cpu_clock_sample(timer->it_clock, p, &val); |
| } else { |
| cpu_clock_sample_group(timer->it_clock, p, &val); |
| } |
| |
| if (old) { |
| if (old_expires.sched == 0) { |
| old->it_value.tv_sec = 0; |
| old->it_value.tv_nsec = 0; |
| } else { |
| /* |
| * Update the timer in case it has |
| * overrun already. If it has, |
| * we'll report it as having overrun |
| * and with the next reloaded timer |
| * already ticking, though we are |
| * swallowing that pending |
| * notification here to install the |
| * new setting. |
| */ |
| bump_cpu_timer(timer, val); |
| if (cpu_time_before(timer->it_clock, val, |
| timer->it.cpu.expires)) { |
| old_expires = cpu_time_sub( |
| timer->it_clock, |
| timer->it.cpu.expires, val); |
| sample_to_timespec(timer->it_clock, |
| old_expires, |
| &old->it_value); |
| } else { |
| old->it_value.tv_nsec = 1; |
| old->it_value.tv_sec = 0; |
| } |
| } |
| } |
| |
| if (unlikely(ret)) { |
| /* |
| * We are colliding with the timer actually firing. |
| * Punt after filling in the timer's old value, and |
| * disable this firing since we are already reporting |
| * it as an overrun (thanks to bump_cpu_timer above). |
| */ |
| read_unlock(&tasklist_lock); |
| goto out; |
| } |
| |
| if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { |
| cpu_time_add(timer->it_clock, &new_expires, val); |
| } |
| |
| /* |
| * Install the new expiry time (or zero). |
| * For a timer with no notification action, we don't actually |
| * arm the timer (we'll just fake it for timer_gettime). |
| */ |
| timer->it.cpu.expires = new_expires; |
| if (new_expires.sched != 0 && |
| (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && |
| cpu_time_before(timer->it_clock, val, new_expires)) { |
| arm_timer(timer, val); |
| } |
| |
| read_unlock(&tasklist_lock); |
| |
| /* |
| * Install the new reload setting, and |
| * set up the signal and overrun bookkeeping. |
| */ |
| timer->it.cpu.incr = timespec_to_sample(timer->it_clock, |
| &new->it_interval); |
| |
| /* |
| * This acts as a modification timestamp for the timer, |
| * so any automatic reload attempt will punt on seeing |
| * that we have reset the timer manually. |
| */ |
| timer->it_requeue_pending = (timer->it_requeue_pending + 2) & |
| ~REQUEUE_PENDING; |
| timer->it_overrun_last = 0; |
| timer->it_overrun = -1; |
| |
| if (new_expires.sched != 0 && |
| (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && |
| !cpu_time_before(timer->it_clock, val, new_expires)) { |
| /* |
| * The designated time already passed, so we notify |
| * immediately, even if the thread never runs to |
| * accumulate more time on this clock. |
| */ |
| cpu_timer_fire(timer); |
| } |
| |
| ret = 0; |
| out: |
| if (old) { |
| sample_to_timespec(timer->it_clock, |
| timer->it.cpu.incr, &old->it_interval); |
| } |
| return ret; |
| } |
| |
| void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) |
| { |
| union cpu_time_count now; |
| struct task_struct *p = timer->it.cpu.task; |
| int clear_dead; |
| |
| /* |
| * Easy part: convert the reload time. |
| */ |
| sample_to_timespec(timer->it_clock, |
| timer->it.cpu.incr, &itp->it_interval); |
| |
| if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ |
| itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; |
| return; |
| } |
| |
| if (unlikely(p == NULL)) { |
| /* |
| * This task already died and the timer will never fire. |
| * In this case, expires is actually the dead value. |
| */ |
| dead: |
| sample_to_timespec(timer->it_clock, timer->it.cpu.expires, |
| &itp->it_value); |
| return; |
| } |
| |
| /* |
| * Sample the clock to take the difference with the expiry time. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| cpu_clock_sample(timer->it_clock, p, &now); |
| clear_dead = p->exit_state; |
| } else { |
| read_lock(&tasklist_lock); |
| if (unlikely(p->signal == NULL)) { |
| /* |
| * The process has been reaped. |
| * We can't even collect a sample any more. |
| * Call the timer disarmed, nothing else to do. |
| */ |
| put_task_struct(p); |
| timer->it.cpu.task = NULL; |
| timer->it.cpu.expires.sched = 0; |
| read_unlock(&tasklist_lock); |
| goto dead; |
| } else { |
| cpu_clock_sample_group(timer->it_clock, p, &now); |
| clear_dead = (unlikely(p->exit_state) && |
| thread_group_empty(p)); |
| } |
| read_unlock(&tasklist_lock); |
| } |
| |
| if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
| if (timer->it.cpu.incr.sched == 0 && |
| cpu_time_before(timer->it_clock, |
| timer->it.cpu.expires, now)) { |
| /* |
| * Do-nothing timer expired and has no reload, |
| * so it's as if it was never set. |
| */ |
| timer->it.cpu.expires.sched = 0; |
| itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; |
| return; |
| } |
| /* |
| * Account for any expirations and reloads that should |
| * have happened. |
| */ |
| bump_cpu_timer(timer, now); |
| } |
| |
| if (unlikely(clear_dead)) { |
| /* |
| * We've noticed that the thread is dead, but |
| * not yet reaped. Take this opportunity to |
| * drop our task ref. |
| */ |
| clear_dead_task(timer, now); |
| goto dead; |
| } |
| |
| if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { |
| sample_to_timespec(timer->it_clock, |
| cpu_time_sub(timer->it_clock, |
| timer->it.cpu.expires, now), |
| &itp->it_value); |
| } else { |
| /* |
| * The timer should have expired already, but the firing |
| * hasn't taken place yet. Say it's just about to expire. |
| */ |
| itp->it_value.tv_nsec = 1; |
| itp->it_value.tv_sec = 0; |
| } |
| } |
| |
| /* |
| * Check for any per-thread CPU timers that have fired and move them off |
| * the tsk->cpu_timers[N] list onto the firing list. Here we update the |
| * tsk->it_*_expires values to reflect the remaining thread CPU timers. |
| */ |
| static void check_thread_timers(struct task_struct *tsk, |
| struct list_head *firing) |
| { |
| int maxfire; |
| struct list_head *timers = tsk->cpu_timers; |
| struct signal_struct *const sig = tsk->signal; |
| |
| maxfire = 20; |
| tsk->cputime_expires.prof_exp = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_first_entry(timers, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { |
| tsk->cputime_expires.prof_exp = t->expires.cpu; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| tsk->cputime_expires.virt_exp = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_first_entry(timers, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { |
| tsk->cputime_expires.virt_exp = t->expires.cpu; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| tsk->cputime_expires.sched_exp = 0; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_first_entry(timers, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { |
| tsk->cputime_expires.sched_exp = t->expires.sched; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| /* |
| * Check for the special case thread timers. |
| */ |
| if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) { |
| unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max; |
| unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur; |
| |
| if (hard != RLIM_INFINITY && |
| tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { |
| /* |
| * At the hard limit, we just die. |
| * No need to calculate anything else now. |
| */ |
| __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
| return; |
| } |
| if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) { |
| /* |
| * At the soft limit, send a SIGXCPU every second. |
| */ |
| if (sig->rlim[RLIMIT_RTTIME].rlim_cur |
| < sig->rlim[RLIMIT_RTTIME].rlim_max) { |
| sig->rlim[RLIMIT_RTTIME].rlim_cur += |
| USEC_PER_SEC; |
| } |
| printk(KERN_INFO |
| "RT Watchdog Timeout: %s[%d]\n", |
| tsk->comm, task_pid_nr(tsk)); |
| __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
| } |
| } |
| } |
| |
| /* |
| * Check for any per-thread CPU timers that have fired and move them |
| * off the tsk->*_timers list onto the firing list. Per-thread timers |
| * have already been taken off. |
| */ |
| static void check_process_timers(struct task_struct *tsk, |
| struct list_head *firing) |
| { |
| int maxfire; |
| struct signal_struct *const sig = tsk->signal; |
| cputime_t utime, ptime, virt_expires, prof_expires; |
| unsigned long long sum_sched_runtime, sched_expires; |
| struct list_head *timers = sig->cpu_timers; |
| struct task_cputime cputime; |
| |
| /* |
| * Don't sample the current process CPU clocks if there are no timers. |
| */ |
| if (list_empty(&timers[CPUCLOCK_PROF]) && |
| cputime_eq(sig->it_prof_expires, cputime_zero) && |
| sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
| list_empty(&timers[CPUCLOCK_VIRT]) && |
| cputime_eq(sig->it_virt_expires, cputime_zero) && |
| list_empty(&timers[CPUCLOCK_SCHED])) |
| return; |
| |
| /* |
| * Collect the current process totals. |
| */ |
| thread_group_cputime(tsk, &cputime); |
| utime = cputime.utime; |
| ptime = cputime_add(utime, cputime.stime); |
| sum_sched_runtime = cputime.sum_exec_runtime; |
| maxfire = 20; |
| prof_expires = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *tl = list_first_entry(timers, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) { |
| prof_expires = tl->expires.cpu; |
| break; |
| } |
| tl->firing = 1; |
| list_move_tail(&tl->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| virt_expires = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *tl = list_first_entry(timers, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) { |
| virt_expires = tl->expires.cpu; |
| break; |
| } |
| tl->firing = 1; |
| list_move_tail(&tl->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| sched_expires = 0; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *tl = list_first_entry(timers, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || sum_sched_runtime < tl->expires.sched) { |
| sched_expires = tl->expires.sched; |
| break; |
| } |
| tl->firing = 1; |
| list_move_tail(&tl->entry, firing); |
| } |
| |
| /* |
| * Check for the special case process timers. |
| */ |
| if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { |
| if (cputime_ge(ptime, sig->it_prof_expires)) { |
| /* ITIMER_PROF fires and reloads. */ |
| sig->it_prof_expires = sig->it_prof_incr; |
| if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { |
| sig->it_prof_expires = cputime_add( |
| sig->it_prof_expires, ptime); |
| } |
| __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); |
| } |
| if (!cputime_eq(sig->it_prof_expires, cputime_zero) && |
| (cputime_eq(prof_expires, cputime_zero) || |
| cputime_lt(sig->it_prof_expires, prof_expires))) { |
| prof_expires = sig->it_prof_expires; |
| } |
| } |
| if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { |
| if (cputime_ge(utime, sig->it_virt_expires)) { |
| /* ITIMER_VIRTUAL fires and reloads. */ |
| sig->it_virt_expires = sig->it_virt_incr; |
| if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { |
| sig->it_virt_expires = cputime_add( |
| sig->it_virt_expires, utime); |
| } |
| __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); |
| } |
| if (!cputime_eq(sig->it_virt_expires, cputime_zero) && |
| (cputime_eq(virt_expires, cputime_zero) || |
| cputime_lt(sig->it_virt_expires, virt_expires))) { |
| virt_expires = sig->it_virt_expires; |
| } |
| } |
| if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
| unsigned long psecs = cputime_to_secs(ptime); |
| cputime_t x; |
| if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { |
| /* |
| * At the hard limit, we just die. |
| * No need to calculate anything else now. |
| */ |
| __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
| return; |
| } |
| if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { |
| /* |
| * At the soft limit, send a SIGXCPU every second. |
| */ |
| __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
| if (sig->rlim[RLIMIT_CPU].rlim_cur |
| < sig->rlim[RLIMIT_CPU].rlim_max) { |
| sig->rlim[RLIMIT_CPU].rlim_cur++; |
| } |
| } |
| x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); |
| if (cputime_eq(prof_expires, cputime_zero) || |
| cputime_lt(x, prof_expires)) { |
| prof_expires = x; |
| } |
| } |
| |
| if (!cputime_eq(prof_expires, cputime_zero) && |
| (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) || |
| cputime_gt(sig->cputime_expires.prof_exp, prof_expires))) |
| sig->cputime_expires.prof_exp = prof_expires; |
| if (!cputime_eq(virt_expires, cputime_zero) && |
| (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) || |
| cputime_gt(sig->cputime_expires.virt_exp, virt_expires))) |
| sig->cputime_expires.virt_exp = virt_expires; |
| if (sched_expires != 0 && |
| (sig->cputime_expires.sched_exp == 0 || |
| sig->cputime_expires.sched_exp > sched_expires)) |
| sig->cputime_expires.sched_exp = sched_expires; |
| } |
| |
| /* |
| * This is called from the signal code (via do_schedule_next_timer) |
| * when the last timer signal was delivered and we have to reload the timer. |
| */ |
| void posix_cpu_timer_schedule(struct k_itimer *timer) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| union cpu_time_count now; |
| |
| if (unlikely(p == NULL)) |
| /* |
| * The task was cleaned up already, no future firings. |
| */ |
| goto out; |
| |
| /* |
| * Fetch the current sample and update the timer's expiry time. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| cpu_clock_sample(timer->it_clock, p, &now); |
| bump_cpu_timer(timer, now); |
| if (unlikely(p->exit_state)) { |
| clear_dead_task(timer, now); |
| goto out; |
| } |
| read_lock(&tasklist_lock); /* arm_timer needs it. */ |
| } else { |
| read_lock(&tasklist_lock); |
| if (unlikely(p->signal == NULL)) { |
| /* |
| * The process has been reaped. |
| * We can't even collect a sample any more. |
| */ |
| put_task_struct(p); |
| timer->it.cpu.task = p = NULL; |
| timer->it.cpu.expires.sched = 0; |
| goto out_unlock; |
| } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
| /* |
| * We've noticed that the thread is dead, but |
| * not yet reaped. Take this opportunity to |
| * drop our task ref. |
| */ |
| clear_dead_task(timer, now); |
| goto out_unlock; |
| } |
| cpu_clock_sample_group(timer->it_clock, p, &now); |
| bump_cpu_timer(timer, now); |
| /* Leave the tasklist_lock locked for the call below. */ |
| } |
| |
| /* |
| * Now re-arm for the new expiry time. |
| */ |
| arm_timer(timer, now); |
| |
| out_unlock: |
| read_unlock(&tasklist_lock); |
| |
| out: |
| timer->it_overrun_last = timer->it_overrun; |
| timer->it_overrun = -1; |
| ++timer->it_requeue_pending; |
| } |
| |
| /** |
| * task_cputime_zero - Check a task_cputime struct for all zero fields. |
| * |
| * @cputime: The struct to compare. |
| * |
| * Checks @cputime to see if all fields are zero. Returns true if all fields |
| * are zero, false if any field is nonzero. |
| */ |
| static inline int task_cputime_zero(const struct task_cputime *cputime) |
| { |
| if (cputime_eq(cputime->utime, cputime_zero) && |
| cputime_eq(cputime->stime, cputime_zero) && |
| cputime->sum_exec_runtime == 0) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * task_cputime_expired - Compare two task_cputime entities. |
| * |
| * @sample: The task_cputime structure to be checked for expiration. |
| * @expires: Expiration times, against which @sample will be checked. |
| * |
| * Checks @sample against @expires to see if any field of @sample has expired. |
| * Returns true if any field of the former is greater than the corresponding |
| * field of the latter if the latter field is set. Otherwise returns false. |
| */ |
| static inline int task_cputime_expired(const struct task_cputime *sample, |
| const struct task_cputime *expires) |
| { |
| if (!cputime_eq(expires->utime, cputime_zero) && |
| cputime_ge(sample->utime, expires->utime)) |
| return 1; |
| if (!cputime_eq(expires->stime, cputime_zero) && |
| cputime_ge(cputime_add(sample->utime, sample->stime), |
| expires->stime)) |
| return 1; |
| if (expires->sum_exec_runtime != 0 && |
| sample->sum_exec_runtime >= expires->sum_exec_runtime) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * fastpath_timer_check - POSIX CPU timers fast path. |
| * |
| * @tsk: The task (thread) being checked. |
| * @sig: The signal pointer for that task. |
| * |
| * If there are no timers set return false. Otherwise snapshot the task and |
| * thread group timers, then compare them with the corresponding expiration |
| # times. Returns true if a timer has expired, else returns false. |
| */ |
| static inline int fastpath_timer_check(struct task_struct *tsk, |
| struct signal_struct *sig) |
| { |
| struct task_cputime task_sample = { |
| .utime = tsk->utime, |
| .stime = tsk->stime, |
| .sum_exec_runtime = tsk->se.sum_exec_runtime |
| }; |
| struct task_cputime group_sample; |
| |
| if (task_cputime_zero(&tsk->cputime_expires) && |
| task_cputime_zero(&sig->cputime_expires)) |
| return 0; |
| if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) |
| return 1; |
| thread_group_cputime(tsk, &group_sample); |
| return task_cputime_expired(&group_sample, &sig->cputime_expires); |
| } |
| |
| /* |
| * This is called from the timer interrupt handler. The irq handler has |
| * already updated our counts. We need to check if any timers fire now. |
| * Interrupts are disabled. |
| */ |
| void run_posix_cpu_timers(struct task_struct *tsk) |
| { |
| LIST_HEAD(firing); |
| struct k_itimer *timer, *next; |
| struct signal_struct *sig; |
| struct sighand_struct *sighand; |
| unsigned long flags; |
| |
| BUG_ON(!irqs_disabled()); |
| |
| /* Pick up tsk->signal and make sure it's valid. */ |
| sig = tsk->signal; |
| /* |
| * The fast path checks that there are no expired thread or thread |
| * group timers. If that's so, just return. Also check that |
| * tsk->signal is non-NULL; this probably can't happen but cover the |
| * possibility anyway. |
| */ |
| if (unlikely(!sig) || !fastpath_timer_check(tsk, sig)) { |
| return; |
| } |
| sighand = lock_task_sighand(tsk, &flags); |
| if (likely(sighand)) { |
| /* |
| * Here we take off tsk->signal->cpu_timers[N] and |
| * tsk->cpu_timers[N] all the timers that are firing, and |
| * put them on the firing list. |
| */ |
| check_thread_timers(tsk, &firing); |
| check_process_timers(tsk, &firing); |
| |
| /* |
| * We must release these locks before taking any timer's lock. |
| * There is a potential race with timer deletion here, as the |
| * siglock now protects our private firing list. We have set |
| * the firing flag in each timer, so that a deletion attempt |
| * that gets the timer lock before we do will give it up and |
| * spin until we've taken care of that timer below. |
| */ |
| } |
| unlock_task_sighand(tsk, &flags); |
| |
| /* |
| * Now that all the timers on our list have the firing flag, |
| * noone will touch their list entries but us. We'll take |
| * each timer's lock before clearing its firing flag, so no |
| * timer call will interfere. |
| */ |
| list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { |
| int firing; |
| spin_lock(&timer->it_lock); |
| list_del_init(&timer->it.cpu.entry); |
| firing = timer->it.cpu.firing; |
| timer->it.cpu.firing = 0; |
| /* |
| * The firing flag is -1 if we collided with a reset |
| * of the timer, which already reported this |
| * almost-firing as an overrun. So don't generate an event. |
| */ |
| if (likely(firing >= 0)) { |
| cpu_timer_fire(timer); |
| } |
| spin_unlock(&timer->it_lock); |
| } |
| } |
| |
| /* |
| * Set one of the process-wide special case CPU timers. |
| * The tsk->sighand->siglock must be held by the caller. |
| * The *newval argument is relative and we update it to be absolute, *oldval |
| * is absolute and we update it to be relative. |
| */ |
| void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, |
| cputime_t *newval, cputime_t *oldval) |
| { |
| union cpu_time_count now; |
| struct list_head *head; |
| |
| BUG_ON(clock_idx == CPUCLOCK_SCHED); |
| cpu_clock_sample_group_locked(clock_idx, tsk, &now); |
| |
| if (oldval) { |
| if (!cputime_eq(*oldval, cputime_zero)) { |
| if (cputime_le(*oldval, now.cpu)) { |
| /* Just about to fire. */ |
| *oldval = jiffies_to_cputime(1); |
| } else { |
| *oldval = cputime_sub(*oldval, now.cpu); |
| } |
| } |
| |
| if (cputime_eq(*newval, cputime_zero)) |
| return; |
| *newval = cputime_add(*newval, now.cpu); |
| |
| /* |
| * If the RLIMIT_CPU timer will expire before the |
| * ITIMER_PROF timer, we have nothing else to do. |
| */ |
| if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur |
| < cputime_to_secs(*newval)) |
| return; |
| } |
| |
| /* |
| * Check whether there are any process timers already set to fire |
| * before this one. If so, we don't have anything more to do. |
| */ |
| head = &tsk->signal->cpu_timers[clock_idx]; |
| if (list_empty(head) || |
| cputime_ge(list_first_entry(head, |
| struct cpu_timer_list, entry)->expires.cpu, |
| *newval)) { |
| switch (clock_idx) { |
| case CPUCLOCK_PROF: |
| tsk->signal->cputime_expires.prof_exp = *newval; |
| break; |
| case CPUCLOCK_VIRT: |
| tsk->signal->cputime_expires.virt_exp = *newval; |
| break; |
| } |
| } |
| } |
| |
| static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
| struct timespec *rqtp, struct itimerspec *it) |
| { |
| struct k_itimer timer; |
| int error; |
| |
| /* |
| * Set up a temporary timer and then wait for it to go off. |
| */ |
| memset(&timer, 0, sizeof timer); |
| spin_lock_init(&timer.it_lock); |
| timer.it_clock = which_clock; |
| timer.it_overrun = -1; |
| error = posix_cpu_timer_create(&timer); |
| timer.it_process = current; |
| if (!error) { |
| static struct itimerspec zero_it; |
| |
| memset(it, 0, sizeof *it); |
| it->it_value = *rqtp; |
| |
| spin_lock_irq(&timer.it_lock); |
| error = posix_cpu_timer_set(&timer, flags, it, NULL); |
| if (error) { |
| spin_unlock_irq(&timer.it_lock); |
| return error; |
| } |
| |
| while (!signal_pending(current)) { |
| if (timer.it.cpu.expires.sched == 0) { |
| /* |
| * Our timer fired and was reset. |
| */ |
| spin_unlock_irq(&timer.it_lock); |
| return 0; |
| } |
| |
| /* |
| * Block until cpu_timer_fire (or a signal) wakes us. |
| */ |
| __set_current_state(TASK_INTERRUPTIBLE); |
| spin_unlock_irq(&timer.it_lock); |
| schedule(); |
| spin_lock_irq(&timer.it_lock); |
| } |
| |
| /* |
| * We were interrupted by a signal. |
| */ |
| sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); |
| posix_cpu_timer_set(&timer, 0, &zero_it, it); |
| spin_unlock_irq(&timer.it_lock); |
| |
| if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { |
| /* |
| * It actually did fire already. |
| */ |
| return 0; |
| } |
| |
| error = -ERESTART_RESTARTBLOCK; |
| } |
| |
| return error; |
| } |
| |
| int posix_cpu_nsleep(const clockid_t which_clock, int flags, |
| struct timespec *rqtp, struct timespec __user *rmtp) |
| { |
| struct restart_block *restart_block = |
| ¤t_thread_info()->restart_block; |
| struct itimerspec it; |
| int error; |
| |
| /* |
| * Diagnose required errors first. |
| */ |
| if (CPUCLOCK_PERTHREAD(which_clock) && |
| (CPUCLOCK_PID(which_clock) == 0 || |
| CPUCLOCK_PID(which_clock) == current->pid)) |
| return -EINVAL; |
| |
| error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); |
| |
| if (error == -ERESTART_RESTARTBLOCK) { |
| |
| if (flags & TIMER_ABSTIME) |
| return -ERESTARTNOHAND; |
| /* |
| * Report back to the user the time still remaining. |
| */ |
| if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
| return -EFAULT; |
| |
| restart_block->fn = posix_cpu_nsleep_restart; |
| restart_block->arg0 = which_clock; |
| restart_block->arg1 = (unsigned long) rmtp; |
| restart_block->arg2 = rqtp->tv_sec; |
| restart_block->arg3 = rqtp->tv_nsec; |
| } |
| return error; |
| } |
| |
| long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
| { |
| clockid_t which_clock = restart_block->arg0; |
| struct timespec __user *rmtp; |
| struct timespec t; |
| struct itimerspec it; |
| int error; |
| |
| rmtp = (struct timespec __user *) restart_block->arg1; |
| t.tv_sec = restart_block->arg2; |
| t.tv_nsec = restart_block->arg3; |
| |
| restart_block->fn = do_no_restart_syscall; |
| error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); |
| |
| if (error == -ERESTART_RESTARTBLOCK) { |
| /* |
| * Report back to the user the time still remaining. |
| */ |
| if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
| return -EFAULT; |
| |
| restart_block->fn = posix_cpu_nsleep_restart; |
| restart_block->arg0 = which_clock; |
| restart_block->arg1 = (unsigned long) rmtp; |
| restart_block->arg2 = t.tv_sec; |
| restart_block->arg3 = t.tv_nsec; |
| } |
| return error; |
| |
| } |
| |
| |
| #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) |
| #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) |
| |
| static int process_cpu_clock_getres(const clockid_t which_clock, |
| struct timespec *tp) |
| { |
| return posix_cpu_clock_getres(PROCESS_CLOCK, tp); |
| } |
| static int process_cpu_clock_get(const clockid_t which_clock, |
| struct timespec *tp) |
| { |
| return posix_cpu_clock_get(PROCESS_CLOCK, tp); |
| } |
| static int process_cpu_timer_create(struct k_itimer *timer) |
| { |
| timer->it_clock = PROCESS_CLOCK; |
| return posix_cpu_timer_create(timer); |
| } |
| static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
| struct timespec *rqtp, |
| struct timespec __user *rmtp) |
| { |
| return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
| } |
| static long process_cpu_nsleep_restart(struct restart_block *restart_block) |
| { |
| return -EINVAL; |
| } |
| static int thread_cpu_clock_getres(const clockid_t which_clock, |
| struct timespec *tp) |
| { |
| return posix_cpu_clock_getres(THREAD_CLOCK, tp); |
| } |
| static int thread_cpu_clock_get(const clockid_t which_clock, |
| struct timespec *tp) |
| { |
| return posix_cpu_clock_get(THREAD_CLOCK, tp); |
| } |
| static int thread_cpu_timer_create(struct k_itimer *timer) |
| { |
| timer->it_clock = THREAD_CLOCK; |
| return posix_cpu_timer_create(timer); |
| } |
| static int thread_cpu_nsleep(const clockid_t which_clock, int flags, |
| struct timespec *rqtp, struct timespec __user *rmtp) |
| { |
| return -EINVAL; |
| } |
| static long thread_cpu_nsleep_restart(struct restart_block *restart_block) |
| { |
| return -EINVAL; |
| } |
| |
| static __init int init_posix_cpu_timers(void) |
| { |
| struct k_clock process = { |
| .clock_getres = process_cpu_clock_getres, |
| .clock_get = process_cpu_clock_get, |
| .clock_set = do_posix_clock_nosettime, |
| .timer_create = process_cpu_timer_create, |
| .nsleep = process_cpu_nsleep, |
| .nsleep_restart = process_cpu_nsleep_restart, |
| }; |
| struct k_clock thread = { |
| .clock_getres = thread_cpu_clock_getres, |
| .clock_get = thread_cpu_clock_get, |
| .clock_set = do_posix_clock_nosettime, |
| .timer_create = thread_cpu_timer_create, |
| .nsleep = thread_cpu_nsleep, |
| .nsleep_restart = thread_cpu_nsleep_restart, |
| }; |
| |
| register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
| register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
| |
| return 0; |
| } |
| __initcall(init_posix_cpu_timers); |