| /* |
| * xfrm_state.c |
| * |
| * Changes: |
| * Mitsuru KANDA @USAGI |
| * Kazunori MIYAZAWA @USAGI |
| * Kunihiro Ishiguro <kunihiro@ipinfusion.com> |
| * IPv6 support |
| * YOSHIFUJI Hideaki @USAGI |
| * Split up af-specific functions |
| * Derek Atkins <derek@ihtfp.com> |
| * Add UDP Encapsulation |
| * |
| */ |
| |
| #include <linux/workqueue.h> |
| #include <net/xfrm.h> |
| #include <linux/pfkeyv2.h> |
| #include <linux/ipsec.h> |
| #include <linux/module.h> |
| #include <linux/bootmem.h> |
| #include <linux/vmalloc.h> |
| #include <linux/cache.h> |
| #include <asm/uaccess.h> |
| |
| struct sock *xfrm_nl; |
| EXPORT_SYMBOL(xfrm_nl); |
| |
| u32 sysctl_xfrm_aevent_etime = XFRM_AE_ETIME; |
| EXPORT_SYMBOL(sysctl_xfrm_aevent_etime); |
| |
| u32 sysctl_xfrm_aevent_rseqth = XFRM_AE_SEQT_SIZE; |
| EXPORT_SYMBOL(sysctl_xfrm_aevent_rseqth); |
| |
| /* Each xfrm_state may be linked to two tables: |
| |
| 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) |
| 2. Hash table by daddr to find what SAs exist for given |
| destination/tunnel endpoint. (output) |
| */ |
| |
| static DEFINE_SPINLOCK(xfrm_state_lock); |
| |
| /* Hash table to find appropriate SA towards given target (endpoint |
| * of tunnel or destination of transport mode) allowed by selector. |
| * |
| * Main use is finding SA after policy selected tunnel or transport mode. |
| * Also, it can be used by ah/esp icmp error handler to find offending SA. |
| */ |
| static struct hlist_head *xfrm_state_bydst __read_mostly; |
| static struct hlist_head *xfrm_state_bysrc __read_mostly; |
| static struct hlist_head *xfrm_state_byspi __read_mostly; |
| static unsigned int xfrm_state_hmask __read_mostly; |
| static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; |
| static unsigned int xfrm_state_num; |
| |
| static inline unsigned int __xfrm4_dst_hash(xfrm_address_t *addr, unsigned int hmask) |
| { |
| unsigned int h; |
| h = ntohl(addr->a4); |
| h = (h ^ (h>>16)) & hmask; |
| return h; |
| } |
| |
| static inline unsigned int __xfrm6_dst_hash(xfrm_address_t *addr, unsigned int hmask) |
| { |
| unsigned int h; |
| h = ntohl(addr->a6[2]^addr->a6[3]); |
| h = (h ^ (h>>16)) & hmask; |
| return h; |
| } |
| |
| static inline unsigned int __xfrm4_src_hash(xfrm_address_t *addr, unsigned int hmask) |
| { |
| return __xfrm4_dst_hash(addr, hmask); |
| } |
| |
| static inline unsigned int __xfrm6_src_hash(xfrm_address_t *addr, unsigned int hmask) |
| { |
| return __xfrm6_dst_hash(addr, hmask); |
| } |
| |
| static inline unsigned __xfrm_src_hash(xfrm_address_t *addr, unsigned short family, unsigned int hmask) |
| { |
| switch (family) { |
| case AF_INET: |
| return __xfrm4_src_hash(addr, hmask); |
| case AF_INET6: |
| return __xfrm6_src_hash(addr, hmask); |
| } |
| return 0; |
| } |
| |
| static inline unsigned xfrm_src_hash(xfrm_address_t *addr, unsigned short family) |
| { |
| return __xfrm_src_hash(addr, family, xfrm_state_hmask); |
| } |
| |
| static inline unsigned int __xfrm_dst_hash(xfrm_address_t *addr, unsigned short family, unsigned int hmask) |
| { |
| switch (family) { |
| case AF_INET: |
| return __xfrm4_dst_hash(addr, hmask); |
| case AF_INET6: |
| return __xfrm6_dst_hash(addr, hmask); |
| } |
| return 0; |
| } |
| |
| static inline unsigned int xfrm_dst_hash(xfrm_address_t *addr, unsigned short family) |
| { |
| return __xfrm_dst_hash(addr, family, xfrm_state_hmask); |
| } |
| |
| static inline unsigned int __xfrm4_spi_hash(xfrm_address_t *addr, u32 spi, u8 proto, |
| unsigned int hmask) |
| { |
| unsigned int h; |
| h = ntohl(addr->a4^spi^proto); |
| h = (h ^ (h>>10) ^ (h>>20)) & hmask; |
| return h; |
| } |
| |
| static inline unsigned int __xfrm6_spi_hash(xfrm_address_t *addr, u32 spi, u8 proto, |
| unsigned int hmask) |
| { |
| unsigned int h; |
| h = ntohl(addr->a6[2]^addr->a6[3]^spi^proto); |
| h = (h ^ (h>>10) ^ (h>>20)) & hmask; |
| return h; |
| } |
| |
| static inline |
| unsigned __xfrm_spi_hash(xfrm_address_t *addr, u32 spi, u8 proto, unsigned short family, |
| unsigned int hmask) |
| { |
| switch (family) { |
| case AF_INET: |
| return __xfrm4_spi_hash(addr, spi, proto, hmask); |
| case AF_INET6: |
| return __xfrm6_spi_hash(addr, spi, proto, hmask); |
| } |
| return 0; /*XXX*/ |
| } |
| |
| static inline unsigned int |
| xfrm_spi_hash(xfrm_address_t *addr, u32 spi, u8 proto, unsigned short family) |
| { |
| return __xfrm_spi_hash(addr, spi, proto, family, xfrm_state_hmask); |
| } |
| |
| static struct hlist_head *xfrm_state_hash_alloc(unsigned int sz) |
| { |
| struct hlist_head *n; |
| |
| if (sz <= PAGE_SIZE) |
| n = kmalloc(sz, GFP_KERNEL); |
| else if (hashdist) |
| n = __vmalloc(sz, GFP_KERNEL, PAGE_KERNEL); |
| else |
| n = (struct hlist_head *) |
| __get_free_pages(GFP_KERNEL, get_order(sz)); |
| |
| if (n) |
| memset(n, 0, sz); |
| |
| return n; |
| } |
| |
| static void xfrm_state_hash_free(struct hlist_head *n, unsigned int sz) |
| { |
| if (sz <= PAGE_SIZE) |
| kfree(n); |
| else if (hashdist) |
| vfree(n); |
| else |
| free_pages((unsigned long)n, get_order(sz)); |
| } |
| |
| static void xfrm_hash_transfer(struct hlist_head *list, |
| struct hlist_head *ndsttable, |
| struct hlist_head *nsrctable, |
| struct hlist_head *nspitable, |
| unsigned int nhashmask) |
| { |
| struct hlist_node *entry, *tmp; |
| struct xfrm_state *x; |
| |
| hlist_for_each_entry_safe(x, entry, tmp, list, bydst) { |
| unsigned int h; |
| |
| h = __xfrm_dst_hash(&x->id.daddr, x->props.family, nhashmask); |
| hlist_add_head(&x->bydst, ndsttable+h); |
| |
| h = __xfrm_src_hash(&x->props.saddr, x->props.family, |
| nhashmask); |
| hlist_add_head(&x->bysrc, nsrctable+h); |
| |
| h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, |
| x->props.family, nhashmask); |
| hlist_add_head(&x->byspi, nspitable+h); |
| } |
| } |
| |
| static unsigned long xfrm_hash_new_size(void) |
| { |
| return ((xfrm_state_hmask + 1) << 1) * |
| sizeof(struct hlist_head); |
| } |
| |
| static DEFINE_MUTEX(hash_resize_mutex); |
| |
| static void xfrm_hash_resize(void *__unused) |
| { |
| struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi; |
| unsigned long nsize, osize; |
| unsigned int nhashmask, ohashmask; |
| int i; |
| |
| mutex_lock(&hash_resize_mutex); |
| |
| nsize = xfrm_hash_new_size(); |
| ndst = xfrm_state_hash_alloc(nsize); |
| if (!ndst) |
| goto out_unlock; |
| nsrc = xfrm_state_hash_alloc(nsize); |
| if (!nsrc) { |
| xfrm_state_hash_free(ndst, nsize); |
| goto out_unlock; |
| } |
| nspi = xfrm_state_hash_alloc(nsize); |
| if (!nspi) { |
| xfrm_state_hash_free(ndst, nsize); |
| xfrm_state_hash_free(nsrc, nsize); |
| goto out_unlock; |
| } |
| |
| spin_lock_bh(&xfrm_state_lock); |
| |
| nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; |
| for (i = xfrm_state_hmask; i >= 0; i--) |
| xfrm_hash_transfer(xfrm_state_bydst+i, ndst, nsrc, nspi, |
| nhashmask); |
| |
| odst = xfrm_state_bydst; |
| osrc = xfrm_state_bysrc; |
| ospi = xfrm_state_byspi; |
| ohashmask = xfrm_state_hmask; |
| |
| xfrm_state_bydst = ndst; |
| xfrm_state_bysrc = nsrc; |
| xfrm_state_byspi = nspi; |
| xfrm_state_hmask = nhashmask; |
| |
| spin_unlock_bh(&xfrm_state_lock); |
| |
| osize = (ohashmask + 1) * sizeof(struct hlist_head); |
| xfrm_state_hash_free(odst, osize); |
| xfrm_state_hash_free(osrc, osize); |
| xfrm_state_hash_free(ospi, osize); |
| |
| out_unlock: |
| mutex_unlock(&hash_resize_mutex); |
| } |
| |
| static DECLARE_WORK(xfrm_hash_work, xfrm_hash_resize, NULL); |
| |
| DECLARE_WAIT_QUEUE_HEAD(km_waitq); |
| EXPORT_SYMBOL(km_waitq); |
| |
| static DEFINE_RWLOCK(xfrm_state_afinfo_lock); |
| static struct xfrm_state_afinfo *xfrm_state_afinfo[NPROTO]; |
| |
| static struct work_struct xfrm_state_gc_work; |
| static HLIST_HEAD(xfrm_state_gc_list); |
| static DEFINE_SPINLOCK(xfrm_state_gc_lock); |
| |
| static int xfrm_state_gc_flush_bundles; |
| |
| int __xfrm_state_delete(struct xfrm_state *x); |
| |
| static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned short family); |
| static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo); |
| |
| int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); |
| void km_state_expired(struct xfrm_state *x, int hard, u32 pid); |
| |
| static void xfrm_state_gc_destroy(struct xfrm_state *x) |
| { |
| if (del_timer(&x->timer)) |
| BUG(); |
| if (del_timer(&x->rtimer)) |
| BUG(); |
| kfree(x->aalg); |
| kfree(x->ealg); |
| kfree(x->calg); |
| kfree(x->encap); |
| kfree(x->coaddr); |
| if (x->mode) |
| xfrm_put_mode(x->mode); |
| if (x->type) { |
| x->type->destructor(x); |
| xfrm_put_type(x->type); |
| } |
| security_xfrm_state_free(x); |
| kfree(x); |
| } |
| |
| static void xfrm_state_gc_task(void *data) |
| { |
| struct xfrm_state *x; |
| struct hlist_node *entry, *tmp; |
| struct hlist_head gc_list; |
| |
| if (xfrm_state_gc_flush_bundles) { |
| xfrm_state_gc_flush_bundles = 0; |
| xfrm_flush_bundles(); |
| } |
| |
| spin_lock_bh(&xfrm_state_gc_lock); |
| gc_list.first = xfrm_state_gc_list.first; |
| INIT_HLIST_HEAD(&xfrm_state_gc_list); |
| spin_unlock_bh(&xfrm_state_gc_lock); |
| |
| hlist_for_each_entry_safe(x, entry, tmp, &gc_list, bydst) |
| xfrm_state_gc_destroy(x); |
| |
| wake_up(&km_waitq); |
| } |
| |
| static inline unsigned long make_jiffies(long secs) |
| { |
| if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ) |
| return MAX_SCHEDULE_TIMEOUT-1; |
| else |
| return secs*HZ; |
| } |
| |
| static void xfrm_timer_handler(unsigned long data) |
| { |
| struct xfrm_state *x = (struct xfrm_state*)data; |
| unsigned long now = (unsigned long)xtime.tv_sec; |
| long next = LONG_MAX; |
| int warn = 0; |
| |
| spin_lock(&x->lock); |
| if (x->km.state == XFRM_STATE_DEAD) |
| goto out; |
| if (x->km.state == XFRM_STATE_EXPIRED) |
| goto expired; |
| if (x->lft.hard_add_expires_seconds) { |
| long tmo = x->lft.hard_add_expires_seconds + |
| x->curlft.add_time - now; |
| if (tmo <= 0) |
| goto expired; |
| if (tmo < next) |
| next = tmo; |
| } |
| if (x->lft.hard_use_expires_seconds) { |
| long tmo = x->lft.hard_use_expires_seconds + |
| (x->curlft.use_time ? : now) - now; |
| if (tmo <= 0) |
| goto expired; |
| if (tmo < next) |
| next = tmo; |
| } |
| if (x->km.dying) |
| goto resched; |
| if (x->lft.soft_add_expires_seconds) { |
| long tmo = x->lft.soft_add_expires_seconds + |
| x->curlft.add_time - now; |
| if (tmo <= 0) |
| warn = 1; |
| else if (tmo < next) |
| next = tmo; |
| } |
| if (x->lft.soft_use_expires_seconds) { |
| long tmo = x->lft.soft_use_expires_seconds + |
| (x->curlft.use_time ? : now) - now; |
| if (tmo <= 0) |
| warn = 1; |
| else if (tmo < next) |
| next = tmo; |
| } |
| |
| x->km.dying = warn; |
| if (warn) |
| km_state_expired(x, 0, 0); |
| resched: |
| if (next != LONG_MAX && |
| !mod_timer(&x->timer, jiffies + make_jiffies(next))) |
| xfrm_state_hold(x); |
| goto out; |
| |
| expired: |
| if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) { |
| x->km.state = XFRM_STATE_EXPIRED; |
| wake_up(&km_waitq); |
| next = 2; |
| goto resched; |
| } |
| if (!__xfrm_state_delete(x) && x->id.spi) |
| km_state_expired(x, 1, 0); |
| |
| out: |
| spin_unlock(&x->lock); |
| xfrm_state_put(x); |
| } |
| |
| static void xfrm_replay_timer_handler(unsigned long data); |
| |
| struct xfrm_state *xfrm_state_alloc(void) |
| { |
| struct xfrm_state *x; |
| |
| x = kzalloc(sizeof(struct xfrm_state), GFP_ATOMIC); |
| |
| if (x) { |
| atomic_set(&x->refcnt, 1); |
| atomic_set(&x->tunnel_users, 0); |
| INIT_HLIST_NODE(&x->bydst); |
| INIT_HLIST_NODE(&x->bysrc); |
| INIT_HLIST_NODE(&x->byspi); |
| init_timer(&x->timer); |
| x->timer.function = xfrm_timer_handler; |
| x->timer.data = (unsigned long)x; |
| init_timer(&x->rtimer); |
| x->rtimer.function = xfrm_replay_timer_handler; |
| x->rtimer.data = (unsigned long)x; |
| x->curlft.add_time = (unsigned long)xtime.tv_sec; |
| x->lft.soft_byte_limit = XFRM_INF; |
| x->lft.soft_packet_limit = XFRM_INF; |
| x->lft.hard_byte_limit = XFRM_INF; |
| x->lft.hard_packet_limit = XFRM_INF; |
| x->replay_maxage = 0; |
| x->replay_maxdiff = 0; |
| spin_lock_init(&x->lock); |
| } |
| return x; |
| } |
| EXPORT_SYMBOL(xfrm_state_alloc); |
| |
| void __xfrm_state_destroy(struct xfrm_state *x) |
| { |
| BUG_TRAP(x->km.state == XFRM_STATE_DEAD); |
| |
| spin_lock_bh(&xfrm_state_gc_lock); |
| hlist_add_head(&x->bydst, &xfrm_state_gc_list); |
| spin_unlock_bh(&xfrm_state_gc_lock); |
| schedule_work(&xfrm_state_gc_work); |
| } |
| EXPORT_SYMBOL(__xfrm_state_destroy); |
| |
| int __xfrm_state_delete(struct xfrm_state *x) |
| { |
| int err = -ESRCH; |
| |
| if (x->km.state != XFRM_STATE_DEAD) { |
| x->km.state = XFRM_STATE_DEAD; |
| spin_lock(&xfrm_state_lock); |
| hlist_del(&x->bydst); |
| __xfrm_state_put(x); |
| hlist_del(&x->bysrc); |
| __xfrm_state_put(x); |
| if (x->id.spi) { |
| hlist_del(&x->byspi); |
| __xfrm_state_put(x); |
| } |
| xfrm_state_num--; |
| spin_unlock(&xfrm_state_lock); |
| if (del_timer(&x->timer)) |
| __xfrm_state_put(x); |
| if (del_timer(&x->rtimer)) |
| __xfrm_state_put(x); |
| |
| /* The number two in this test is the reference |
| * mentioned in the comment below plus the reference |
| * our caller holds. A larger value means that |
| * there are DSTs attached to this xfrm_state. |
| */ |
| if (atomic_read(&x->refcnt) > 2) { |
| xfrm_state_gc_flush_bundles = 1; |
| schedule_work(&xfrm_state_gc_work); |
| } |
| |
| /* All xfrm_state objects are created by xfrm_state_alloc. |
| * The xfrm_state_alloc call gives a reference, and that |
| * is what we are dropping here. |
| */ |
| __xfrm_state_put(x); |
| err = 0; |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(__xfrm_state_delete); |
| |
| int xfrm_state_delete(struct xfrm_state *x) |
| { |
| int err; |
| |
| spin_lock_bh(&x->lock); |
| err = __xfrm_state_delete(x); |
| spin_unlock_bh(&x->lock); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_delete); |
| |
| void xfrm_state_flush(u8 proto) |
| { |
| int i; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| for (i = 0; i < xfrm_state_hmask; i++) { |
| struct hlist_node *entry; |
| struct xfrm_state *x; |
| restart: |
| hlist_for_each_entry(x, entry, xfrm_state_bydst+i, bydst) { |
| if (!xfrm_state_kern(x) && |
| xfrm_id_proto_match(x->id.proto, proto)) { |
| xfrm_state_hold(x); |
| spin_unlock_bh(&xfrm_state_lock); |
| |
| xfrm_state_delete(x); |
| xfrm_state_put(x); |
| |
| spin_lock_bh(&xfrm_state_lock); |
| goto restart; |
| } |
| } |
| } |
| spin_unlock_bh(&xfrm_state_lock); |
| wake_up(&km_waitq); |
| } |
| EXPORT_SYMBOL(xfrm_state_flush); |
| |
| static int |
| xfrm_init_tempsel(struct xfrm_state *x, struct flowi *fl, |
| struct xfrm_tmpl *tmpl, |
| xfrm_address_t *daddr, xfrm_address_t *saddr, |
| unsigned short family) |
| { |
| struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); |
| if (!afinfo) |
| return -1; |
| afinfo->init_tempsel(x, fl, tmpl, daddr, saddr); |
| xfrm_state_put_afinfo(afinfo); |
| return 0; |
| } |
| |
| static struct xfrm_state *__xfrm_state_lookup(xfrm_address_t *daddr, u32 spi, u8 proto, unsigned short family) |
| { |
| unsigned int h = xfrm_spi_hash(daddr, spi, proto, family); |
| struct xfrm_state *x; |
| struct hlist_node *entry; |
| |
| hlist_for_each_entry(x, entry, xfrm_state_byspi+h, byspi) { |
| if (x->props.family != family || |
| x->id.spi != spi || |
| x->id.proto != proto) |
| continue; |
| |
| switch (family) { |
| case AF_INET: |
| if (x->id.daddr.a4 != daddr->a4) |
| continue; |
| break; |
| case AF_INET6: |
| if (!ipv6_addr_equal((struct in6_addr *)daddr, |
| (struct in6_addr *) |
| x->id.daddr.a6)) |
| continue; |
| break; |
| }; |
| |
| xfrm_state_hold(x); |
| return x; |
| } |
| |
| return NULL; |
| } |
| |
| static struct xfrm_state *__xfrm_state_lookup_byaddr(xfrm_address_t *daddr, xfrm_address_t *saddr, u8 proto, unsigned short family) |
| { |
| unsigned int h = xfrm_src_hash(saddr, family); |
| struct xfrm_state *x; |
| struct hlist_node *entry; |
| |
| hlist_for_each_entry(x, entry, xfrm_state_bysrc+h, bysrc) { |
| if (x->props.family != family || |
| x->id.proto != proto) |
| continue; |
| |
| switch (family) { |
| case AF_INET: |
| if (x->id.daddr.a4 != daddr->a4 || |
| x->props.saddr.a4 != saddr->a4) |
| continue; |
| break; |
| case AF_INET6: |
| if (!ipv6_addr_equal((struct in6_addr *)daddr, |
| (struct in6_addr *) |
| x->id.daddr.a6) || |
| !ipv6_addr_equal((struct in6_addr *)saddr, |
| (struct in6_addr *) |
| x->props.saddr.a6)) |
| continue; |
| break; |
| }; |
| |
| xfrm_state_hold(x); |
| return x; |
| } |
| |
| return NULL; |
| } |
| |
| static inline struct xfrm_state * |
| __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) |
| { |
| if (use_spi) |
| return __xfrm_state_lookup(&x->id.daddr, x->id.spi, |
| x->id.proto, family); |
| else |
| return __xfrm_state_lookup_byaddr(&x->id.daddr, |
| &x->props.saddr, |
| x->id.proto, family); |
| } |
| |
| struct xfrm_state * |
| xfrm_state_find(xfrm_address_t *daddr, xfrm_address_t *saddr, |
| struct flowi *fl, struct xfrm_tmpl *tmpl, |
| struct xfrm_policy *pol, int *err, |
| unsigned short family) |
| { |
| unsigned int h = xfrm_dst_hash(daddr, family); |
| struct hlist_node *entry; |
| struct xfrm_state *x, *x0; |
| int acquire_in_progress = 0; |
| int error = 0; |
| struct xfrm_state *best = NULL; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| hlist_for_each_entry(x, entry, xfrm_state_bydst+h, bydst) { |
| if (x->props.family == family && |
| x->props.reqid == tmpl->reqid && |
| !(x->props.flags & XFRM_STATE_WILDRECV) && |
| xfrm_state_addr_check(x, daddr, saddr, family) && |
| tmpl->mode == x->props.mode && |
| tmpl->id.proto == x->id.proto && |
| (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) { |
| /* Resolution logic: |
| 1. There is a valid state with matching selector. |
| Done. |
| 2. Valid state with inappropriate selector. Skip. |
| |
| Entering area of "sysdeps". |
| |
| 3. If state is not valid, selector is temporary, |
| it selects only session which triggered |
| previous resolution. Key manager will do |
| something to install a state with proper |
| selector. |
| */ |
| if (x->km.state == XFRM_STATE_VALID) { |
| if (!xfrm_selector_match(&x->sel, fl, family) || |
| !security_xfrm_state_pol_flow_match(x, pol, fl)) |
| continue; |
| if (!best || |
| best->km.dying > x->km.dying || |
| (best->km.dying == x->km.dying && |
| best->curlft.add_time < x->curlft.add_time)) |
| best = x; |
| } else if (x->km.state == XFRM_STATE_ACQ) { |
| acquire_in_progress = 1; |
| } else if (x->km.state == XFRM_STATE_ERROR || |
| x->km.state == XFRM_STATE_EXPIRED) { |
| if (xfrm_selector_match(&x->sel, fl, family) && |
| security_xfrm_state_pol_flow_match(x, pol, fl)) |
| error = -ESRCH; |
| } |
| } |
| } |
| |
| x = best; |
| if (!x && !error && !acquire_in_progress) { |
| if (tmpl->id.spi && |
| (x0 = __xfrm_state_lookup(daddr, tmpl->id.spi, |
| tmpl->id.proto, family)) != NULL) { |
| xfrm_state_put(x0); |
| error = -EEXIST; |
| goto out; |
| } |
| x = xfrm_state_alloc(); |
| if (x == NULL) { |
| error = -ENOMEM; |
| goto out; |
| } |
| /* Initialize temporary selector matching only |
| * to current session. */ |
| xfrm_init_tempsel(x, fl, tmpl, daddr, saddr, family); |
| |
| error = security_xfrm_state_alloc_acquire(x, pol->security, fl->secid); |
| if (error) { |
| x->km.state = XFRM_STATE_DEAD; |
| xfrm_state_put(x); |
| x = NULL; |
| goto out; |
| } |
| |
| if (km_query(x, tmpl, pol) == 0) { |
| x->km.state = XFRM_STATE_ACQ; |
| hlist_add_head(&x->bydst, xfrm_state_bydst+h); |
| xfrm_state_hold(x); |
| h = xfrm_src_hash(saddr, family); |
| hlist_add_head(&x->bysrc, xfrm_state_bysrc+h); |
| xfrm_state_hold(x); |
| if (x->id.spi) { |
| h = xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, family); |
| hlist_add_head(&x->byspi, xfrm_state_byspi+h); |
| xfrm_state_hold(x); |
| } |
| x->lft.hard_add_expires_seconds = XFRM_ACQ_EXPIRES; |
| xfrm_state_hold(x); |
| x->timer.expires = jiffies + XFRM_ACQ_EXPIRES*HZ; |
| add_timer(&x->timer); |
| } else { |
| x->km.state = XFRM_STATE_DEAD; |
| xfrm_state_put(x); |
| x = NULL; |
| error = -ESRCH; |
| } |
| } |
| out: |
| if (x) |
| xfrm_state_hold(x); |
| else |
| *err = acquire_in_progress ? -EAGAIN : error; |
| spin_unlock_bh(&xfrm_state_lock); |
| return x; |
| } |
| |
| static void __xfrm_state_insert(struct xfrm_state *x) |
| { |
| unsigned int h = xfrm_dst_hash(&x->id.daddr, x->props.family); |
| |
| hlist_add_head(&x->bydst, xfrm_state_bydst+h); |
| xfrm_state_hold(x); |
| |
| h = xfrm_src_hash(&x->props.saddr, x->props.family); |
| |
| hlist_add_head(&x->bysrc, xfrm_state_bysrc+h); |
| xfrm_state_hold(x); |
| |
| if (xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY)) { |
| h = xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, |
| x->props.family); |
| |
| hlist_add_head(&x->byspi, xfrm_state_byspi+h); |
| xfrm_state_hold(x); |
| } |
| |
| if (!mod_timer(&x->timer, jiffies + HZ)) |
| xfrm_state_hold(x); |
| |
| if (x->replay_maxage && |
| !mod_timer(&x->rtimer, jiffies + x->replay_maxage)) |
| xfrm_state_hold(x); |
| |
| wake_up(&km_waitq); |
| |
| xfrm_state_num++; |
| |
| if (x->bydst.next != NULL && |
| (xfrm_state_hmask + 1) < xfrm_state_hashmax && |
| xfrm_state_num > xfrm_state_hmask) |
| schedule_work(&xfrm_hash_work); |
| } |
| |
| void xfrm_state_insert(struct xfrm_state *x) |
| { |
| spin_lock_bh(&xfrm_state_lock); |
| __xfrm_state_insert(x); |
| spin_unlock_bh(&xfrm_state_lock); |
| |
| xfrm_flush_all_bundles(); |
| } |
| EXPORT_SYMBOL(xfrm_state_insert); |
| |
| /* xfrm_state_lock is held */ |
| static struct xfrm_state *__find_acq_core(unsigned short family, u8 mode, u32 reqid, u8 proto, xfrm_address_t *daddr, xfrm_address_t *saddr, int create) |
| { |
| unsigned int h = xfrm_dst_hash(daddr, family); |
| struct hlist_node *entry; |
| struct xfrm_state *x; |
| |
| hlist_for_each_entry(x, entry, xfrm_state_bydst+h, bydst) { |
| if (x->props.reqid != reqid || |
| x->props.mode != mode || |
| x->props.family != family || |
| x->km.state != XFRM_STATE_ACQ || |
| x->id.spi != 0) |
| continue; |
| |
| switch (family) { |
| case AF_INET: |
| if (x->id.daddr.a4 != daddr->a4 || |
| x->props.saddr.a4 != saddr->a4) |
| continue; |
| break; |
| case AF_INET6: |
| if (!ipv6_addr_equal((struct in6_addr *)x->id.daddr.a6, |
| (struct in6_addr *)daddr) || |
| !ipv6_addr_equal((struct in6_addr *) |
| x->props.saddr.a6, |
| (struct in6_addr *)saddr)) |
| continue; |
| break; |
| }; |
| |
| xfrm_state_hold(x); |
| return x; |
| } |
| |
| if (!create) |
| return NULL; |
| |
| x = xfrm_state_alloc(); |
| if (likely(x)) { |
| switch (family) { |
| case AF_INET: |
| x->sel.daddr.a4 = daddr->a4; |
| x->sel.saddr.a4 = saddr->a4; |
| x->sel.prefixlen_d = 32; |
| x->sel.prefixlen_s = 32; |
| x->props.saddr.a4 = saddr->a4; |
| x->id.daddr.a4 = daddr->a4; |
| break; |
| |
| case AF_INET6: |
| ipv6_addr_copy((struct in6_addr *)x->sel.daddr.a6, |
| (struct in6_addr *)daddr); |
| ipv6_addr_copy((struct in6_addr *)x->sel.saddr.a6, |
| (struct in6_addr *)saddr); |
| x->sel.prefixlen_d = 128; |
| x->sel.prefixlen_s = 128; |
| ipv6_addr_copy((struct in6_addr *)x->props.saddr.a6, |
| (struct in6_addr *)saddr); |
| ipv6_addr_copy((struct in6_addr *)x->id.daddr.a6, |
| (struct in6_addr *)daddr); |
| break; |
| }; |
| |
| x->km.state = XFRM_STATE_ACQ; |
| x->id.proto = proto; |
| x->props.family = family; |
| x->props.mode = mode; |
| x->props.reqid = reqid; |
| x->lft.hard_add_expires_seconds = XFRM_ACQ_EXPIRES; |
| xfrm_state_hold(x); |
| x->timer.expires = jiffies + XFRM_ACQ_EXPIRES*HZ; |
| add_timer(&x->timer); |
| xfrm_state_hold(x); |
| hlist_add_head(&x->bydst, xfrm_state_bydst+h); |
| h = xfrm_src_hash(saddr, family); |
| xfrm_state_hold(x); |
| hlist_add_head(&x->bysrc, xfrm_state_bysrc+h); |
| wake_up(&km_waitq); |
| } |
| |
| return x; |
| } |
| |
| static struct xfrm_state *__xfrm_find_acq_byseq(u32 seq); |
| |
| int xfrm_state_add(struct xfrm_state *x) |
| { |
| struct xfrm_state *x1; |
| int family; |
| int err; |
| int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); |
| |
| family = x->props.family; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| |
| x1 = __xfrm_state_locate(x, use_spi, family); |
| if (x1) { |
| xfrm_state_put(x1); |
| x1 = NULL; |
| err = -EEXIST; |
| goto out; |
| } |
| |
| if (use_spi && x->km.seq) { |
| x1 = __xfrm_find_acq_byseq(x->km.seq); |
| if (x1 && xfrm_addr_cmp(&x1->id.daddr, &x->id.daddr, family)) { |
| xfrm_state_put(x1); |
| x1 = NULL; |
| } |
| } |
| |
| if (use_spi && !x1) |
| x1 = __find_acq_core(family, x->props.mode, x->props.reqid, |
| x->id.proto, |
| &x->id.daddr, &x->props.saddr, 0); |
| |
| __xfrm_state_insert(x); |
| err = 0; |
| |
| out: |
| spin_unlock_bh(&xfrm_state_lock); |
| |
| if (!err) |
| xfrm_flush_all_bundles(); |
| |
| if (x1) { |
| xfrm_state_delete(x1); |
| xfrm_state_put(x1); |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_add); |
| |
| int xfrm_state_update(struct xfrm_state *x) |
| { |
| struct xfrm_state *x1; |
| int err; |
| int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); |
| |
| spin_lock_bh(&xfrm_state_lock); |
| x1 = __xfrm_state_locate(x, use_spi, x->props.family); |
| |
| err = -ESRCH; |
| if (!x1) |
| goto out; |
| |
| if (xfrm_state_kern(x1)) { |
| xfrm_state_put(x1); |
| err = -EEXIST; |
| goto out; |
| } |
| |
| if (x1->km.state == XFRM_STATE_ACQ) { |
| __xfrm_state_insert(x); |
| x = NULL; |
| } |
| err = 0; |
| |
| out: |
| spin_unlock_bh(&xfrm_state_lock); |
| |
| if (err) |
| return err; |
| |
| if (!x) { |
| xfrm_state_delete(x1); |
| xfrm_state_put(x1); |
| return 0; |
| } |
| |
| err = -EINVAL; |
| spin_lock_bh(&x1->lock); |
| if (likely(x1->km.state == XFRM_STATE_VALID)) { |
| if (x->encap && x1->encap) |
| memcpy(x1->encap, x->encap, sizeof(*x1->encap)); |
| if (x->coaddr && x1->coaddr) { |
| memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); |
| } |
| if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) |
| memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); |
| memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); |
| x1->km.dying = 0; |
| |
| if (!mod_timer(&x1->timer, jiffies + HZ)) |
| xfrm_state_hold(x1); |
| if (x1->curlft.use_time) |
| xfrm_state_check_expire(x1); |
| |
| err = 0; |
| } |
| spin_unlock_bh(&x1->lock); |
| |
| xfrm_state_put(x1); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_update); |
| |
| int xfrm_state_check_expire(struct xfrm_state *x) |
| { |
| if (!x->curlft.use_time) |
| x->curlft.use_time = (unsigned long)xtime.tv_sec; |
| |
| if (x->km.state != XFRM_STATE_VALID) |
| return -EINVAL; |
| |
| if (x->curlft.bytes >= x->lft.hard_byte_limit || |
| x->curlft.packets >= x->lft.hard_packet_limit) { |
| x->km.state = XFRM_STATE_EXPIRED; |
| if (!mod_timer(&x->timer, jiffies)) |
| xfrm_state_hold(x); |
| return -EINVAL; |
| } |
| |
| if (!x->km.dying && |
| (x->curlft.bytes >= x->lft.soft_byte_limit || |
| x->curlft.packets >= x->lft.soft_packet_limit)) { |
| x->km.dying = 1; |
| km_state_expired(x, 0, 0); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(xfrm_state_check_expire); |
| |
| static int xfrm_state_check_space(struct xfrm_state *x, struct sk_buff *skb) |
| { |
| int nhead = x->props.header_len + LL_RESERVED_SPACE(skb->dst->dev) |
| - skb_headroom(skb); |
| |
| if (nhead > 0) |
| return pskb_expand_head(skb, nhead, 0, GFP_ATOMIC); |
| |
| /* Check tail too... */ |
| return 0; |
| } |
| |
| int xfrm_state_check(struct xfrm_state *x, struct sk_buff *skb) |
| { |
| int err = xfrm_state_check_expire(x); |
| if (err < 0) |
| goto err; |
| err = xfrm_state_check_space(x, skb); |
| err: |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_check); |
| |
| struct xfrm_state * |
| xfrm_state_lookup(xfrm_address_t *daddr, u32 spi, u8 proto, |
| unsigned short family) |
| { |
| struct xfrm_state *x; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| x = __xfrm_state_lookup(daddr, spi, proto, family); |
| spin_unlock_bh(&xfrm_state_lock); |
| return x; |
| } |
| EXPORT_SYMBOL(xfrm_state_lookup); |
| |
| struct xfrm_state * |
| xfrm_state_lookup_byaddr(xfrm_address_t *daddr, xfrm_address_t *saddr, |
| u8 proto, unsigned short family) |
| { |
| struct xfrm_state *x; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| x = __xfrm_state_lookup_byaddr(daddr, saddr, proto, family); |
| spin_unlock_bh(&xfrm_state_lock); |
| return x; |
| } |
| EXPORT_SYMBOL(xfrm_state_lookup_byaddr); |
| |
| struct xfrm_state * |
| xfrm_find_acq(u8 mode, u32 reqid, u8 proto, |
| xfrm_address_t *daddr, xfrm_address_t *saddr, |
| int create, unsigned short family) |
| { |
| struct xfrm_state *x; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| x = __find_acq_core(family, mode, reqid, proto, daddr, saddr, create); |
| spin_unlock_bh(&xfrm_state_lock); |
| |
| return x; |
| } |
| EXPORT_SYMBOL(xfrm_find_acq); |
| |
| #ifdef CONFIG_XFRM_SUB_POLICY |
| int |
| xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, |
| unsigned short family) |
| { |
| int err = 0; |
| struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); |
| if (!afinfo) |
| return -EAFNOSUPPORT; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| if (afinfo->tmpl_sort) |
| err = afinfo->tmpl_sort(dst, src, n); |
| spin_unlock_bh(&xfrm_state_lock); |
| xfrm_state_put_afinfo(afinfo); |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_tmpl_sort); |
| |
| int |
| xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, |
| unsigned short family) |
| { |
| int err = 0; |
| struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); |
| if (!afinfo) |
| return -EAFNOSUPPORT; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| if (afinfo->state_sort) |
| err = afinfo->state_sort(dst, src, n); |
| spin_unlock_bh(&xfrm_state_lock); |
| xfrm_state_put_afinfo(afinfo); |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_sort); |
| #endif |
| |
| /* Silly enough, but I'm lazy to build resolution list */ |
| |
| static struct xfrm_state *__xfrm_find_acq_byseq(u32 seq) |
| { |
| int i; |
| |
| for (i = 0; i <= xfrm_state_hmask; i++) { |
| struct hlist_node *entry; |
| struct xfrm_state *x; |
| |
| hlist_for_each_entry(x, entry, xfrm_state_bydst+i, bydst) { |
| if (x->km.seq == seq && |
| x->km.state == XFRM_STATE_ACQ) { |
| xfrm_state_hold(x); |
| return x; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| struct xfrm_state *xfrm_find_acq_byseq(u32 seq) |
| { |
| struct xfrm_state *x; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| x = __xfrm_find_acq_byseq(seq); |
| spin_unlock_bh(&xfrm_state_lock); |
| return x; |
| } |
| EXPORT_SYMBOL(xfrm_find_acq_byseq); |
| |
| u32 xfrm_get_acqseq(void) |
| { |
| u32 res; |
| static u32 acqseq; |
| static DEFINE_SPINLOCK(acqseq_lock); |
| |
| spin_lock_bh(&acqseq_lock); |
| res = (++acqseq ? : ++acqseq); |
| spin_unlock_bh(&acqseq_lock); |
| return res; |
| } |
| EXPORT_SYMBOL(xfrm_get_acqseq); |
| |
| void |
| xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi) |
| { |
| unsigned int h; |
| struct xfrm_state *x0; |
| |
| if (x->id.spi) |
| return; |
| |
| if (minspi == maxspi) { |
| x0 = xfrm_state_lookup(&x->id.daddr, minspi, x->id.proto, x->props.family); |
| if (x0) { |
| xfrm_state_put(x0); |
| return; |
| } |
| x->id.spi = minspi; |
| } else { |
| u32 spi = 0; |
| minspi = ntohl(minspi); |
| maxspi = ntohl(maxspi); |
| for (h=0; h<maxspi-minspi+1; h++) { |
| spi = minspi + net_random()%(maxspi-minspi+1); |
| x0 = xfrm_state_lookup(&x->id.daddr, htonl(spi), x->id.proto, x->props.family); |
| if (x0 == NULL) { |
| x->id.spi = htonl(spi); |
| break; |
| } |
| xfrm_state_put(x0); |
| } |
| } |
| if (x->id.spi) { |
| spin_lock_bh(&xfrm_state_lock); |
| h = xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, x->props.family); |
| hlist_add_head(&x->byspi, xfrm_state_byspi+h); |
| xfrm_state_hold(x); |
| spin_unlock_bh(&xfrm_state_lock); |
| wake_up(&km_waitq); |
| } |
| } |
| EXPORT_SYMBOL(xfrm_alloc_spi); |
| |
| int xfrm_state_walk(u8 proto, int (*func)(struct xfrm_state *, int, void*), |
| void *data) |
| { |
| int i; |
| struct xfrm_state *x; |
| struct hlist_node *entry; |
| int count = 0; |
| int err = 0; |
| |
| spin_lock_bh(&xfrm_state_lock); |
| for (i = 0; i <= xfrm_state_hmask; i++) { |
| hlist_for_each_entry(x, entry, xfrm_state_bydst+i, bydst) { |
| if (xfrm_id_proto_match(x->id.proto, proto)) |
| count++; |
| } |
| } |
| if (count == 0) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| for (i = 0; i <= xfrm_state_hmask; i++) { |
| hlist_for_each_entry(x, entry, xfrm_state_bydst+i, bydst) { |
| if (!xfrm_id_proto_match(x->id.proto, proto)) |
| continue; |
| err = func(x, --count, data); |
| if (err) |
| goto out; |
| } |
| } |
| out: |
| spin_unlock_bh(&xfrm_state_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_walk); |
| |
| |
| void xfrm_replay_notify(struct xfrm_state *x, int event) |
| { |
| struct km_event c; |
| /* we send notify messages in case |
| * 1. we updated on of the sequence numbers, and the seqno difference |
| * is at least x->replay_maxdiff, in this case we also update the |
| * timeout of our timer function |
| * 2. if x->replay_maxage has elapsed since last update, |
| * and there were changes |
| * |
| * The state structure must be locked! |
| */ |
| |
| switch (event) { |
| case XFRM_REPLAY_UPDATE: |
| if (x->replay_maxdiff && |
| (x->replay.seq - x->preplay.seq < x->replay_maxdiff) && |
| (x->replay.oseq - x->preplay.oseq < x->replay_maxdiff)) { |
| if (x->xflags & XFRM_TIME_DEFER) |
| event = XFRM_REPLAY_TIMEOUT; |
| else |
| return; |
| } |
| |
| break; |
| |
| case XFRM_REPLAY_TIMEOUT: |
| if ((x->replay.seq == x->preplay.seq) && |
| (x->replay.bitmap == x->preplay.bitmap) && |
| (x->replay.oseq == x->preplay.oseq)) { |
| x->xflags |= XFRM_TIME_DEFER; |
| return; |
| } |
| |
| break; |
| } |
| |
| memcpy(&x->preplay, &x->replay, sizeof(struct xfrm_replay_state)); |
| c.event = XFRM_MSG_NEWAE; |
| c.data.aevent = event; |
| km_state_notify(x, &c); |
| |
| if (x->replay_maxage && |
| !mod_timer(&x->rtimer, jiffies + x->replay_maxage)) { |
| xfrm_state_hold(x); |
| x->xflags &= ~XFRM_TIME_DEFER; |
| } |
| } |
| EXPORT_SYMBOL(xfrm_replay_notify); |
| |
| static void xfrm_replay_timer_handler(unsigned long data) |
| { |
| struct xfrm_state *x = (struct xfrm_state*)data; |
| |
| spin_lock(&x->lock); |
| |
| if (x->km.state == XFRM_STATE_VALID) { |
| if (xfrm_aevent_is_on()) |
| xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT); |
| else |
| x->xflags |= XFRM_TIME_DEFER; |
| } |
| |
| spin_unlock(&x->lock); |
| xfrm_state_put(x); |
| } |
| |
| int xfrm_replay_check(struct xfrm_state *x, u32 seq) |
| { |
| u32 diff; |
| |
| seq = ntohl(seq); |
| |
| if (unlikely(seq == 0)) |
| return -EINVAL; |
| |
| if (likely(seq > x->replay.seq)) |
| return 0; |
| |
| diff = x->replay.seq - seq; |
| if (diff >= x->props.replay_window) { |
| x->stats.replay_window++; |
| return -EINVAL; |
| } |
| |
| if (x->replay.bitmap & (1U << diff)) { |
| x->stats.replay++; |
| return -EINVAL; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(xfrm_replay_check); |
| |
| void xfrm_replay_advance(struct xfrm_state *x, u32 seq) |
| { |
| u32 diff; |
| |
| seq = ntohl(seq); |
| |
| if (seq > x->replay.seq) { |
| diff = seq - x->replay.seq; |
| if (diff < x->props.replay_window) |
| x->replay.bitmap = ((x->replay.bitmap) << diff) | 1; |
| else |
| x->replay.bitmap = 1; |
| x->replay.seq = seq; |
| } else { |
| diff = x->replay.seq - seq; |
| x->replay.bitmap |= (1U << diff); |
| } |
| |
| if (xfrm_aevent_is_on()) |
| xfrm_replay_notify(x, XFRM_REPLAY_UPDATE); |
| } |
| EXPORT_SYMBOL(xfrm_replay_advance); |
| |
| static struct list_head xfrm_km_list = LIST_HEAD_INIT(xfrm_km_list); |
| static DEFINE_RWLOCK(xfrm_km_lock); |
| |
| void km_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c) |
| { |
| struct xfrm_mgr *km; |
| |
| read_lock(&xfrm_km_lock); |
| list_for_each_entry(km, &xfrm_km_list, list) |
| if (km->notify_policy) |
| km->notify_policy(xp, dir, c); |
| read_unlock(&xfrm_km_lock); |
| } |
| |
| void km_state_notify(struct xfrm_state *x, struct km_event *c) |
| { |
| struct xfrm_mgr *km; |
| read_lock(&xfrm_km_lock); |
| list_for_each_entry(km, &xfrm_km_list, list) |
| if (km->notify) |
| km->notify(x, c); |
| read_unlock(&xfrm_km_lock); |
| } |
| |
| EXPORT_SYMBOL(km_policy_notify); |
| EXPORT_SYMBOL(km_state_notify); |
| |
| void km_state_expired(struct xfrm_state *x, int hard, u32 pid) |
| { |
| struct km_event c; |
| |
| c.data.hard = hard; |
| c.pid = pid; |
| c.event = XFRM_MSG_EXPIRE; |
| km_state_notify(x, &c); |
| |
| if (hard) |
| wake_up(&km_waitq); |
| } |
| |
| EXPORT_SYMBOL(km_state_expired); |
| /* |
| * We send to all registered managers regardless of failure |
| * We are happy with one success |
| */ |
| int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) |
| { |
| int err = -EINVAL, acqret; |
| struct xfrm_mgr *km; |
| |
| read_lock(&xfrm_km_lock); |
| list_for_each_entry(km, &xfrm_km_list, list) { |
| acqret = km->acquire(x, t, pol, XFRM_POLICY_OUT); |
| if (!acqret) |
| err = acqret; |
| } |
| read_unlock(&xfrm_km_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(km_query); |
| |
| int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport) |
| { |
| int err = -EINVAL; |
| struct xfrm_mgr *km; |
| |
| read_lock(&xfrm_km_lock); |
| list_for_each_entry(km, &xfrm_km_list, list) { |
| if (km->new_mapping) |
| err = km->new_mapping(x, ipaddr, sport); |
| if (!err) |
| break; |
| } |
| read_unlock(&xfrm_km_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(km_new_mapping); |
| |
| void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 pid) |
| { |
| struct km_event c; |
| |
| c.data.hard = hard; |
| c.pid = pid; |
| c.event = XFRM_MSG_POLEXPIRE; |
| km_policy_notify(pol, dir, &c); |
| |
| if (hard) |
| wake_up(&km_waitq); |
| } |
| EXPORT_SYMBOL(km_policy_expired); |
| |
| int km_report(u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) |
| { |
| int err = -EINVAL; |
| int ret; |
| struct xfrm_mgr *km; |
| |
| read_lock(&xfrm_km_lock); |
| list_for_each_entry(km, &xfrm_km_list, list) { |
| if (km->report) { |
| ret = km->report(proto, sel, addr); |
| if (!ret) |
| err = ret; |
| } |
| } |
| read_unlock(&xfrm_km_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(km_report); |
| |
| int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen) |
| { |
| int err; |
| u8 *data; |
| struct xfrm_mgr *km; |
| struct xfrm_policy *pol = NULL; |
| |
| if (optlen <= 0 || optlen > PAGE_SIZE) |
| return -EMSGSIZE; |
| |
| data = kmalloc(optlen, GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| err = -EFAULT; |
| if (copy_from_user(data, optval, optlen)) |
| goto out; |
| |
| err = -EINVAL; |
| read_lock(&xfrm_km_lock); |
| list_for_each_entry(km, &xfrm_km_list, list) { |
| pol = km->compile_policy(sk, optname, data, |
| optlen, &err); |
| if (err >= 0) |
| break; |
| } |
| read_unlock(&xfrm_km_lock); |
| |
| if (err >= 0) { |
| xfrm_sk_policy_insert(sk, err, pol); |
| xfrm_pol_put(pol); |
| err = 0; |
| } |
| |
| out: |
| kfree(data); |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_user_policy); |
| |
| int xfrm_register_km(struct xfrm_mgr *km) |
| { |
| write_lock_bh(&xfrm_km_lock); |
| list_add_tail(&km->list, &xfrm_km_list); |
| write_unlock_bh(&xfrm_km_lock); |
| return 0; |
| } |
| EXPORT_SYMBOL(xfrm_register_km); |
| |
| int xfrm_unregister_km(struct xfrm_mgr *km) |
| { |
| write_lock_bh(&xfrm_km_lock); |
| list_del(&km->list); |
| write_unlock_bh(&xfrm_km_lock); |
| return 0; |
| } |
| EXPORT_SYMBOL(xfrm_unregister_km); |
| |
| int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) |
| { |
| int err = 0; |
| if (unlikely(afinfo == NULL)) |
| return -EINVAL; |
| if (unlikely(afinfo->family >= NPROTO)) |
| return -EAFNOSUPPORT; |
| write_lock_bh(&xfrm_state_afinfo_lock); |
| if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) |
| err = -ENOBUFS; |
| else |
| xfrm_state_afinfo[afinfo->family] = afinfo; |
| write_unlock_bh(&xfrm_state_afinfo_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_register_afinfo); |
| |
| int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) |
| { |
| int err = 0; |
| if (unlikely(afinfo == NULL)) |
| return -EINVAL; |
| if (unlikely(afinfo->family >= NPROTO)) |
| return -EAFNOSUPPORT; |
| write_lock_bh(&xfrm_state_afinfo_lock); |
| if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { |
| if (unlikely(xfrm_state_afinfo[afinfo->family] != afinfo)) |
| err = -EINVAL; |
| else |
| xfrm_state_afinfo[afinfo->family] = NULL; |
| } |
| write_unlock_bh(&xfrm_state_afinfo_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(xfrm_state_unregister_afinfo); |
| |
| static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned short family) |
| { |
| struct xfrm_state_afinfo *afinfo; |
| if (unlikely(family >= NPROTO)) |
| return NULL; |
| read_lock(&xfrm_state_afinfo_lock); |
| afinfo = xfrm_state_afinfo[family]; |
| if (unlikely(!afinfo)) |
| read_unlock(&xfrm_state_afinfo_lock); |
| return afinfo; |
| } |
| |
| static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo) |
| { |
| read_unlock(&xfrm_state_afinfo_lock); |
| } |
| |
| /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ |
| void xfrm_state_delete_tunnel(struct xfrm_state *x) |
| { |
| if (x->tunnel) { |
| struct xfrm_state *t = x->tunnel; |
| |
| if (atomic_read(&t->tunnel_users) == 2) |
| xfrm_state_delete(t); |
| atomic_dec(&t->tunnel_users); |
| xfrm_state_put(t); |
| x->tunnel = NULL; |
| } |
| } |
| EXPORT_SYMBOL(xfrm_state_delete_tunnel); |
| |
| /* |
| * This function is NOT optimal. For example, with ESP it will give an |
| * MTU that's usually two bytes short of being optimal. However, it will |
| * usually give an answer that's a multiple of 4 provided the input is |
| * also a multiple of 4. |
| */ |
| int xfrm_state_mtu(struct xfrm_state *x, int mtu) |
| { |
| int res = mtu; |
| |
| res -= x->props.header_len; |
| |
| for (;;) { |
| int m = res; |
| |
| if (m < 68) |
| return 68; |
| |
| spin_lock_bh(&x->lock); |
| if (x->km.state == XFRM_STATE_VALID && |
| x->type && x->type->get_max_size) |
| m = x->type->get_max_size(x, m); |
| else |
| m += x->props.header_len; |
| spin_unlock_bh(&x->lock); |
| |
| if (m <= mtu) |
| break; |
| res -= (m - mtu); |
| } |
| |
| return res; |
| } |
| |
| int xfrm_init_state(struct xfrm_state *x) |
| { |
| struct xfrm_state_afinfo *afinfo; |
| int family = x->props.family; |
| int err; |
| |
| err = -EAFNOSUPPORT; |
| afinfo = xfrm_state_get_afinfo(family); |
| if (!afinfo) |
| goto error; |
| |
| err = 0; |
| if (afinfo->init_flags) |
| err = afinfo->init_flags(x); |
| |
| xfrm_state_put_afinfo(afinfo); |
| |
| if (err) |
| goto error; |
| |
| err = -EPROTONOSUPPORT; |
| x->type = xfrm_get_type(x->id.proto, family); |
| if (x->type == NULL) |
| goto error; |
| |
| err = x->type->init_state(x); |
| if (err) |
| goto error; |
| |
| x->mode = xfrm_get_mode(x->props.mode, family); |
| if (x->mode == NULL) |
| goto error; |
| |
| x->km.state = XFRM_STATE_VALID; |
| |
| error: |
| return err; |
| } |
| |
| EXPORT_SYMBOL(xfrm_init_state); |
| |
| void __init xfrm_state_init(void) |
| { |
| unsigned int sz; |
| |
| sz = sizeof(struct hlist_head) * 8; |
| |
| xfrm_state_bydst = xfrm_state_hash_alloc(sz); |
| xfrm_state_bysrc = xfrm_state_hash_alloc(sz); |
| xfrm_state_byspi = xfrm_state_hash_alloc(sz); |
| if (!xfrm_state_bydst || !xfrm_state_bysrc || !xfrm_state_byspi) |
| panic("XFRM: Cannot allocate bydst/bysrc/byspi hashes."); |
| xfrm_state_hmask = ((sz / sizeof(struct hlist_head)) - 1); |
| |
| INIT_WORK(&xfrm_state_gc_work, xfrm_state_gc_task, NULL); |
| } |
| |