| /* |
| * x86 SMP booting functions |
| * |
| * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> |
| * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> |
| * |
| * Much of the core SMP work is based on previous work by Thomas Radke, to |
| * whom a great many thanks are extended. |
| * |
| * Thanks to Intel for making available several different Pentium, |
| * Pentium Pro and Pentium-II/Xeon MP machines. |
| * Original development of Linux SMP code supported by Caldera. |
| * |
| * This code is released under the GNU General Public License version 2 or |
| * later. |
| * |
| * Fixes |
| * Felix Koop : NR_CPUS used properly |
| * Jose Renau : Handle single CPU case. |
| * Alan Cox : By repeated request 8) - Total BogoMIPS report. |
| * Greg Wright : Fix for kernel stacks panic. |
| * Erich Boleyn : MP v1.4 and additional changes. |
| * Matthias Sattler : Changes for 2.1 kernel map. |
| * Michel Lespinasse : Changes for 2.1 kernel map. |
| * Michael Chastain : Change trampoline.S to gnu as. |
| * Alan Cox : Dumb bug: 'B' step PPro's are fine |
| * Ingo Molnar : Added APIC timers, based on code |
| * from Jose Renau |
| * Ingo Molnar : various cleanups and rewrites |
| * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. |
| * Maciej W. Rozycki : Bits for genuine 82489DX APICs |
| * Martin J. Bligh : Added support for multi-quad systems |
| * Dave Jones : Report invalid combinations of Athlon CPUs. |
| * Rusty Russell : Hacked into shape for new "hotplug" boot process. */ |
| |
| #include <linux/module.h> |
| #include <linux/config.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/smp_lock.h> |
| #include <linux/irq.h> |
| #include <linux/bootmem.h> |
| |
| #include <linux/delay.h> |
| #include <linux/mc146818rtc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/desc.h> |
| #include <asm/arch_hooks.h> |
| |
| #include <mach_apic.h> |
| #include <mach_wakecpu.h> |
| #include <smpboot_hooks.h> |
| |
| /* Set if we find a B stepping CPU */ |
| static int __initdata smp_b_stepping; |
| |
| /* Number of siblings per CPU package */ |
| int smp_num_siblings = 1; |
| #ifdef CONFIG_X86_HT |
| EXPORT_SYMBOL(smp_num_siblings); |
| #endif |
| int phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU */ |
| EXPORT_SYMBOL(phys_proc_id); |
| int cpu_core_id[NR_CPUS]; /* Core ID of each logical CPU */ |
| EXPORT_SYMBOL(cpu_core_id); |
| |
| /* bitmap of online cpus */ |
| cpumask_t cpu_online_map; |
| EXPORT_SYMBOL(cpu_online_map); |
| |
| cpumask_t cpu_callin_map; |
| cpumask_t cpu_callout_map; |
| EXPORT_SYMBOL(cpu_callout_map); |
| static cpumask_t smp_commenced_mask; |
| |
| /* Per CPU bogomips and other parameters */ |
| struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; |
| EXPORT_SYMBOL(cpu_data); |
| |
| u8 x86_cpu_to_apicid[NR_CPUS] = |
| { [0 ... NR_CPUS-1] = 0xff }; |
| EXPORT_SYMBOL(x86_cpu_to_apicid); |
| |
| /* |
| * Trampoline 80x86 program as an array. |
| */ |
| |
| extern unsigned char trampoline_data []; |
| extern unsigned char trampoline_end []; |
| static unsigned char *trampoline_base; |
| static int trampoline_exec; |
| |
| static void map_cpu_to_logical_apicid(void); |
| |
| /* |
| * Currently trivial. Write the real->protected mode |
| * bootstrap into the page concerned. The caller |
| * has made sure it's suitably aligned. |
| */ |
| |
| static unsigned long __init setup_trampoline(void) |
| { |
| memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); |
| return virt_to_phys(trampoline_base); |
| } |
| |
| /* |
| * We are called very early to get the low memory for the |
| * SMP bootup trampoline page. |
| */ |
| void __init smp_alloc_memory(void) |
| { |
| trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); |
| /* |
| * Has to be in very low memory so we can execute |
| * real-mode AP code. |
| */ |
| if (__pa(trampoline_base) >= 0x9F000) |
| BUG(); |
| /* |
| * Make the SMP trampoline executable: |
| */ |
| trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1); |
| } |
| |
| /* |
| * The bootstrap kernel entry code has set these up. Save them for |
| * a given CPU |
| */ |
| |
| static void __init smp_store_cpu_info(int id) |
| { |
| struct cpuinfo_x86 *c = cpu_data + id; |
| |
| *c = boot_cpu_data; |
| if (id!=0) |
| identify_cpu(c); |
| /* |
| * Mask B, Pentium, but not Pentium MMX |
| */ |
| if (c->x86_vendor == X86_VENDOR_INTEL && |
| c->x86 == 5 && |
| c->x86_mask >= 1 && c->x86_mask <= 4 && |
| c->x86_model <= 3) |
| /* |
| * Remember we have B step Pentia with bugs |
| */ |
| smp_b_stepping = 1; |
| |
| /* |
| * Certain Athlons might work (for various values of 'work') in SMP |
| * but they are not certified as MP capable. |
| */ |
| if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { |
| |
| /* Athlon 660/661 is valid. */ |
| if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1))) |
| goto valid_k7; |
| |
| /* Duron 670 is valid */ |
| if ((c->x86_model==7) && (c->x86_mask==0)) |
| goto valid_k7; |
| |
| /* |
| * Athlon 662, Duron 671, and Athlon >model 7 have capability bit. |
| * It's worth noting that the A5 stepping (662) of some Athlon XP's |
| * have the MP bit set. |
| * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more. |
| */ |
| if (((c->x86_model==6) && (c->x86_mask>=2)) || |
| ((c->x86_model==7) && (c->x86_mask>=1)) || |
| (c->x86_model> 7)) |
| if (cpu_has_mp) |
| goto valid_k7; |
| |
| /* If we get here, it's not a certified SMP capable AMD system. */ |
| tainted |= TAINT_UNSAFE_SMP; |
| } |
| |
| valid_k7: |
| ; |
| } |
| |
| /* |
| * TSC synchronization. |
| * |
| * We first check whether all CPUs have their TSC's synchronized, |
| * then we print a warning if not, and always resync. |
| */ |
| |
| static atomic_t tsc_start_flag = ATOMIC_INIT(0); |
| static atomic_t tsc_count_start = ATOMIC_INIT(0); |
| static atomic_t tsc_count_stop = ATOMIC_INIT(0); |
| static unsigned long long tsc_values[NR_CPUS]; |
| |
| #define NR_LOOPS 5 |
| |
| static void __init synchronize_tsc_bp (void) |
| { |
| int i; |
| unsigned long long t0; |
| unsigned long long sum, avg; |
| long long delta; |
| unsigned int one_usec; |
| int buggy = 0; |
| |
| printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus()); |
| |
| /* convert from kcyc/sec to cyc/usec */ |
| one_usec = cpu_khz / 1000; |
| |
| atomic_set(&tsc_start_flag, 1); |
| wmb(); |
| |
| /* |
| * We loop a few times to get a primed instruction cache, |
| * then the last pass is more or less synchronized and |
| * the BP and APs set their cycle counters to zero all at |
| * once. This reduces the chance of having random offsets |
| * between the processors, and guarantees that the maximum |
| * delay between the cycle counters is never bigger than |
| * the latency of information-passing (cachelines) between |
| * two CPUs. |
| */ |
| for (i = 0; i < NR_LOOPS; i++) { |
| /* |
| * all APs synchronize but they loop on '== num_cpus' |
| */ |
| while (atomic_read(&tsc_count_start) != num_booting_cpus()-1) |
| mb(); |
| atomic_set(&tsc_count_stop, 0); |
| wmb(); |
| /* |
| * this lets the APs save their current TSC: |
| */ |
| atomic_inc(&tsc_count_start); |
| |
| rdtscll(tsc_values[smp_processor_id()]); |
| /* |
| * We clear the TSC in the last loop: |
| */ |
| if (i == NR_LOOPS-1) |
| write_tsc(0, 0); |
| |
| /* |
| * Wait for all APs to leave the synchronization point: |
| */ |
| while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1) |
| mb(); |
| atomic_set(&tsc_count_start, 0); |
| wmb(); |
| atomic_inc(&tsc_count_stop); |
| } |
| |
| sum = 0; |
| for (i = 0; i < NR_CPUS; i++) { |
| if (cpu_isset(i, cpu_callout_map)) { |
| t0 = tsc_values[i]; |
| sum += t0; |
| } |
| } |
| avg = sum; |
| do_div(avg, num_booting_cpus()); |
| |
| sum = 0; |
| for (i = 0; i < NR_CPUS; i++) { |
| if (!cpu_isset(i, cpu_callout_map)) |
| continue; |
| delta = tsc_values[i] - avg; |
| if (delta < 0) |
| delta = -delta; |
| /* |
| * We report bigger than 2 microseconds clock differences. |
| */ |
| if (delta > 2*one_usec) { |
| long realdelta; |
| if (!buggy) { |
| buggy = 1; |
| printk("\n"); |
| } |
| realdelta = delta; |
| do_div(realdelta, one_usec); |
| if (tsc_values[i] < avg) |
| realdelta = -realdelta; |
| |
| printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta); |
| } |
| |
| sum += delta; |
| } |
| if (!buggy) |
| printk("passed.\n"); |
| } |
| |
| static void __init synchronize_tsc_ap (void) |
| { |
| int i; |
| |
| /* |
| * Not every cpu is online at the time |
| * this gets called, so we first wait for the BP to |
| * finish SMP initialization: |
| */ |
| while (!atomic_read(&tsc_start_flag)) mb(); |
| |
| for (i = 0; i < NR_LOOPS; i++) { |
| atomic_inc(&tsc_count_start); |
| while (atomic_read(&tsc_count_start) != num_booting_cpus()) |
| mb(); |
| |
| rdtscll(tsc_values[smp_processor_id()]); |
| if (i == NR_LOOPS-1) |
| write_tsc(0, 0); |
| |
| atomic_inc(&tsc_count_stop); |
| while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb(); |
| } |
| } |
| #undef NR_LOOPS |
| |
| extern void calibrate_delay(void); |
| |
| static atomic_t init_deasserted; |
| |
| static void __init smp_callin(void) |
| { |
| int cpuid, phys_id; |
| unsigned long timeout; |
| |
| /* |
| * If waken up by an INIT in an 82489DX configuration |
| * we may get here before an INIT-deassert IPI reaches |
| * our local APIC. We have to wait for the IPI or we'll |
| * lock up on an APIC access. |
| */ |
| wait_for_init_deassert(&init_deasserted); |
| |
| /* |
| * (This works even if the APIC is not enabled.) |
| */ |
| phys_id = GET_APIC_ID(apic_read(APIC_ID)); |
| cpuid = smp_processor_id(); |
| if (cpu_isset(cpuid, cpu_callin_map)) { |
| printk("huh, phys CPU#%d, CPU#%d already present??\n", |
| phys_id, cpuid); |
| BUG(); |
| } |
| Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); |
| |
| /* |
| * STARTUP IPIs are fragile beasts as they might sometimes |
| * trigger some glue motherboard logic. Complete APIC bus |
| * silence for 1 second, this overestimates the time the |
| * boot CPU is spending to send the up to 2 STARTUP IPIs |
| * by a factor of two. This should be enough. |
| */ |
| |
| /* |
| * Waiting 2s total for startup (udelay is not yet working) |
| */ |
| timeout = jiffies + 2*HZ; |
| while (time_before(jiffies, timeout)) { |
| /* |
| * Has the boot CPU finished it's STARTUP sequence? |
| */ |
| if (cpu_isset(cpuid, cpu_callout_map)) |
| break; |
| rep_nop(); |
| } |
| |
| if (!time_before(jiffies, timeout)) { |
| printk("BUG: CPU%d started up but did not get a callout!\n", |
| cpuid); |
| BUG(); |
| } |
| |
| /* |
| * the boot CPU has finished the init stage and is spinning |
| * on callin_map until we finish. We are free to set up this |
| * CPU, first the APIC. (this is probably redundant on most |
| * boards) |
| */ |
| |
| Dprintk("CALLIN, before setup_local_APIC().\n"); |
| smp_callin_clear_local_apic(); |
| setup_local_APIC(); |
| map_cpu_to_logical_apicid(); |
| |
| /* |
| * Get our bogomips. |
| */ |
| calibrate_delay(); |
| Dprintk("Stack at about %p\n",&cpuid); |
| |
| /* |
| * Save our processor parameters |
| */ |
| smp_store_cpu_info(cpuid); |
| |
| disable_APIC_timer(); |
| |
| /* |
| * Allow the master to continue. |
| */ |
| cpu_set(cpuid, cpu_callin_map); |
| |
| /* |
| * Synchronize the TSC with the BP |
| */ |
| if (cpu_has_tsc && cpu_khz) |
| synchronize_tsc_ap(); |
| } |
| |
| static int cpucount; |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| static void __init start_secondary(void *unused) |
| { |
| /* |
| * Dont put anything before smp_callin(), SMP |
| * booting is too fragile that we want to limit the |
| * things done here to the most necessary things. |
| */ |
| cpu_init(); |
| smp_callin(); |
| while (!cpu_isset(smp_processor_id(), smp_commenced_mask)) |
| rep_nop(); |
| setup_secondary_APIC_clock(); |
| if (nmi_watchdog == NMI_IO_APIC) { |
| disable_8259A_irq(0); |
| enable_NMI_through_LVT0(NULL); |
| enable_8259A_irq(0); |
| } |
| enable_APIC_timer(); |
| /* |
| * low-memory mappings have been cleared, flush them from |
| * the local TLBs too. |
| */ |
| local_flush_tlb(); |
| cpu_set(smp_processor_id(), cpu_online_map); |
| |
| /* We can take interrupts now: we're officially "up". */ |
| local_irq_enable(); |
| |
| wmb(); |
| cpu_idle(); |
| } |
| |
| /* |
| * Everything has been set up for the secondary |
| * CPUs - they just need to reload everything |
| * from the task structure |
| * This function must not return. |
| */ |
| void __init initialize_secondary(void) |
| { |
| /* |
| * We don't actually need to load the full TSS, |
| * basically just the stack pointer and the eip. |
| */ |
| |
| asm volatile( |
| "movl %0,%%esp\n\t" |
| "jmp *%1" |
| : |
| :"r" (current->thread.esp),"r" (current->thread.eip)); |
| } |
| |
| extern struct { |
| void * esp; |
| unsigned short ss; |
| } stack_start; |
| |
| #ifdef CONFIG_NUMA |
| |
| /* which logical CPUs are on which nodes */ |
| cpumask_t node_2_cpu_mask[MAX_NUMNODES] = |
| { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE }; |
| /* which node each logical CPU is on */ |
| int cpu_2_node[NR_CPUS] = { [0 ... NR_CPUS-1] = 0 }; |
| EXPORT_SYMBOL(cpu_2_node); |
| |
| /* set up a mapping between cpu and node. */ |
| static inline void map_cpu_to_node(int cpu, int node) |
| { |
| printk("Mapping cpu %d to node %d\n", cpu, node); |
| cpu_set(cpu, node_2_cpu_mask[node]); |
| cpu_2_node[cpu] = node; |
| } |
| |
| /* undo a mapping between cpu and node. */ |
| static inline void unmap_cpu_to_node(int cpu) |
| { |
| int node; |
| |
| printk("Unmapping cpu %d from all nodes\n", cpu); |
| for (node = 0; node < MAX_NUMNODES; node ++) |
| cpu_clear(cpu, node_2_cpu_mask[node]); |
| cpu_2_node[cpu] = 0; |
| } |
| #else /* !CONFIG_NUMA */ |
| |
| #define map_cpu_to_node(cpu, node) ({}) |
| #define unmap_cpu_to_node(cpu) ({}) |
| |
| #endif /* CONFIG_NUMA */ |
| |
| u8 cpu_2_logical_apicid[NR_CPUS] = { [0 ... NR_CPUS-1] = BAD_APICID }; |
| |
| static void map_cpu_to_logical_apicid(void) |
| { |
| int cpu = smp_processor_id(); |
| int apicid = logical_smp_processor_id(); |
| |
| cpu_2_logical_apicid[cpu] = apicid; |
| map_cpu_to_node(cpu, apicid_to_node(apicid)); |
| } |
| |
| static void unmap_cpu_to_logical_apicid(int cpu) |
| { |
| cpu_2_logical_apicid[cpu] = BAD_APICID; |
| unmap_cpu_to_node(cpu); |
| } |
| |
| #if APIC_DEBUG |
| static inline void __inquire_remote_apic(int apicid) |
| { |
| int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; |
| char *names[] = { "ID", "VERSION", "SPIV" }; |
| int timeout, status; |
| |
| printk("Inquiring remote APIC #%d...\n", apicid); |
| |
| for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { |
| printk("... APIC #%d %s: ", apicid, names[i]); |
| |
| /* |
| * Wait for idle. |
| */ |
| apic_wait_icr_idle(); |
| |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); |
| |
| timeout = 0; |
| do { |
| udelay(100); |
| status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; |
| } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); |
| |
| switch (status) { |
| case APIC_ICR_RR_VALID: |
| status = apic_read(APIC_RRR); |
| printk("%08x\n", status); |
| break; |
| default: |
| printk("failed\n"); |
| } |
| } |
| } |
| #endif |
| |
| #ifdef WAKE_SECONDARY_VIA_NMI |
| /* |
| * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal |
| * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this |
| * won't ... remember to clear down the APIC, etc later. |
| */ |
| static int __init |
| wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip) |
| { |
| unsigned long send_status = 0, accept_status = 0; |
| int timeout, maxlvt; |
| |
| /* Target chip */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid)); |
| |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| /* |
| * Due to the Pentium erratum 3AP. |
| */ |
| maxlvt = get_maxlvt(); |
| if (maxlvt > 3) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| } |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| Dprintk("NMI sent.\n"); |
| |
| if (send_status) |
| printk("APIC never delivered???\n"); |
| if (accept_status) |
| printk("APIC delivery error (%lx).\n", accept_status); |
| |
| return (send_status | accept_status); |
| } |
| #endif /* WAKE_SECONDARY_VIA_NMI */ |
| |
| #ifdef WAKE_SECONDARY_VIA_INIT |
| static int __init |
| wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip) |
| { |
| unsigned long send_status = 0, accept_status = 0; |
| int maxlvt, timeout, num_starts, j; |
| |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| if (APIC_INTEGRATED(apic_version[phys_apicid])) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| |
| Dprintk("Asserting INIT.\n"); |
| |
| /* |
| * Turn INIT on target chip |
| */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* |
| * Send IPI |
| */ |
| apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT |
| | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| mdelay(10); |
| |
| Dprintk("Deasserting INIT.\n"); |
| |
| /* Target chip */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* Send IPI */ |
| apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| atomic_set(&init_deasserted, 1); |
| |
| /* |
| * Should we send STARTUP IPIs ? |
| * |
| * Determine this based on the APIC version. |
| * If we don't have an integrated APIC, don't send the STARTUP IPIs. |
| */ |
| if (APIC_INTEGRATED(apic_version[phys_apicid])) |
| num_starts = 2; |
| else |
| num_starts = 0; |
| |
| /* |
| * Run STARTUP IPI loop. |
| */ |
| Dprintk("#startup loops: %d.\n", num_starts); |
| |
| maxlvt = get_maxlvt(); |
| |
| for (j = 1; j <= num_starts; j++) { |
| Dprintk("Sending STARTUP #%d.\n",j); |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| Dprintk("After apic_write.\n"); |
| |
| /* |
| * STARTUP IPI |
| */ |
| |
| /* Target chip */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_write_around(APIC_ICR, APIC_DM_STARTUP |
| | (start_eip >> 12)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(300); |
| |
| Dprintk("Startup point 1.\n"); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| /* |
| * Due to the Pentium erratum 3AP. |
| */ |
| if (maxlvt > 3) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| } |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| if (send_status || accept_status) |
| break; |
| } |
| Dprintk("After Startup.\n"); |
| |
| if (send_status) |
| printk("APIC never delivered???\n"); |
| if (accept_status) |
| printk("APIC delivery error (%lx).\n", accept_status); |
| |
| return (send_status | accept_status); |
| } |
| #endif /* WAKE_SECONDARY_VIA_INIT */ |
| |
| extern cpumask_t cpu_initialized; |
| |
| static int __init do_boot_cpu(int apicid) |
| /* |
| * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad |
| * (ie clustered apic addressing mode), this is a LOGICAL apic ID. |
| * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu. |
| */ |
| { |
| struct task_struct *idle; |
| unsigned long boot_error; |
| int timeout, cpu; |
| unsigned long start_eip; |
| unsigned short nmi_high = 0, nmi_low = 0; |
| |
| cpu = ++cpucount; |
| /* |
| * We can't use kernel_thread since we must avoid to |
| * reschedule the child. |
| */ |
| idle = fork_idle(cpu); |
| if (IS_ERR(idle)) |
| panic("failed fork for CPU %d", cpu); |
| idle->thread.eip = (unsigned long) start_secondary; |
| /* start_eip had better be page-aligned! */ |
| start_eip = setup_trampoline(); |
| |
| /* So we see what's up */ |
| printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); |
| /* Stack for startup_32 can be just as for start_secondary onwards */ |
| stack_start.esp = (void *) idle->thread.esp; |
| |
| irq_ctx_init(cpu); |
| |
| /* |
| * This grunge runs the startup process for |
| * the targeted processor. |
| */ |
| |
| atomic_set(&init_deasserted, 0); |
| |
| Dprintk("Setting warm reset code and vector.\n"); |
| |
| store_NMI_vector(&nmi_high, &nmi_low); |
| |
| smpboot_setup_warm_reset_vector(start_eip); |
| |
| /* |
| * Starting actual IPI sequence... |
| */ |
| boot_error = wakeup_secondary_cpu(apicid, start_eip); |
| |
| if (!boot_error) { |
| /* |
| * allow APs to start initializing. |
| */ |
| Dprintk("Before Callout %d.\n", cpu); |
| cpu_set(cpu, cpu_callout_map); |
| Dprintk("After Callout %d.\n", cpu); |
| |
| /* |
| * Wait 5s total for a response |
| */ |
| for (timeout = 0; timeout < 50000; timeout++) { |
| if (cpu_isset(cpu, cpu_callin_map)) |
| break; /* It has booted */ |
| udelay(100); |
| } |
| |
| if (cpu_isset(cpu, cpu_callin_map)) { |
| /* number CPUs logically, starting from 1 (BSP is 0) */ |
| Dprintk("OK.\n"); |
| printk("CPU%d: ", cpu); |
| print_cpu_info(&cpu_data[cpu]); |
| Dprintk("CPU has booted.\n"); |
| } else { |
| boot_error= 1; |
| if (*((volatile unsigned char *)trampoline_base) |
| == 0xA5) |
| /* trampoline started but...? */ |
| printk("Stuck ??\n"); |
| else |
| /* trampoline code not run */ |
| printk("Not responding.\n"); |
| inquire_remote_apic(apicid); |
| } |
| } |
| x86_cpu_to_apicid[cpu] = apicid; |
| if (boot_error) { |
| /* Try to put things back the way they were before ... */ |
| unmap_cpu_to_logical_apicid(cpu); |
| cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */ |
| cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */ |
| cpucount--; |
| } |
| |
| /* mark "stuck" area as not stuck */ |
| *((volatile unsigned long *)trampoline_base) = 0; |
| |
| return boot_error; |
| } |
| |
| static void smp_tune_scheduling (void) |
| { |
| unsigned long cachesize; /* kB */ |
| unsigned long bandwidth = 350; /* MB/s */ |
| /* |
| * Rough estimation for SMP scheduling, this is the number of |
| * cycles it takes for a fully memory-limited process to flush |
| * the SMP-local cache. |
| * |
| * (For a P5 this pretty much means we will choose another idle |
| * CPU almost always at wakeup time (this is due to the small |
| * L1 cache), on PIIs it's around 50-100 usecs, depending on |
| * the cache size) |
| */ |
| |
| if (!cpu_khz) { |
| /* |
| * this basically disables processor-affinity |
| * scheduling on SMP without a TSC. |
| */ |
| return; |
| } else { |
| cachesize = boot_cpu_data.x86_cache_size; |
| if (cachesize == -1) { |
| cachesize = 16; /* Pentiums, 2x8kB cache */ |
| bandwidth = 100; |
| } |
| } |
| } |
| |
| /* |
| * Cycle through the processors sending APIC IPIs to boot each. |
| */ |
| |
| static int boot_cpu_logical_apicid; |
| /* Where the IO area was mapped on multiquad, always 0 otherwise */ |
| void *xquad_portio; |
| #ifdef CONFIG_X86_NUMAQ |
| EXPORT_SYMBOL(xquad_portio); |
| #endif |
| |
| cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned; |
| #ifdef CONFIG_X86_HT |
| EXPORT_SYMBOL(cpu_sibling_map); |
| #endif |
| cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned; |
| EXPORT_SYMBOL(cpu_core_map); |
| |
| static void __init smp_boot_cpus(unsigned int max_cpus) |
| { |
| int apicid, cpu, bit, kicked; |
| unsigned long bogosum = 0; |
| |
| /* |
| * Setup boot CPU information |
| */ |
| smp_store_cpu_info(0); /* Final full version of the data */ |
| printk("CPU%d: ", 0); |
| print_cpu_info(&cpu_data[0]); |
| |
| boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID)); |
| boot_cpu_logical_apicid = logical_smp_processor_id(); |
| x86_cpu_to_apicid[0] = boot_cpu_physical_apicid; |
| |
| current_thread_info()->cpu = 0; |
| smp_tune_scheduling(); |
| cpus_clear(cpu_sibling_map[0]); |
| cpu_set(0, cpu_sibling_map[0]); |
| |
| cpus_clear(cpu_core_map[0]); |
| cpu_set(0, cpu_core_map[0]); |
| |
| /* |
| * If we couldn't find an SMP configuration at boot time, |
| * get out of here now! |
| */ |
| if (!smp_found_config && !acpi_lapic) { |
| printk(KERN_NOTICE "SMP motherboard not detected.\n"); |
| smpboot_clear_io_apic_irqs(); |
| phys_cpu_present_map = physid_mask_of_physid(0); |
| if (APIC_init_uniprocessor()) |
| printk(KERN_NOTICE "Local APIC not detected." |
| " Using dummy APIC emulation.\n"); |
| map_cpu_to_logical_apicid(); |
| cpu_set(0, cpu_sibling_map[0]); |
| cpu_set(0, cpu_core_map[0]); |
| return; |
| } |
| |
| /* |
| * Should not be necessary because the MP table should list the boot |
| * CPU too, but we do it for the sake of robustness anyway. |
| * Makes no sense to do this check in clustered apic mode, so skip it |
| */ |
| if (!check_phys_apicid_present(boot_cpu_physical_apicid)) { |
| printk("weird, boot CPU (#%d) not listed by the BIOS.\n", |
| boot_cpu_physical_apicid); |
| physid_set(hard_smp_processor_id(), phys_cpu_present_map); |
| } |
| |
| /* |
| * If we couldn't find a local APIC, then get out of here now! |
| */ |
| if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) { |
| printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", |
| boot_cpu_physical_apicid); |
| printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); |
| smpboot_clear_io_apic_irqs(); |
| phys_cpu_present_map = physid_mask_of_physid(0); |
| cpu_set(0, cpu_sibling_map[0]); |
| cpu_set(0, cpu_core_map[0]); |
| return; |
| } |
| |
| verify_local_APIC(); |
| |
| /* |
| * If SMP should be disabled, then really disable it! |
| */ |
| if (!max_cpus) { |
| smp_found_config = 0; |
| printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); |
| smpboot_clear_io_apic_irqs(); |
| phys_cpu_present_map = physid_mask_of_physid(0); |
| cpu_set(0, cpu_sibling_map[0]); |
| cpu_set(0, cpu_core_map[0]); |
| return; |
| } |
| |
| connect_bsp_APIC(); |
| setup_local_APIC(); |
| map_cpu_to_logical_apicid(); |
| |
| |
| setup_portio_remap(); |
| |
| /* |
| * Scan the CPU present map and fire up the other CPUs via do_boot_cpu |
| * |
| * In clustered apic mode, phys_cpu_present_map is a constructed thus: |
| * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the |
| * clustered apic ID. |
| */ |
| Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map)); |
| |
| kicked = 1; |
| for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) { |
| apicid = cpu_present_to_apicid(bit); |
| /* |
| * Don't even attempt to start the boot CPU! |
| */ |
| if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID)) |
| continue; |
| |
| if (!check_apicid_present(bit)) |
| continue; |
| if (max_cpus <= cpucount+1) |
| continue; |
| |
| if (do_boot_cpu(apicid)) |
| printk("CPU #%d not responding - cannot use it.\n", |
| apicid); |
| else |
| ++kicked; |
| } |
| |
| /* |
| * Cleanup possible dangling ends... |
| */ |
| smpboot_restore_warm_reset_vector(); |
| |
| /* |
| * Allow the user to impress friends. |
| */ |
| Dprintk("Before bogomips.\n"); |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| if (cpu_isset(cpu, cpu_callout_map)) |
| bogosum += cpu_data[cpu].loops_per_jiffy; |
| printk(KERN_INFO |
| "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| cpucount+1, |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| |
| Dprintk("Before bogocount - setting activated=1.\n"); |
| |
| if (smp_b_stepping) |
| printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n"); |
| |
| /* |
| * Don't taint if we are running SMP kernel on a single non-MP |
| * approved Athlon |
| */ |
| if (tainted & TAINT_UNSAFE_SMP) { |
| if (cpucount) |
| printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n"); |
| else |
| tainted &= ~TAINT_UNSAFE_SMP; |
| } |
| |
| Dprintk("Boot done.\n"); |
| |
| /* |
| * construct cpu_sibling_map[], so that we can tell sibling CPUs |
| * efficiently. |
| */ |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| cpus_clear(cpu_sibling_map[cpu]); |
| cpus_clear(cpu_core_map[cpu]); |
| } |
| |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| struct cpuinfo_x86 *c = cpu_data + cpu; |
| int siblings = 0; |
| int i; |
| if (!cpu_isset(cpu, cpu_callout_map)) |
| continue; |
| |
| if (smp_num_siblings > 1) { |
| for (i = 0; i < NR_CPUS; i++) { |
| if (!cpu_isset(i, cpu_callout_map)) |
| continue; |
| if (cpu_core_id[cpu] == cpu_core_id[i]) { |
| siblings++; |
| cpu_set(i, cpu_sibling_map[cpu]); |
| } |
| } |
| } else { |
| siblings++; |
| cpu_set(cpu, cpu_sibling_map[cpu]); |
| } |
| |
| if (siblings != smp_num_siblings) { |
| printk(KERN_WARNING "WARNING: %d siblings found for CPU%d, should be %d\n", siblings, cpu, smp_num_siblings); |
| smp_num_siblings = siblings; |
| } |
| |
| if (c->x86_num_cores > 1) { |
| for (i = 0; i < NR_CPUS; i++) { |
| if (!cpu_isset(i, cpu_callout_map)) |
| continue; |
| if (phys_proc_id[cpu] == phys_proc_id[i]) { |
| cpu_set(i, cpu_core_map[cpu]); |
| } |
| } |
| } else { |
| cpu_core_map[cpu] = cpu_sibling_map[cpu]; |
| } |
| } |
| |
| smpboot_setup_io_apic(); |
| |
| setup_boot_APIC_clock(); |
| |
| /* |
| * Synchronize the TSC with the AP |
| */ |
| if (cpu_has_tsc && cpucount && cpu_khz) |
| synchronize_tsc_bp(); |
| } |
| |
| /* These are wrappers to interface to the new boot process. Someone |
| who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */ |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| smp_boot_cpus(max_cpus); |
| } |
| |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| cpu_set(smp_processor_id(), cpu_online_map); |
| cpu_set(smp_processor_id(), cpu_callout_map); |
| } |
| |
| int __devinit __cpu_up(unsigned int cpu) |
| { |
| /* This only works at boot for x86. See "rewrite" above. */ |
| if (cpu_isset(cpu, smp_commenced_mask)) { |
| local_irq_enable(); |
| return -ENOSYS; |
| } |
| |
| /* In case one didn't come up */ |
| if (!cpu_isset(cpu, cpu_callin_map)) { |
| local_irq_enable(); |
| return -EIO; |
| } |
| |
| local_irq_enable(); |
| /* Unleash the CPU! */ |
| cpu_set(cpu, smp_commenced_mask); |
| while (!cpu_isset(cpu, cpu_online_map)) |
| mb(); |
| return 0; |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| #ifdef CONFIG_X86_IO_APIC |
| setup_ioapic_dest(); |
| #endif |
| zap_low_mappings(); |
| /* |
| * Disable executability of the SMP trampoline: |
| */ |
| set_kernel_exec((unsigned long)trampoline_base, trampoline_exec); |
| } |
| |
| void __init smp_intr_init(void) |
| { |
| /* |
| * IRQ0 must be given a fixed assignment and initialized, |
| * because it's used before the IO-APIC is set up. |
| */ |
| set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]); |
| |
| /* |
| * The reschedule interrupt is a CPU-to-CPU reschedule-helper |
| * IPI, driven by wakeup. |
| */ |
| set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); |
| |
| /* IPI for invalidation */ |
| set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt); |
| |
| /* IPI for generic function call */ |
| set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); |
| } |