| /* |
| * fs/partitions/msdos.c |
| * |
| * Code extracted from drivers/block/genhd.c |
| * Copyright (C) 1991-1998 Linus Torvalds |
| * |
| * Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug |
| * in the early extended-partition checks and added DM partitions |
| * |
| * Support for DiskManager v6.0x added by Mark Lord, |
| * with information provided by OnTrack. This now works for linux fdisk |
| * and LILO, as well as loadlin and bootln. Note that disks other than |
| * /dev/hda *must* have a "DOS" type 0x51 partition in the first slot (hda1). |
| * |
| * More flexible handling of extended partitions - aeb, 950831 |
| * |
| * Check partition table on IDE disks for common CHS translations |
| * |
| * Re-organised Feb 1998 Russell King |
| */ |
| #include <linux/msdos_fs.h> |
| |
| #include "check.h" |
| #include "msdos.h" |
| #include "efi.h" |
| |
| /* |
| * Many architectures don't like unaligned accesses, while |
| * the nr_sects and start_sect partition table entries are |
| * at a 2 (mod 4) address. |
| */ |
| #include <asm/unaligned.h> |
| |
| #define SYS_IND(p) get_unaligned(&p->sys_ind) |
| |
| static inline sector_t nr_sects(struct partition *p) |
| { |
| return (sector_t)get_unaligned_le32(&p->nr_sects); |
| } |
| |
| static inline sector_t start_sect(struct partition *p) |
| { |
| return (sector_t)get_unaligned_le32(&p->start_sect); |
| } |
| |
| static inline int is_extended_partition(struct partition *p) |
| { |
| return (SYS_IND(p) == DOS_EXTENDED_PARTITION || |
| SYS_IND(p) == WIN98_EXTENDED_PARTITION || |
| SYS_IND(p) == LINUX_EXTENDED_PARTITION); |
| } |
| |
| #define MSDOS_LABEL_MAGIC1 0x55 |
| #define MSDOS_LABEL_MAGIC2 0xAA |
| |
| static inline int |
| msdos_magic_present(unsigned char *p) |
| { |
| return (p[0] == MSDOS_LABEL_MAGIC1 && p[1] == MSDOS_LABEL_MAGIC2); |
| } |
| |
| /* Value is EBCDIC 'IBMA' */ |
| #define AIX_LABEL_MAGIC1 0xC9 |
| #define AIX_LABEL_MAGIC2 0xC2 |
| #define AIX_LABEL_MAGIC3 0xD4 |
| #define AIX_LABEL_MAGIC4 0xC1 |
| static int aix_magic_present(struct parsed_partitions *state, unsigned char *p) |
| { |
| struct partition *pt = (struct partition *) (p + 0x1be); |
| Sector sect; |
| unsigned char *d; |
| int slot, ret = 0; |
| |
| if (!(p[0] == AIX_LABEL_MAGIC1 && |
| p[1] == AIX_LABEL_MAGIC2 && |
| p[2] == AIX_LABEL_MAGIC3 && |
| p[3] == AIX_LABEL_MAGIC4)) |
| return 0; |
| /* Assume the partition table is valid if Linux partitions exists */ |
| for (slot = 1; slot <= 4; slot++, pt++) { |
| if (pt->sys_ind == LINUX_SWAP_PARTITION || |
| pt->sys_ind == LINUX_RAID_PARTITION || |
| pt->sys_ind == LINUX_DATA_PARTITION || |
| pt->sys_ind == LINUX_LVM_PARTITION || |
| is_extended_partition(pt)) |
| return 0; |
| } |
| d = read_part_sector(state, 7, §); |
| if (d) { |
| if (d[0] == '_' && d[1] == 'L' && d[2] == 'V' && d[3] == 'M') |
| ret = 1; |
| put_dev_sector(sect); |
| }; |
| return ret; |
| } |
| |
| /* |
| * Create devices for each logical partition in an extended partition. |
| * The logical partitions form a linked list, with each entry being |
| * a partition table with two entries. The first entry |
| * is the real data partition (with a start relative to the partition |
| * table start). The second is a pointer to the next logical partition |
| * (with a start relative to the entire extended partition). |
| * We do not create a Linux partition for the partition tables, but |
| * only for the actual data partitions. |
| */ |
| |
| static void parse_extended(struct parsed_partitions *state, |
| sector_t first_sector, sector_t first_size) |
| { |
| struct partition *p; |
| Sector sect; |
| unsigned char *data; |
| sector_t this_sector, this_size; |
| sector_t sector_size = bdev_logical_block_size(state->bdev) / 512; |
| int loopct = 0; /* number of links followed |
| without finding a data partition */ |
| int i; |
| |
| this_sector = first_sector; |
| this_size = first_size; |
| |
| while (1) { |
| if (++loopct > 100) |
| return; |
| if (state->next == state->limit) |
| return; |
| data = read_part_sector(state, this_sector, §); |
| if (!data) |
| return; |
| |
| if (!msdos_magic_present(data + 510)) |
| goto done; |
| |
| p = (struct partition *) (data + 0x1be); |
| |
| /* |
| * Usually, the first entry is the real data partition, |
| * the 2nd entry is the next extended partition, or empty, |
| * and the 3rd and 4th entries are unused. |
| * However, DRDOS sometimes has the extended partition as |
| * the first entry (when the data partition is empty), |
| * and OS/2 seems to use all four entries. |
| */ |
| |
| /* |
| * First process the data partition(s) |
| */ |
| for (i=0; i<4; i++, p++) { |
| sector_t offs, size, next; |
| if (!nr_sects(p) || is_extended_partition(p)) |
| continue; |
| |
| /* Check the 3rd and 4th entries - |
| these sometimes contain random garbage */ |
| offs = start_sect(p)*sector_size; |
| size = nr_sects(p)*sector_size; |
| next = this_sector + offs; |
| if (i >= 2) { |
| if (offs + size > this_size) |
| continue; |
| if (next < first_sector) |
| continue; |
| if (next + size > first_sector + first_size) |
| continue; |
| } |
| |
| put_partition(state, state->next, next, size); |
| if (SYS_IND(p) == LINUX_RAID_PARTITION) |
| state->parts[state->next].flags = ADDPART_FLAG_RAID; |
| loopct = 0; |
| if (++state->next == state->limit) |
| goto done; |
| } |
| /* |
| * Next, process the (first) extended partition, if present. |
| * (So far, there seems to be no reason to make |
| * parse_extended() recursive and allow a tree |
| * of extended partitions.) |
| * It should be a link to the next logical partition. |
| */ |
| p -= 4; |
| for (i=0; i<4; i++, p++) |
| if (nr_sects(p) && is_extended_partition(p)) |
| break; |
| if (i == 4) |
| goto done; /* nothing left to do */ |
| |
| this_sector = first_sector + start_sect(p) * sector_size; |
| this_size = nr_sects(p) * sector_size; |
| put_dev_sector(sect); |
| } |
| done: |
| put_dev_sector(sect); |
| } |
| |
| /* james@bpgc.com: Solaris has a nasty indicator: 0x82 which also |
| indicates linux swap. Be careful before believing this is Solaris. */ |
| |
| static void parse_solaris_x86(struct parsed_partitions *state, |
| sector_t offset, sector_t size, int origin) |
| { |
| #ifdef CONFIG_SOLARIS_X86_PARTITION |
| Sector sect; |
| struct solaris_x86_vtoc *v; |
| int i; |
| short max_nparts; |
| |
| v = read_part_sector(state, offset + 1, §); |
| if (!v) |
| return; |
| if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) { |
| put_dev_sector(sect); |
| return; |
| } |
| printk(" %s%d: <solaris:", state->name, origin); |
| if (le32_to_cpu(v->v_version) != 1) { |
| printk(" cannot handle version %d vtoc>\n", |
| le32_to_cpu(v->v_version)); |
| put_dev_sector(sect); |
| return; |
| } |
| /* Ensure we can handle previous case of VTOC with 8 entries gracefully */ |
| max_nparts = le16_to_cpu (v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8; |
| for (i=0; i<max_nparts && state->next<state->limit; i++) { |
| struct solaris_x86_slice *s = &v->v_slice[i]; |
| if (s->s_size == 0) |
| continue; |
| printk(" [s%d]", i); |
| /* solaris partitions are relative to current MS-DOS |
| * one; must add the offset of the current partition */ |
| put_partition(state, state->next++, |
| le32_to_cpu(s->s_start)+offset, |
| le32_to_cpu(s->s_size)); |
| } |
| put_dev_sector(sect); |
| printk(" >\n"); |
| #endif |
| } |
| |
| #if defined(CONFIG_BSD_DISKLABEL) |
| /* |
| * Create devices for BSD partitions listed in a disklabel, under a |
| * dos-like partition. See parse_extended() for more information. |
| */ |
| static void parse_bsd(struct parsed_partitions *state, |
| sector_t offset, sector_t size, int origin, char *flavour, |
| int max_partitions) |
| { |
| Sector sect; |
| struct bsd_disklabel *l; |
| struct bsd_partition *p; |
| |
| l = read_part_sector(state, offset + 1, §); |
| if (!l) |
| return; |
| if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) { |
| put_dev_sector(sect); |
| return; |
| } |
| printk(" %s%d: <%s:", state->name, origin, flavour); |
| |
| if (le16_to_cpu(l->d_npartitions) < max_partitions) |
| max_partitions = le16_to_cpu(l->d_npartitions); |
| for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) { |
| sector_t bsd_start, bsd_size; |
| |
| if (state->next == state->limit) |
| break; |
| if (p->p_fstype == BSD_FS_UNUSED) |
| continue; |
| bsd_start = le32_to_cpu(p->p_offset); |
| bsd_size = le32_to_cpu(p->p_size); |
| if (offset == bsd_start && size == bsd_size) |
| /* full parent partition, we have it already */ |
| continue; |
| if (offset > bsd_start || offset+size < bsd_start+bsd_size) { |
| printk("bad subpartition - ignored\n"); |
| continue; |
| } |
| put_partition(state, state->next++, bsd_start, bsd_size); |
| } |
| put_dev_sector(sect); |
| if (le16_to_cpu(l->d_npartitions) > max_partitions) |
| printk(" (ignored %d more)", |
| le16_to_cpu(l->d_npartitions) - max_partitions); |
| printk(" >\n"); |
| } |
| #endif |
| |
| static void parse_freebsd(struct parsed_partitions *state, |
| sector_t offset, sector_t size, int origin) |
| { |
| #ifdef CONFIG_BSD_DISKLABEL |
| parse_bsd(state, offset, size, origin, "bsd", BSD_MAXPARTITIONS); |
| #endif |
| } |
| |
| static void parse_netbsd(struct parsed_partitions *state, |
| sector_t offset, sector_t size, int origin) |
| { |
| #ifdef CONFIG_BSD_DISKLABEL |
| parse_bsd(state, offset, size, origin, "netbsd", BSD_MAXPARTITIONS); |
| #endif |
| } |
| |
| static void parse_openbsd(struct parsed_partitions *state, |
| sector_t offset, sector_t size, int origin) |
| { |
| #ifdef CONFIG_BSD_DISKLABEL |
| parse_bsd(state, offset, size, origin, "openbsd", |
| OPENBSD_MAXPARTITIONS); |
| #endif |
| } |
| |
| /* |
| * Create devices for Unixware partitions listed in a disklabel, under a |
| * dos-like partition. See parse_extended() for more information. |
| */ |
| static void parse_unixware(struct parsed_partitions *state, |
| sector_t offset, sector_t size, int origin) |
| { |
| #ifdef CONFIG_UNIXWARE_DISKLABEL |
| Sector sect; |
| struct unixware_disklabel *l; |
| struct unixware_slice *p; |
| |
| l = read_part_sector(state, offset + 29, §); |
| if (!l) |
| return; |
| if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC || |
| le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) { |
| put_dev_sector(sect); |
| return; |
| } |
| printk(" %s%d: <unixware:", state->name, origin); |
| p = &l->vtoc.v_slice[1]; |
| /* I omit the 0th slice as it is the same as whole disk. */ |
| while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) { |
| if (state->next == state->limit) |
| break; |
| |
| if (p->s_label != UNIXWARE_FS_UNUSED) |
| put_partition(state, state->next++, |
| le32_to_cpu(p->start_sect), |
| le32_to_cpu(p->nr_sects)); |
| p++; |
| } |
| put_dev_sector(sect); |
| printk(" >\n"); |
| #endif |
| } |
| |
| /* |
| * Minix 2.0.0/2.0.2 subpartition support. |
| * Anand Krishnamurthy <anandk@wiproge.med.ge.com> |
| * Rajeev V. Pillai <rajeevvp@yahoo.com> |
| */ |
| static void parse_minix(struct parsed_partitions *state, |
| sector_t offset, sector_t size, int origin) |
| { |
| #ifdef CONFIG_MINIX_SUBPARTITION |
| Sector sect; |
| unsigned char *data; |
| struct partition *p; |
| int i; |
| |
| data = read_part_sector(state, offset, §); |
| if (!data) |
| return; |
| |
| p = (struct partition *)(data + 0x1be); |
| |
| /* The first sector of a Minix partition can have either |
| * a secondary MBR describing its subpartitions, or |
| * the normal boot sector. */ |
| if (msdos_magic_present (data + 510) && |
| SYS_IND(p) == MINIX_PARTITION) { /* subpartition table present */ |
| |
| printk(" %s%d: <minix:", state->name, origin); |
| for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) { |
| if (state->next == state->limit) |
| break; |
| /* add each partition in use */ |
| if (SYS_IND(p) == MINIX_PARTITION) |
| put_partition(state, state->next++, |
| start_sect(p), nr_sects(p)); |
| } |
| printk(" >\n"); |
| } |
| put_dev_sector(sect); |
| #endif /* CONFIG_MINIX_SUBPARTITION */ |
| } |
| |
| static struct { |
| unsigned char id; |
| void (*parse)(struct parsed_partitions *, sector_t, sector_t, int); |
| } subtypes[] = { |
| {FREEBSD_PARTITION, parse_freebsd}, |
| {NETBSD_PARTITION, parse_netbsd}, |
| {OPENBSD_PARTITION, parse_openbsd}, |
| {MINIX_PARTITION, parse_minix}, |
| {UNIXWARE_PARTITION, parse_unixware}, |
| {SOLARIS_X86_PARTITION, parse_solaris_x86}, |
| {NEW_SOLARIS_X86_PARTITION, parse_solaris_x86}, |
| {0, NULL}, |
| }; |
| |
| int msdos_partition(struct parsed_partitions *state) |
| { |
| sector_t sector_size = bdev_logical_block_size(state->bdev) / 512; |
| Sector sect; |
| unsigned char *data; |
| struct partition *p; |
| struct fat_boot_sector *fb; |
| int slot; |
| |
| data = read_part_sector(state, 0, §); |
| if (!data) |
| return -1; |
| if (!msdos_magic_present(data + 510)) { |
| put_dev_sector(sect); |
| return 0; |
| } |
| |
| if (aix_magic_present(state, data)) { |
| put_dev_sector(sect); |
| printk( " [AIX]"); |
| return 0; |
| } |
| |
| /* |
| * Now that the 55aa signature is present, this is probably |
| * either the boot sector of a FAT filesystem or a DOS-type |
| * partition table. Reject this in case the boot indicator |
| * is not 0 or 0x80. |
| */ |
| p = (struct partition *) (data + 0x1be); |
| for (slot = 1; slot <= 4; slot++, p++) { |
| if (p->boot_ind != 0 && p->boot_ind != 0x80) { |
| /* |
| * Even without a valid boot inidicator value |
| * its still possible this is valid FAT filesystem |
| * without a partition table. |
| */ |
| fb = (struct fat_boot_sector *) data; |
| if (slot == 1 && fb->reserved && fb->fats |
| && fat_valid_media(fb->media)) { |
| printk("\n"); |
| put_dev_sector(sect); |
| return 1; |
| } else { |
| put_dev_sector(sect); |
| return 0; |
| } |
| } |
| } |
| |
| #ifdef CONFIG_EFI_PARTITION |
| p = (struct partition *) (data + 0x1be); |
| for (slot = 1 ; slot <= 4 ; slot++, p++) { |
| /* If this is an EFI GPT disk, msdos should ignore it. */ |
| if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) { |
| put_dev_sector(sect); |
| return 0; |
| } |
| } |
| #endif |
| p = (struct partition *) (data + 0x1be); |
| |
| /* |
| * Look for partitions in two passes: |
| * First find the primary and DOS-type extended partitions. |
| * On the second pass look inside *BSD, Unixware and Solaris partitions. |
| */ |
| |
| state->next = 5; |
| for (slot = 1 ; slot <= 4 ; slot++, p++) { |
| sector_t start = start_sect(p)*sector_size; |
| sector_t size = nr_sects(p)*sector_size; |
| if (!size) |
| continue; |
| if (is_extended_partition(p)) { |
| /* |
| * prevent someone doing mkfs or mkswap on an |
| * extended partition, but leave room for LILO |
| * FIXME: this uses one logical sector for > 512b |
| * sector, although it may not be enough/proper. |
| */ |
| sector_t n = 2; |
| n = min(size, max(sector_size, n)); |
| put_partition(state, slot, start, n); |
| |
| printk(" <"); |
| parse_extended(state, start, size); |
| printk(" >"); |
| continue; |
| } |
| put_partition(state, slot, start, size); |
| if (SYS_IND(p) == LINUX_RAID_PARTITION) |
| state->parts[slot].flags = 1; |
| if (SYS_IND(p) == DM6_PARTITION) |
| printk("[DM]"); |
| if (SYS_IND(p) == EZD_PARTITION) |
| printk("[EZD]"); |
| } |
| |
| printk("\n"); |
| |
| /* second pass - output for each on a separate line */ |
| p = (struct partition *) (0x1be + data); |
| for (slot = 1 ; slot <= 4 ; slot++, p++) { |
| unsigned char id = SYS_IND(p); |
| int n; |
| |
| if (!nr_sects(p)) |
| continue; |
| |
| for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++) |
| ; |
| |
| if (!subtypes[n].parse) |
| continue; |
| subtypes[n].parse(state, start_sect(p) * sector_size, |
| nr_sects(p) * sector_size, slot); |
| } |
| put_dev_sector(sect); |
| return 1; |
| } |