| /* |
| * Routines for doing kexec-based kdump. |
| * |
| * Copyright (C) 2005, IBM Corp. |
| * |
| * Created by: Michael Ellerman |
| * |
| * This source code is licensed under the GNU General Public License, |
| * Version 2. See the file COPYING for more details. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/crash_dump.h> |
| #include <linux/bootmem.h> |
| #include <asm/kdump.h> |
| #include <asm/lmb.h> |
| #include <asm/firmware.h> |
| #include <asm/uaccess.h> |
| |
| #ifdef DEBUG |
| #include <asm/udbg.h> |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| void __init reserve_kdump_trampoline(void) |
| { |
| lmb_reserve(0, KDUMP_RESERVE_LIMIT); |
| } |
| |
| static void __init create_trampoline(unsigned long addr) |
| { |
| /* The maximum range of a single instruction branch, is the current |
| * instruction's address + (32 MB - 4) bytes. For the trampoline we |
| * need to branch to current address + 32 MB. So we insert a nop at |
| * the trampoline address, then the next instruction (+ 4 bytes) |
| * does a branch to (32 MB - 4). The net effect is that when we |
| * branch to "addr" we jump to ("addr" + 32 MB). Although it requires |
| * two instructions it doesn't require any registers. |
| */ |
| create_instruction(addr, 0x60000000); /* nop */ |
| create_branch(addr + 4, addr + PHYSICAL_START, 0); |
| } |
| |
| void __init setup_kdump_trampoline(void) |
| { |
| unsigned long i; |
| |
| DBG(" -> setup_kdump_trampoline()\n"); |
| |
| for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) { |
| create_trampoline(i); |
| } |
| |
| create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START); |
| create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START); |
| |
| DBG(" <- setup_kdump_trampoline()\n"); |
| } |
| |
| #ifdef CONFIG_PROC_VMCORE |
| static int __init parse_elfcorehdr(char *p) |
| { |
| if (p) |
| elfcorehdr_addr = memparse(p, &p); |
| |
| return 1; |
| } |
| __setup("elfcorehdr=", parse_elfcorehdr); |
| #endif |
| |
| static int __init parse_savemaxmem(char *p) |
| { |
| if (p) |
| saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1; |
| |
| return 1; |
| } |
| __setup("savemaxmem=", parse_savemaxmem); |
| |
| /** |
| * copy_oldmem_page - copy one page from "oldmem" |
| * @pfn: page frame number to be copied |
| * @buf: target memory address for the copy; this can be in kernel address |
| * space or user address space (see @userbuf) |
| * @csize: number of bytes to copy |
| * @offset: offset in bytes into the page (based on pfn) to begin the copy |
| * @userbuf: if set, @buf is in user address space, use copy_to_user(), |
| * otherwise @buf is in kernel address space, use memcpy(). |
| * |
| * Copy a page from "oldmem". For this page, there is no pte mapped |
| * in the current kernel. We stitch up a pte, similar to kmap_atomic. |
| */ |
| ssize_t copy_oldmem_page(unsigned long pfn, char *buf, |
| size_t csize, unsigned long offset, int userbuf) |
| { |
| void *vaddr; |
| |
| if (!csize) |
| return 0; |
| |
| vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0); |
| |
| if (userbuf) { |
| if (copy_to_user((char __user *)buf, (vaddr + offset), csize)) { |
| iounmap(vaddr); |
| return -EFAULT; |
| } |
| } else |
| memcpy(buf, (vaddr + offset), csize); |
| |
| iounmap(vaddr); |
| return csize; |
| } |