| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2006 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| */ |
| |
| /* e1000_hw.c |
| * Shared functions for accessing and configuring the MAC |
| */ |
| |
| #include "e1000.h" |
| |
| static s32 e1000_check_downshift(struct e1000_hw *hw); |
| static s32 e1000_check_polarity(struct e1000_hw *hw, |
| e1000_rev_polarity *polarity); |
| static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
| static void e1000_clear_vfta(struct e1000_hw *hw); |
| static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
| bool link_up); |
| static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| static s32 e1000_detect_gig_phy(struct e1000_hw *hw); |
| static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); |
| static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
| u16 *max_length); |
| static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
| static s32 e1000_id_led_init(struct e1000_hw *hw); |
| static void e1000_init_rx_addrs(struct e1000_hw *hw); |
| static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info); |
| static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info); |
| static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); |
| static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
| static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); |
| static s32 e1000_set_phy_type(struct e1000_hw *hw); |
| static void e1000_phy_init_script(struct e1000_hw *hw); |
| static s32 e1000_setup_copper_link(struct e1000_hw *hw); |
| static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); |
| static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); |
| static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
| static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); |
| static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
| static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
| static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); |
| static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
| static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); |
| static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data); |
| static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data); |
| static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); |
| static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); |
| static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); |
| static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); |
| static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
| u16 phy_data); |
| static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
| u16 *phy_data); |
| static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); |
| static s32 e1000_acquire_eeprom(struct e1000_hw *hw); |
| static void e1000_release_eeprom(struct e1000_hw *hw); |
| static void e1000_standby_eeprom(struct e1000_hw *hw); |
| static s32 e1000_set_vco_speed(struct e1000_hw *hw); |
| static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
| static s32 e1000_set_phy_mode(struct e1000_hw *hw); |
| static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data); |
| static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data); |
| |
| /* IGP cable length table */ |
| static const |
| u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
| 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
| 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
| 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
| 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
| 100, |
| 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
| 110, 110, |
| 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, |
| 120, 120 |
| }; |
| |
| static DEFINE_SPINLOCK(e1000_eeprom_lock); |
| |
| /** |
| * e1000_set_phy_type - Set the phy type member in the hw struct. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static s32 e1000_set_phy_type(struct e1000_hw *hw) |
| { |
| e_dbg("e1000_set_phy_type"); |
| |
| if (hw->mac_type == e1000_undefined) |
| return -E1000_ERR_PHY_TYPE; |
| |
| switch (hw->phy_id) { |
| case M88E1000_E_PHY_ID: |
| case M88E1000_I_PHY_ID: |
| case M88E1011_I_PHY_ID: |
| case M88E1111_I_PHY_ID: |
| case M88E1118_E_PHY_ID: |
| hw->phy_type = e1000_phy_m88; |
| break; |
| case IGP01E1000_I_PHY_ID: |
| if (hw->mac_type == e1000_82541 || |
| hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547 || |
| hw->mac_type == e1000_82547_rev_2) |
| hw->phy_type = e1000_phy_igp; |
| break; |
| case RTL8211B_PHY_ID: |
| hw->phy_type = e1000_phy_8211; |
| break; |
| case RTL8201N_PHY_ID: |
| hw->phy_type = e1000_phy_8201; |
| break; |
| default: |
| /* Should never have loaded on this device */ |
| hw->phy_type = e1000_phy_undefined; |
| return -E1000_ERR_PHY_TYPE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static void e1000_phy_init_script(struct e1000_hw *hw) |
| { |
| u32 ret_val; |
| u16 phy_saved_data; |
| |
| e_dbg("e1000_phy_init_script"); |
| |
| if (hw->phy_init_script) { |
| msleep(20); |
| |
| /* Save off the current value of register 0x2F5B to be restored at |
| * the end of this routine. */ |
| ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| |
| /* Disabled the PHY transmitter */ |
| e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| msleep(20); |
| |
| e1000_write_phy_reg(hw, 0x0000, 0x0140); |
| msleep(5); |
| |
| switch (hw->mac_type) { |
| case e1000_82541: |
| case e1000_82547: |
| e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
| e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
| e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
| e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
| e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
| e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
| e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
| e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
| e1000_write_phy_reg(hw, 0x2010, 0x0008); |
| break; |
| |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
| break; |
| default: |
| break; |
| } |
| |
| e1000_write_phy_reg(hw, 0x0000, 0x3300); |
| msleep(20); |
| |
| /* Now enable the transmitter */ |
| e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| |
| if (hw->mac_type == e1000_82547) { |
| u16 fused, fine, coarse; |
| |
| /* Move to analog registers page */ |
| e1000_read_phy_reg(hw, |
| IGP01E1000_ANALOG_SPARE_FUSE_STATUS, |
| &fused); |
| |
| if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
| e1000_read_phy_reg(hw, |
| IGP01E1000_ANALOG_FUSE_STATUS, |
| &fused); |
| |
| fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
| coarse = |
| fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
| |
| if (coarse > |
| IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
| coarse -= |
| IGP01E1000_ANALOG_FUSE_COARSE_10; |
| fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
| } else if (coarse == |
| IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
| fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
| |
| fused = |
| (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
| (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
| (coarse & |
| IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
| |
| e1000_write_phy_reg(hw, |
| IGP01E1000_ANALOG_FUSE_CONTROL, |
| fused); |
| e1000_write_phy_reg(hw, |
| IGP01E1000_ANALOG_FUSE_BYPASS, |
| IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
| } |
| } |
| } |
| } |
| |
| /** |
| * e1000_set_mac_type - Set the mac type member in the hw struct. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| s32 e1000_set_mac_type(struct e1000_hw *hw) |
| { |
| e_dbg("e1000_set_mac_type"); |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82542: |
| switch (hw->revision_id) { |
| case E1000_82542_2_0_REV_ID: |
| hw->mac_type = e1000_82542_rev2_0; |
| break; |
| case E1000_82542_2_1_REV_ID: |
| hw->mac_type = e1000_82542_rev2_1; |
| break; |
| default: |
| /* Invalid 82542 revision ID */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| break; |
| case E1000_DEV_ID_82543GC_FIBER: |
| case E1000_DEV_ID_82543GC_COPPER: |
| hw->mac_type = e1000_82543; |
| break; |
| case E1000_DEV_ID_82544EI_COPPER: |
| case E1000_DEV_ID_82544EI_FIBER: |
| case E1000_DEV_ID_82544GC_COPPER: |
| case E1000_DEV_ID_82544GC_LOM: |
| hw->mac_type = e1000_82544; |
| break; |
| case E1000_DEV_ID_82540EM: |
| case E1000_DEV_ID_82540EM_LOM: |
| case E1000_DEV_ID_82540EP: |
| case E1000_DEV_ID_82540EP_LOM: |
| case E1000_DEV_ID_82540EP_LP: |
| hw->mac_type = e1000_82540; |
| break; |
| case E1000_DEV_ID_82545EM_COPPER: |
| case E1000_DEV_ID_82545EM_FIBER: |
| hw->mac_type = e1000_82545; |
| break; |
| case E1000_DEV_ID_82545GM_COPPER: |
| case E1000_DEV_ID_82545GM_FIBER: |
| case E1000_DEV_ID_82545GM_SERDES: |
| hw->mac_type = e1000_82545_rev_3; |
| break; |
| case E1000_DEV_ID_82546EB_COPPER: |
| case E1000_DEV_ID_82546EB_FIBER: |
| case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| hw->mac_type = e1000_82546; |
| break; |
| case E1000_DEV_ID_82546GB_COPPER: |
| case E1000_DEV_ID_82546GB_FIBER: |
| case E1000_DEV_ID_82546GB_SERDES: |
| case E1000_DEV_ID_82546GB_PCIE: |
| case E1000_DEV_ID_82546GB_QUAD_COPPER: |
| case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
| hw->mac_type = e1000_82546_rev_3; |
| break; |
| case E1000_DEV_ID_82541EI: |
| case E1000_DEV_ID_82541EI_MOBILE: |
| case E1000_DEV_ID_82541ER_LOM: |
| hw->mac_type = e1000_82541; |
| break; |
| case E1000_DEV_ID_82541ER: |
| case E1000_DEV_ID_82541GI: |
| case E1000_DEV_ID_82541GI_LF: |
| case E1000_DEV_ID_82541GI_MOBILE: |
| hw->mac_type = e1000_82541_rev_2; |
| break; |
| case E1000_DEV_ID_82547EI: |
| case E1000_DEV_ID_82547EI_MOBILE: |
| hw->mac_type = e1000_82547; |
| break; |
| case E1000_DEV_ID_82547GI: |
| hw->mac_type = e1000_82547_rev_2; |
| break; |
| case E1000_DEV_ID_INTEL_CE4100_GBE: |
| hw->mac_type = e1000_ce4100; |
| break; |
| default: |
| /* Should never have loaded on this device */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| |
| switch (hw->mac_type) { |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| hw->asf_firmware_present = true; |
| break; |
| default: |
| break; |
| } |
| |
| /* The 82543 chip does not count tx_carrier_errors properly in |
| * FD mode |
| */ |
| if (hw->mac_type == e1000_82543) |
| hw->bad_tx_carr_stats_fd = true; |
| |
| if (hw->mac_type > e1000_82544) |
| hw->has_smbus = true; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_media_type - Set media type and TBI compatibility. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| void e1000_set_media_type(struct e1000_hw *hw) |
| { |
| u32 status; |
| |
| e_dbg("e1000_set_media_type"); |
| |
| if (hw->mac_type != e1000_82543) { |
| /* tbi_compatibility is only valid on 82543 */ |
| hw->tbi_compatibility_en = false; |
| } |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82545GM_SERDES: |
| case E1000_DEV_ID_82546GB_SERDES: |
| hw->media_type = e1000_media_type_internal_serdes; |
| break; |
| default: |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| hw->media_type = e1000_media_type_fiber; |
| break; |
| case e1000_ce4100: |
| hw->media_type = e1000_media_type_copper; |
| break; |
| default: |
| status = er32(STATUS); |
| if (status & E1000_STATUS_TBIMODE) { |
| hw->media_type = e1000_media_type_fiber; |
| /* tbi_compatibility not valid on fiber */ |
| hw->tbi_compatibility_en = false; |
| } else { |
| hw->media_type = e1000_media_type_copper; |
| } |
| break; |
| } |
| } |
| } |
| |
| /** |
| * e1000_reset_hw: reset the hardware completely |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Reset the transmit and receive units; mask and clear all interrupts. |
| */ |
| s32 e1000_reset_hw(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| u32 ctrl_ext; |
| u32 icr; |
| u32 manc; |
| u32 led_ctrl; |
| s32 ret_val; |
| |
| e_dbg("e1000_reset_hw"); |
| |
| /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| e_dbg("Disabling MWI on 82542 rev 2.0\n"); |
| e1000_pci_clear_mwi(hw); |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| e_dbg("Masking off all interrupts\n"); |
| ew32(IMC, 0xffffffff); |
| |
| /* Disable the Transmit and Receive units. Then delay to allow |
| * any pending transactions to complete before we hit the MAC with |
| * the global reset. |
| */ |
| ew32(RCTL, 0); |
| ew32(TCTL, E1000_TCTL_PSP); |
| E1000_WRITE_FLUSH(); |
| |
| /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| hw->tbi_compatibility_on = false; |
| |
| /* Delay to allow any outstanding PCI transactions to complete before |
| * resetting the device |
| */ |
| msleep(10); |
| |
| ctrl = er32(CTRL); |
| |
| /* Must reset the PHY before resetting the MAC */ |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
| msleep(5); |
| } |
| |
| /* Issue a global reset to the MAC. This will reset the chip's |
| * transmit, receive, DMA, and link units. It will not effect |
| * the current PCI configuration. The global reset bit is self- |
| * clearing, and should clear within a microsecond. |
| */ |
| e_dbg("Issuing a global reset to MAC\n"); |
| |
| switch (hw->mac_type) { |
| case e1000_82544: |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82546: |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| /* These controllers can't ack the 64-bit write when issuing the |
| * reset, so use IO-mapping as a workaround to issue the reset */ |
| E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| break; |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| /* Reset is performed on a shadow of the control register */ |
| ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
| break; |
| case e1000_ce4100: |
| default: |
| ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
| break; |
| } |
| |
| /* After MAC reset, force reload of EEPROM to restore power-on settings to |
| * device. Later controllers reload the EEPROM automatically, so just wait |
| * for reload to complete. |
| */ |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| /* Wait for reset to complete */ |
| udelay(10); |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| ew32(CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(); |
| /* Wait for EEPROM reload */ |
| msleep(2); |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| /* Wait for EEPROM reload */ |
| msleep(20); |
| break; |
| default: |
| /* Auto read done will delay 5ms or poll based on mac type */ |
| ret_val = e1000_get_auto_rd_done(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| } |
| |
| /* Disable HW ARPs on ASF enabled adapters */ |
| if (hw->mac_type >= e1000_82540) { |
| manc = er32(MANC); |
| manc &= ~(E1000_MANC_ARP_EN); |
| ew32(MANC, manc); |
| } |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| e1000_phy_init_script(hw); |
| |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = er32(LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| ew32(LEDCTL, led_ctrl); |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| e_dbg("Masking off all interrupts\n"); |
| ew32(IMC, 0xffffffff); |
| |
| /* Clear any pending interrupt events. */ |
| icr = er32(ICR); |
| |
| /* If MWI was previously enabled, reenable it. */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
| e1000_pci_set_mwi(hw); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_hw: Performs basic configuration of the adapter. |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Assumes that the controller has previously been reset and is in a |
| * post-reset uninitialized state. Initializes the receive address registers, |
| * multicast table, and VLAN filter table. Calls routines to setup link |
| * configuration and flow control settings. Clears all on-chip counters. Leaves |
| * the transmit and receive units disabled and uninitialized. |
| */ |
| s32 e1000_init_hw(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| u32 i; |
| s32 ret_val; |
| u32 mta_size; |
| u32 ctrl_ext; |
| |
| e_dbg("e1000_init_hw"); |
| |
| /* Initialize Identification LED */ |
| ret_val = e1000_id_led_init(hw); |
| if (ret_val) { |
| e_dbg("Error Initializing Identification LED\n"); |
| return ret_val; |
| } |
| |
| /* Set the media type and TBI compatibility */ |
| e1000_set_media_type(hw); |
| |
| /* Disabling VLAN filtering. */ |
| e_dbg("Initializing the IEEE VLAN\n"); |
| if (hw->mac_type < e1000_82545_rev_3) |
| ew32(VET, 0); |
| e1000_clear_vfta(hw); |
| |
| /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| e_dbg("Disabling MWI on 82542 rev 2.0\n"); |
| e1000_pci_clear_mwi(hw); |
| ew32(RCTL, E1000_RCTL_RST); |
| E1000_WRITE_FLUSH(); |
| msleep(5); |
| } |
| |
| /* Setup the receive address. This involves initializing all of the Receive |
| * Address Registers (RARs 0 - 15). |
| */ |
| e1000_init_rx_addrs(hw); |
| |
| /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| ew32(RCTL, 0); |
| E1000_WRITE_FLUSH(); |
| msleep(1); |
| if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
| e1000_pci_set_mwi(hw); |
| } |
| |
| /* Zero out the Multicast HASH table */ |
| e_dbg("Zeroing the MTA\n"); |
| mta_size = E1000_MC_TBL_SIZE; |
| for (i = 0; i < mta_size; i++) { |
| E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| /* use write flush to prevent Memory Write Block (MWB) from |
| * occurring when accessing our register space */ |
| E1000_WRITE_FLUSH(); |
| } |
| |
| /* Set the PCI priority bit correctly in the CTRL register. This |
| * determines if the adapter gives priority to receives, or if it |
| * gives equal priority to transmits and receives. Valid only on |
| * 82542 and 82543 silicon. |
| */ |
| if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
| ctrl = er32(CTRL); |
| ew32(CTRL, ctrl | E1000_CTRL_PRIOR); |
| } |
| |
| switch (hw->mac_type) { |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| break; |
| default: |
| /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
| if (hw->bus_type == e1000_bus_type_pcix |
| && e1000_pcix_get_mmrbc(hw) > 2048) |
| e1000_pcix_set_mmrbc(hw, 2048); |
| break; |
| } |
| |
| /* Call a subroutine to configure the link and setup flow control. */ |
| ret_val = e1000_setup_link(hw); |
| |
| /* Set the transmit descriptor write-back policy */ |
| if (hw->mac_type > e1000_82544) { |
| ctrl = er32(TXDCTL); |
| ctrl = |
| (ctrl & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB; |
| ew32(TXDCTL, ctrl); |
| } |
| |
| /* Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs(hw); |
| |
| if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
| hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
| ctrl_ext = er32(CTRL_EXT); |
| /* Relaxed ordering must be disabled to avoid a parity |
| * error crash in a PCI slot. */ |
| ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| ew32(CTRL_EXT, ctrl_ext); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. |
| * @hw: Struct containing variables accessed by shared code. |
| */ |
| static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
| { |
| u16 eeprom_data; |
| s32 ret_val; |
| |
| e_dbg("e1000_adjust_serdes_amplitude"); |
| |
| if (hw->media_type != e1000_media_type_internal_serdes) |
| return E1000_SUCCESS; |
| |
| switch (hw->mac_type) { |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| break; |
| default: |
| return E1000_SUCCESS; |
| } |
| |
| ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, |
| &eeprom_data); |
| if (ret_val) { |
| return ret_val; |
| } |
| |
| if (eeprom_data != EEPROM_RESERVED_WORD) { |
| /* Adjust SERDES output amplitude only. */ |
| eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_setup_link - Configures flow control and link settings. |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Determines which flow control settings to use. Calls the appropriate media- |
| * specific link configuration function. Configures the flow control settings. |
| * Assuming the adapter has a valid link partner, a valid link should be |
| * established. Assumes the hardware has previously been reset and the |
| * transmitter and receiver are not enabled. |
| */ |
| s32 e1000_setup_link(struct e1000_hw *hw) |
| { |
| u32 ctrl_ext; |
| s32 ret_val; |
| u16 eeprom_data; |
| |
| e_dbg("e1000_setup_link"); |
| |
| /* Read and store word 0x0F of the EEPROM. This word contains bits |
| * that determine the hardware's default PAUSE (flow control) mode, |
| * a bit that determines whether the HW defaults to enabling or |
| * disabling auto-negotiation, and the direction of the |
| * SW defined pins. If there is no SW over-ride of the flow |
| * control setting, then the variable hw->fc will |
| * be initialized based on a value in the EEPROM. |
| */ |
| if (hw->fc == E1000_FC_DEFAULT) { |
| ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
| 1, &eeprom_data); |
| if (ret_val) { |
| e_dbg("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| hw->fc = E1000_FC_NONE; |
| else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| EEPROM_WORD0F_ASM_DIR) |
| hw->fc = E1000_FC_TX_PAUSE; |
| else |
| hw->fc = E1000_FC_FULL; |
| } |
| |
| /* We want to save off the original Flow Control configuration just |
| * in case we get disconnected and then reconnected into a different |
| * hub or switch with different Flow Control capabilities. |
| */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| hw->fc &= (~E1000_FC_TX_PAUSE); |
| |
| if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| hw->fc &= (~E1000_FC_RX_PAUSE); |
| |
| hw->original_fc = hw->fc; |
| |
| e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); |
| |
| /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| * polarity value for the SW controlled pins, and setup the |
| * Extended Device Control reg with that info. |
| * This is needed because one of the SW controlled pins is used for |
| * signal detection. So this should be done before e1000_setup_pcs_link() |
| * or e1000_phy_setup() is called. |
| */ |
| if (hw->mac_type == e1000_82543) { |
| ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
| 1, &eeprom_data); |
| if (ret_val) { |
| e_dbg("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| SWDPIO__EXT_SHIFT); |
| ew32(CTRL_EXT, ctrl_ext); |
| } |
| |
| /* Call the necessary subroutine to configure the link. */ |
| ret_val = (hw->media_type == e1000_media_type_copper) ? |
| e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); |
| |
| /* Initialize the flow control address, type, and PAUSE timer |
| * registers to their default values. This is done even if flow |
| * control is disabled, because it does not hurt anything to |
| * initialize these registers. |
| */ |
| e_dbg("Initializing the Flow Control address, type and timer regs\n"); |
| |
| ew32(FCT, FLOW_CONTROL_TYPE); |
| ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| |
| ew32(FCTTV, hw->fc_pause_time); |
| |
| /* Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames in not enabled, then these |
| * registers will be set to 0. |
| */ |
| if (!(hw->fc & E1000_FC_TX_PAUSE)) { |
| ew32(FCRTL, 0); |
| ew32(FCRTH, 0); |
| } else { |
| /* We need to set up the Receive Threshold high and low water marks |
| * as well as (optionally) enabling the transmission of XON frames. |
| */ |
| if (hw->fc_send_xon) { |
| ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
| ew32(FCRTH, hw->fc_high_water); |
| } else { |
| ew32(FCRTL, hw->fc_low_water); |
| ew32(FCRTH, hw->fc_high_water); |
| } |
| } |
| return ret_val; |
| } |
| |
| /** |
| * e1000_setup_fiber_serdes_link - prepare fiber or serdes link |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Manipulates Physical Coding Sublayer functions in order to configure |
| * link. Assumes the hardware has been previously reset and the transmitter |
| * and receiver are not enabled. |
| */ |
| static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| u32 status; |
| u32 txcw = 0; |
| u32 i; |
| u32 signal = 0; |
| s32 ret_val; |
| |
| e_dbg("e1000_setup_fiber_serdes_link"); |
| |
| /* On adapters with a MAC newer than 82544, SWDP 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal. This applies to fiber media only. |
| * If we're on serdes media, adjust the output amplitude to value |
| * set in the EEPROM. |
| */ |
| ctrl = er32(CTRL); |
| if (hw->media_type == e1000_media_type_fiber) |
| signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
| |
| ret_val = e1000_adjust_serdes_amplitude(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Take the link out of reset */ |
| ctrl &= ~(E1000_CTRL_LRST); |
| |
| /* Adjust VCO speed to improve BER performance */ |
| ret_val = e1000_set_vco_speed(hw); |
| if (ret_val) |
| return ret_val; |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Check for a software override of the flow control settings, and setup |
| * the device accordingly. If auto-negotiation is enabled, then software |
| * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
| * auto-negotiation is disabled, then software will have to manually |
| * configure the two flow control enable bits in the CTRL register. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, but |
| * not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but we do |
| * not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| */ |
| switch (hw->fc) { |
| case E1000_FC_NONE: |
| /* Flow control is completely disabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| break; |
| case E1000_FC_RX_PAUSE: |
| /* RX Flow control is enabled and TX Flow control is disabled by a |
| * software over-ride. Since there really isn't a way to advertise |
| * that we are capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later, we will |
| * disable the adapter's ability to send PAUSE frames. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| case E1000_FC_TX_PAUSE: |
| /* TX Flow control is enabled, and RX Flow control is disabled, by a |
| * software over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| break; |
| case E1000_FC_FULL: |
| /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| default: |
| e_dbg("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| /* Since auto-negotiation is enabled, take the link out of reset (the link |
| * will be in reset, because we previously reset the chip). This will |
| * restart auto-negotiation. If auto-negotiation is successful then the |
| * link-up status bit will be set and the flow control enable bits (RFCE |
| * and TFCE) will be set according to their negotiated value. |
| */ |
| e_dbg("Auto-negotiation enabled\n"); |
| |
| ew32(TXCW, txcw); |
| ew32(CTRL, ctrl); |
| E1000_WRITE_FLUSH(); |
| |
| hw->txcw = txcw; |
| msleep(1); |
| |
| /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
| * indication in the Device Status Register. Time-out if a link isn't |
| * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
| * less than 500 milliseconds even if the other end is doing it in SW). |
| * For internal serdes, we just assume a signal is present, then poll. |
| */ |
| if (hw->media_type == e1000_media_type_internal_serdes || |
| (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| e_dbg("Looking for Link\n"); |
| for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| msleep(10); |
| status = er32(STATUS); |
| if (status & E1000_STATUS_LU) |
| break; |
| } |
| if (i == (LINK_UP_TIMEOUT / 10)) { |
| e_dbg("Never got a valid link from auto-neg!!!\n"); |
| hw->autoneg_failed = 1; |
| /* AutoNeg failed to achieve a link, so we'll call |
| * e1000_check_for_link. This routine will force the link up if |
| * we detect a signal. This will allow us to communicate with |
| * non-autonegotiating link partners. |
| */ |
| ret_val = e1000_check_for_link(hw); |
| if (ret_val) { |
| e_dbg("Error while checking for link\n"); |
| return ret_val; |
| } |
| hw->autoneg_failed = 0; |
| } else { |
| hw->autoneg_failed = 0; |
| e_dbg("Valid Link Found\n"); |
| } |
| } else { |
| e_dbg("No Signal Detected\n"); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Commits changes to PHY configuration by calling e1000_phy_reset(). |
| */ |
| static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| /* SW reset the PHY so all changes take effect */ |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| e_dbg("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u32 ctrl_aux; |
| |
| switch (hw->phy_type) { |
| case e1000_phy_8211: |
| ret_val = e1000_copper_link_rtl_setup(hw); |
| if (ret_val) { |
| e_dbg("e1000_copper_link_rtl_setup failed!\n"); |
| return ret_val; |
| } |
| break; |
| case e1000_phy_8201: |
| /* Set RMII mode */ |
| ctrl_aux = er32(CTL_AUX); |
| ctrl_aux |= E1000_CTL_AUX_RMII; |
| ew32(CTL_AUX, ctrl_aux); |
| E1000_WRITE_FLUSH(); |
| |
| /* Disable the J/K bits required for receive */ |
| ctrl_aux = er32(CTL_AUX); |
| ctrl_aux |= 0x4; |
| ctrl_aux &= ~0x2; |
| ew32(CTL_AUX, ctrl_aux); |
| E1000_WRITE_FLUSH(); |
| ret_val = e1000_copper_link_rtl_setup(hw); |
| |
| if (ret_val) { |
| e_dbg("e1000_copper_link_rtl_setup failed!\n"); |
| return ret_val; |
| } |
| break; |
| default: |
| e_dbg("Error Resetting the PHY\n"); |
| return E1000_ERR_PHY_TYPE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_preconfig - early configuration for copper |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Make sure we have a valid PHY and change PHY mode before link setup. |
| */ |
| static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_copper_link_preconfig"); |
| |
| ctrl = er32(CTRL); |
| /* With 82543, we need to force speed and duplex on the MAC equal to what |
| * the PHY speed and duplex configuration is. In addition, we need to |
| * perform a hardware reset on the PHY to take it out of reset. |
| */ |
| if (hw->mac_type > e1000_82543) { |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ew32(CTRL, ctrl); |
| } else { |
| ctrl |= |
| (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
| ew32(CTRL, ctrl); |
| ret_val = e1000_phy_hw_reset(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Make sure we have a valid PHY */ |
| ret_val = e1000_detect_gig_phy(hw); |
| if (ret_val) { |
| e_dbg("Error, did not detect valid phy.\n"); |
| return ret_val; |
| } |
| e_dbg("Phy ID = %x\n", hw->phy_id); |
| |
| /* Set PHY to class A mode (if necessary) */ |
| ret_val = e1000_set_phy_mode(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac_type == e1000_82545_rev_3) || |
| (hw->mac_type == e1000_82546_rev_3)) { |
| ret_val = |
| e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| phy_data |= 0x00000008; |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| } |
| |
| if (hw->mac_type <= e1000_82543 || |
| hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
| hw->mac_type == e1000_82541_rev_2 |
| || hw->mac_type == e1000_82547_rev_2) |
| hw->phy_reset_disable = false; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) |
| { |
| u32 led_ctrl; |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_copper_link_igp_setup"); |
| |
| if (hw->phy_reset_disable) |
| return E1000_SUCCESS; |
| |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| e_dbg("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
| msleep(15); |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = er32(LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| ew32(LEDCTL, led_ctrl); |
| |
| /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
| if (hw->phy_type == e1000_phy_igp) { |
| /* disable lplu d3 during driver init */ |
| ret_val = e1000_set_d3_lplu_state(hw, false); |
| if (ret_val) { |
| e_dbg("Error Disabling LPLU D3\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Configure mdi-mdix settings */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| hw->dsp_config_state = e1000_dsp_config_disabled; |
| /* Force MDI for earlier revs of the IGP PHY */ |
| phy_data &= |
| ~(IGP01E1000_PSCR_AUTO_MDIX | |
| IGP01E1000_PSCR_FORCE_MDI_MDIX); |
| hw->mdix = 1; |
| |
| } else { |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 2: |
| phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 0: |
| default: |
| phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
| break; |
| } |
| } |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* set auto-master slave resolution settings */ |
| if (hw->autoneg) { |
| e1000_ms_type phy_ms_setting = hw->master_slave; |
| |
| if (hw->ffe_config_state == e1000_ffe_config_active) |
| hw->ffe_config_state = e1000_ffe_config_enabled; |
| |
| if (hw->dsp_config_state == e1000_dsp_config_activated) |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| |
| /* when autonegotiation advertisement is only 1000Mbps then we |
| * should disable SmartSpeed and enable Auto MasterSlave |
| * resolution as hardware default. */ |
| if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
| /* Disable SmartSpeed */ |
| ret_val = |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| /* Set auto Master/Slave resolution process */ |
| ret_val = |
| e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data &= ~CR_1000T_MS_ENABLE; |
| ret_val = |
| e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* load defaults for future use */ |
| hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
| ((phy_data & CR_1000T_MS_VALUE) ? |
| e1000_ms_force_master : |
| e1000_ms_force_slave) : e1000_ms_auto; |
| |
| switch (phy_ms_setting) { |
| case e1000_ms_force_master: |
| phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_force_slave: |
| phy_data |= CR_1000T_MS_ENABLE; |
| phy_data &= ~(CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_auto: |
| phy_data &= ~CR_1000T_MS_ENABLE; |
| default: |
| break; |
| } |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_copper_link_mgp_setup"); |
| |
| if (hw->phy_reset_disable) |
| return E1000_SUCCESS; |
| |
| /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| break; |
| case 2: |
| phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| break; |
| case 3: |
| phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| break; |
| case 0: |
| default: |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| if (hw->disable_polarity_correction == 1) |
| phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->phy_revision < M88E1011_I_REV_4) { |
| /* Force TX_CLK in the Extended PHY Specific Control Register |
| * to 25MHz clock. |
| */ |
| ret_val = |
| e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| |
| if ((hw->phy_revision == E1000_REVISION_2) && |
| (hw->phy_id == M88E1111_I_PHY_ID)) { |
| /* Vidalia Phy, set the downshift counter to 5x */ |
| phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
| phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* Configure Master and Slave downshift values */ |
| phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| e_dbg("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_autoneg - setup auto-neg |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Setup auto-negotiation and flow control advertisements, |
| * and then perform auto-negotiation. |
| */ |
| static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_copper_link_autoneg"); |
| |
| /* Perform some bounds checking on the hw->autoneg_advertised |
| * parameter. If this variable is zero, then set it to the default. |
| */ |
| hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| /* If autoneg_advertised is zero, we assume it was not defaulted |
| * by the calling code so we set to advertise full capability. |
| */ |
| if (hw->autoneg_advertised == 0) |
| hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| /* IFE/RTL8201N PHY only supports 10/100 */ |
| if (hw->phy_type == e1000_phy_8201) |
| hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; |
| |
| e_dbg("Reconfiguring auto-neg advertisement params\n"); |
| ret_val = e1000_phy_setup_autoneg(hw); |
| if (ret_val) { |
| e_dbg("Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| e_dbg("Restarting Auto-Neg\n"); |
| |
| /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| * the Auto Neg Restart bit in the PHY control register. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Does the user want to wait for Auto-Neg to complete here, or |
| * check at a later time (for example, callback routine). |
| */ |
| if (hw->wait_autoneg_complete) { |
| ret_val = e1000_wait_autoneg(hw); |
| if (ret_val) { |
| e_dbg |
| ("Error while waiting for autoneg to complete\n"); |
| return ret_val; |
| } |
| } |
| |
| hw->get_link_status = true; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_postconfig - post link setup |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Config the MAC and the PHY after link is up. |
| * 1) Set up the MAC to the current PHY speed/duplex |
| * if we are on 82543. If we |
| * are on newer silicon, we only need to configure |
| * collision distance in the Transmit Control Register. |
| * 2) Set up flow control on the MAC to that established with |
| * the link partner. |
| * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
| */ |
| static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| e_dbg("e1000_copper_link_postconfig"); |
| |
| if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { |
| e1000_config_collision_dist(hw); |
| } else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val) { |
| e_dbg("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val) { |
| e_dbg("Error Configuring Flow Control\n"); |
| return ret_val; |
| } |
| |
| /* Config DSP to improve Giga link quality */ |
| if (hw->phy_type == e1000_phy_igp) { |
| ret_val = e1000_config_dsp_after_link_change(hw, true); |
| if (ret_val) { |
| e_dbg("Error Configuring DSP after link up\n"); |
| return ret_val; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_setup_copper_link - phy/speed/duplex setting |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Detects which PHY is present and sets up the speed and duplex |
| */ |
| static s32 e1000_setup_copper_link(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 i; |
| u16 phy_data; |
| |
| e_dbg("e1000_setup_copper_link"); |
| |
| /* Check if it is a valid PHY and set PHY mode if necessary. */ |
| ret_val = e1000_copper_link_preconfig(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->phy_type == e1000_phy_igp) { |
| ret_val = e1000_copper_link_igp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->phy_type == e1000_phy_m88) { |
| ret_val = e1000_copper_link_mgp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } else { |
| ret_val = gbe_dhg_phy_setup(hw); |
| if (ret_val) { |
| e_dbg("gbe_dhg_phy_setup failed!\n"); |
| return ret_val; |
| } |
| } |
| |
| if (hw->autoneg) { |
| /* Setup autoneg and flow control advertisement |
| * and perform autonegotiation */ |
| ret_val = e1000_copper_link_autoneg(hw); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* PHY will be set to 10H, 10F, 100H,or 100F |
| * depending on value from forced_speed_duplex. */ |
| e_dbg("Forcing speed and duplex\n"); |
| ret_val = e1000_phy_force_speed_duplex(hw); |
| if (ret_val) { |
| e_dbg("Error Forcing Speed and Duplex\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Check link status. Wait up to 100 microseconds for link to become |
| * valid. |
| */ |
| for (i = 0; i < 10; i++) { |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| /* Config the MAC and PHY after link is up */ |
| ret_val = e1000_copper_link_postconfig(hw); |
| if (ret_val) |
| return ret_val; |
| |
| e_dbg("Valid link established!!!\n"); |
| return E1000_SUCCESS; |
| } |
| udelay(10); |
| } |
| |
| e_dbg("Unable to establish link!!!\n"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_setup_autoneg - phy settings |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Configures PHY autoneg and flow control advertisement settings |
| */ |
| s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 mii_autoneg_adv_reg; |
| u16 mii_1000t_ctrl_reg; |
| |
| e_dbg("e1000_phy_setup_autoneg"); |
| |
| /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| /* Read the MII 1000Base-T Control Register (Address 9). */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| else if (hw->phy_type == e1000_phy_8201) |
| mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| |
| /* Need to parse both autoneg_advertised and fc and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T Control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| |
| e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); |
| |
| /* Do we want to advertise 10 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| e_dbg("Advertise 10mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 10 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| e_dbg("Advertise 10mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| e_dbg("Advertise 100mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| e_dbg("Advertise 100mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| e_dbg |
| ("Advertise 1000mb Half duplex requested, request denied!\n"); |
| } |
| |
| /* Do we want to advertise 1000 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| e_dbg("Advertise 1000mb Full duplex\n"); |
| mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| } |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the PHY advertisement registers accordingly. If |
| * auto-negotiation is enabled, then software will have to set the |
| * "PAUSE" bits to the correct value in the Auto-Negotiation |
| * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| * other: No software override. The flow control configuration |
| * in the EEPROM is used. |
| */ |
| switch (hw->fc) { |
| case E1000_FC_NONE: /* 0 */ |
| /* Flow control (RX & TX) is completely disabled by a |
| * software over-ride. |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case E1000_FC_RX_PAUSE: /* 1 */ |
| /* RX Flow control is enabled, and TX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| /* Since there really isn't a way to advertise that we are |
| * capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later |
| * (in e1000_config_fc_after_link_up) we will disable the |
| *hw's ability to send PAUSE frames. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case E1000_FC_TX_PAUSE: /* 2 */ |
| /* TX Flow control is enabled, and RX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| break; |
| case E1000_FC_FULL: /* 3 */ |
| /* Flow control (both RX and TX) is enabled by a software |
| * over-ride. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| default: |
| e_dbg("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| |
| if (hw->phy_type == e1000_phy_8201) { |
| mii_1000t_ctrl_reg = 0; |
| } else { |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
| mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex - force link settings |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Force PHY speed and duplex settings to hw->forced_speed_duplex |
| */ |
| static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 mii_ctrl_reg; |
| u16 mii_status_reg; |
| u16 phy_data; |
| u16 i; |
| |
| e_dbg("e1000_phy_force_speed_duplex"); |
| |
| /* Turn off Flow control if we are forcing speed and duplex. */ |
| hw->fc = E1000_FC_NONE; |
| |
| e_dbg("hw->fc = %d\n", hw->fc); |
| |
| /* Read the Device Control Register. */ |
| ctrl = er32(CTRL); |
| |
| /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~(DEVICE_SPEED_MASK); |
| |
| /* Clear the Auto Speed Detect Enable bit. */ |
| ctrl &= ~E1000_CTRL_ASDE; |
| |
| /* Read the MII Control Register. */ |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| |
| /* We need to disable autoneg in order to force link and duplex. */ |
| |
| mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
| |
| /* Are we forcing Full or Half Duplex? */ |
| if (hw->forced_speed_duplex == e1000_100_full || |
| hw->forced_speed_duplex == e1000_10_full) { |
| /* We want to force full duplex so we SET the full duplex bits in the |
| * Device and MII Control Registers. |
| */ |
| ctrl |= E1000_CTRL_FD; |
| mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
| e_dbg("Full Duplex\n"); |
| } else { |
| /* We want to force half duplex so we CLEAR the full duplex bits in |
| * the Device and MII Control Registers. |
| */ |
| ctrl &= ~E1000_CTRL_FD; |
| mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
| e_dbg("Half Duplex\n"); |
| } |
| |
| /* Are we forcing 100Mbps??? */ |
| if (hw->forced_speed_duplex == e1000_100_full || |
| hw->forced_speed_duplex == e1000_100_half) { |
| /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
| ctrl |= E1000_CTRL_SPD_100; |
| mii_ctrl_reg |= MII_CR_SPEED_100; |
| mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
| e_dbg("Forcing 100mb "); |
| } else { |
| /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
| ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| mii_ctrl_reg |= MII_CR_SPEED_10; |
| mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
| e_dbg("Forcing 10mb "); |
| } |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Write the configured values back to the Device Control Reg. */ |
| ew32(CTRL, ctrl); |
| |
| if (hw->phy_type == e1000_phy_m88) { |
| ret_val = |
| e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| * forced whenever speed are duplex are forced. |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| e_dbg("M88E1000 PSCR: %x\n", phy_data); |
| |
| /* Need to reset the PHY or these changes will be ignored */ |
| mii_ctrl_reg |= MII_CR_RESET; |
| |
| /* Disable MDI-X support for 10/100 */ |
| } else { |
| /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
| * forced whenever speed or duplex are forced. |
| */ |
| ret_val = |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Write back the modified PHY MII control register. */ |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| |
| /* The wait_autoneg_complete flag may be a little misleading here. |
| * Since we are forcing speed and duplex, Auto-Neg is not enabled. |
| * But we do want to delay for a period while forcing only so we |
| * don't generate false No Link messages. So we will wait here |
| * only if the user has set wait_autoneg_complete to 1, which is |
| * the default. |
| */ |
| if (hw->wait_autoneg_complete) { |
| /* We will wait for autoneg to complete. */ |
| e_dbg("Waiting for forced speed/duplex link.\n"); |
| mii_status_reg = 0; |
| |
| /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Auto-Neg Complete bit |
| * to be set. |
| */ |
| ret_val = |
| e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = |
| e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (mii_status_reg & MII_SR_LINK_STATUS) |
| break; |
| msleep(100); |
| } |
| if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { |
| /* We didn't get link. Reset the DSP and wait again for link. */ |
| ret_val = e1000_phy_reset_dsp(hw); |
| if (ret_val) { |
| e_dbg("Error Resetting PHY DSP\n"); |
| return ret_val; |
| } |
| } |
| /* This loop will early-out if the link condition has been met. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| if (mii_status_reg & MII_SR_LINK_STATUS) |
| break; |
| msleep(100); |
| /* Read the MII Status Register and wait for Auto-Neg Complete bit |
| * to be set. |
| */ |
| ret_val = |
| e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = |
| e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| if (hw->phy_type == e1000_phy_m88) { |
| /* Because we reset the PHY above, we need to re-force TX_CLK in the |
| * Extended PHY Specific Control Register to 25MHz clock. This value |
| * defaults back to a 2.5MHz clock when the PHY is reset. |
| */ |
| ret_val = |
| e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* In addition, because of the s/w reset above, we need to enable CRS on |
| * TX. This must be set for both full and half duplex operation. |
| */ |
| ret_val = |
| e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) |
| && (!hw->autoneg) |
| && (hw->forced_speed_duplex == e1000_10_full |
| || hw->forced_speed_duplex == e1000_10_half)) { |
| ret_val = e1000_polarity_reversal_workaround(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_config_collision_dist - set collision distance register |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Sets the collision distance in the Transmit Control register. |
| * Link should have been established previously. Reads the speed and duplex |
| * information from the Device Status register. |
| */ |
| void e1000_config_collision_dist(struct e1000_hw *hw) |
| { |
| u32 tctl, coll_dist; |
| |
| e_dbg("e1000_config_collision_dist"); |
| |
| if (hw->mac_type < e1000_82543) |
| coll_dist = E1000_COLLISION_DISTANCE_82542; |
| else |
| coll_dist = E1000_COLLISION_DISTANCE; |
| |
| tctl = er32(TCTL); |
| |
| tctl &= ~E1000_TCTL_COLD; |
| tctl |= coll_dist << E1000_COLD_SHIFT; |
| |
| ew32(TCTL, tctl); |
| E1000_WRITE_FLUSH(); |
| } |
| |
| /** |
| * e1000_config_mac_to_phy - sync phy and mac settings |
| * @hw: Struct containing variables accessed by shared code |
| * @mii_reg: data to write to the MII control register |
| * |
| * Sets MAC speed and duplex settings to reflect the those in the PHY |
| * The contents of the PHY register containing the needed information need to |
| * be passed in. |
| */ |
| static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_config_mac_to_phy"); |
| |
| /* 82544 or newer MAC, Auto Speed Detection takes care of |
| * MAC speed/duplex configuration.*/ |
| if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) |
| return E1000_SUCCESS; |
| |
| /* Read the Device Control Register and set the bits to Force Speed |
| * and Duplex. |
| */ |
| ctrl = er32(CTRL); |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
| |
| switch (hw->phy_type) { |
| case e1000_phy_8201: |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & RTL_PHY_CTRL_FD) |
| ctrl |= E1000_CTRL_FD; |
| else |
| ctrl &= ~E1000_CTRL_FD; |
| |
| if (phy_data & RTL_PHY_CTRL_SPD_100) |
| ctrl |= E1000_CTRL_SPD_100; |
| else |
| ctrl |= E1000_CTRL_SPD_10; |
| |
| e1000_config_collision_dist(hw); |
| break; |
| default: |
| /* Set up duplex in the Device Control and Transmit Control |
| * registers depending on negotiated values. |
| */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & M88E1000_PSSR_DPLX) |
| ctrl |= E1000_CTRL_FD; |
| else |
| ctrl &= ~E1000_CTRL_FD; |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Set up speed in the Device Control register depending on |
| * negotiated values. |
| */ |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| ctrl |= E1000_CTRL_SPD_1000; |
| else if ((phy_data & M88E1000_PSSR_SPEED) == |
| M88E1000_PSSR_100MBS) |
| ctrl |= E1000_CTRL_SPD_100; |
| } |
| |
| /* Write the configured values back to the Device Control Reg. */ |
| ew32(CTRL, ctrl); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_force_mac_fc - force flow control settings |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Forces the MAC's flow control settings. |
| * Sets the TFCE and RFCE bits in the device control register to reflect |
| * the adapter settings. TFCE and RFCE need to be explicitly set by |
| * software when a Copper PHY is used because autonegotiation is managed |
| * by the PHY rather than the MAC. Software must also configure these |
| * bits when link is forced on a fiber connection. |
| */ |
| s32 e1000_force_mac_fc(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| |
| e_dbg("e1000_force_mac_fc"); |
| |
| /* Get the current configuration of the Device Control Register */ |
| ctrl = er32(CTRL); |
| |
| /* Because we didn't get link via the internal auto-negotiation |
| * mechanism (we either forced link or we got link via PHY |
| * auto-neg), we have to manually enable/disable transmit an |
| * receive flow control. |
| * |
| * The "Case" statement below enables/disable flow control |
| * according to the "hw->fc" parameter. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause |
| * frames but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * frames but we do not receive pause frames). |
| * 3: Both Rx and TX flow control (symmetric) is enabled. |
| * other: No other values should be possible at this point. |
| */ |
| |
| switch (hw->fc) { |
| case E1000_FC_NONE: |
| ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| break; |
| case E1000_FC_RX_PAUSE: |
| ctrl &= (~E1000_CTRL_TFCE); |
| ctrl |= E1000_CTRL_RFCE; |
| break; |
| case E1000_FC_TX_PAUSE: |
| ctrl &= (~E1000_CTRL_RFCE); |
| ctrl |= E1000_CTRL_TFCE; |
| break; |
| case E1000_FC_FULL: |
| ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| break; |
| default: |
| e_dbg("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| ctrl &= (~E1000_CTRL_TFCE); |
| |
| ew32(CTRL, ctrl); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_config_fc_after_link_up - configure flow control after autoneg |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Configures flow control settings after link is established |
| * Should be called immediately after a valid link has been established. |
| * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| * and autonegotiation is enabled, the MAC flow control settings will be set |
| * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| * and RFCE bits will be automatically set to the negotiated flow control mode. |
| */ |
| static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 mii_status_reg; |
| u16 mii_nway_adv_reg; |
| u16 mii_nway_lp_ability_reg; |
| u16 speed; |
| u16 duplex; |
| |
| e_dbg("e1000_config_fc_after_link_up"); |
| |
| /* Check for the case where we have fiber media and auto-neg failed |
| * so we had to force link. In this case, we need to force the |
| * configuration of the MAC to match the "fc" parameter. |
| */ |
| if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
| || ((hw->media_type == e1000_media_type_internal_serdes) |
| && (hw->autoneg_failed)) |
| || ((hw->media_type == e1000_media_type_copper) |
| && (!hw->autoneg))) { |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val) { |
| e_dbg("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Check for the case where we have copper media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
| /* Read the MII Status Register and check to see if AutoNeg |
| * has completed. We read this twice because this reg has |
| * some "sticky" (latched) bits. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| /* The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement Register |
| * (Address 4) and the Auto_Negotiation Base Page Ability |
| * Register (Address 5) to determine how flow control was |
| * negotiated. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
| &mii_nway_adv_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
| &mii_nway_lp_ability_reg); |
| if (ret_val) |
| return ret_val; |
| |
| /* Two bits in the Auto Negotiation Advertisement Register |
| * (Address 4) and two bits in the Auto Negotiation Base |
| * Page Ability Register (Address 5) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | E1000_FC_NONE |
| * 0 | 1 | 0 | DC | E1000_FC_NONE |
| * 0 | 1 | 1 | 0 | E1000_FC_NONE |
| * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
| * 1 | 0 | 0 | DC | E1000_FC_NONE |
| * 1 | DC | 1 | DC | E1000_FC_FULL |
| * 1 | 1 | 0 | 0 | E1000_FC_NONE |
| * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
| * |
| */ |
| /* Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | E1000_FC_FULL |
| * |
| */ |
| if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| /* Now we need to check if the user selected RX ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise RX |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->original_fc == E1000_FC_FULL) { |
| hw->fc = E1000_FC_FULL; |
| e_dbg("Flow Control = FULL.\n"); |
| } else { |
| hw->fc = E1000_FC_RX_PAUSE; |
| e_dbg |
| ("Flow Control = RX PAUSE frames only.\n"); |
| } |
| } |
| /* For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
| * |
| */ |
| else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| { |
| hw->fc = E1000_FC_TX_PAUSE; |
| e_dbg |
| ("Flow Control = TX PAUSE frames only.\n"); |
| } |
| /* For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
| * |
| */ |
| else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| { |
| hw->fc = E1000_FC_RX_PAUSE; |
| e_dbg |
| ("Flow Control = RX PAUSE frames only.\n"); |
| } |
| /* Per the IEEE spec, at this point flow control should be |
| * disabled. However, we want to consider that we could |
| * be connected to a legacy switch that doesn't advertise |
| * desired flow control, but can be forced on the link |
| * partner. So if we advertised no flow control, that is |
| * what we will resolve to. If we advertised some kind of |
| * receive capability (Rx Pause Only or Full Flow Control) |
| * and the link partner advertised none, we will configure |
| * ourselves to enable Rx Flow Control only. We can do |
| * this safely for two reasons: If the link partner really |
| * didn't want flow control enabled, and we enable Rx, no |
| * harm done since we won't be receiving any PAUSE frames |
| * anyway. If the intent on the link partner was to have |
| * flow control enabled, then by us enabling RX only, we |
| * can at least receive pause frames and process them. |
| * This is a good idea because in most cases, since we are |
| * predominantly a server NIC, more times than not we will |
| * be asked to delay transmission of packets than asking |
| * our link partner to pause transmission of frames. |
| */ |
| else if ((hw->original_fc == E1000_FC_NONE || |
| hw->original_fc == E1000_FC_TX_PAUSE) || |
| hw->fc_strict_ieee) { |
| hw->fc = E1000_FC_NONE; |
| e_dbg("Flow Control = NONE.\n"); |
| } else { |
| hw->fc = E1000_FC_RX_PAUSE; |
| e_dbg |
| ("Flow Control = RX PAUSE frames only.\n"); |
| } |
| |
| /* Now we need to do one last check... If we auto- |
| * negotiated to HALF DUPLEX, flow control should not be |
| * enabled per IEEE 802.3 spec. |
| */ |
| ret_val = |
| e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| if (ret_val) { |
| e_dbg |
| ("Error getting link speed and duplex\n"); |
| return ret_val; |
| } |
| |
| if (duplex == HALF_DUPLEX) |
| hw->fc = E1000_FC_NONE; |
| |
| /* Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val) { |
| e_dbg |
| ("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } else { |
| e_dbg |
| ("Copper PHY and Auto Neg has not completed.\n"); |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_check_for_serdes_link_generic - Check for link (Serdes) |
| * @hw: pointer to the HW structure |
| * |
| * Checks for link up on the hardware. If link is not up and we have |
| * a signal, then we need to force link up. |
| */ |
| static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) |
| { |
| u32 rxcw; |
| u32 ctrl; |
| u32 status; |
| s32 ret_val = E1000_SUCCESS; |
| |
| e_dbg("e1000_check_for_serdes_link_generic"); |
| |
| ctrl = er32(CTRL); |
| status = er32(STATUS); |
| rxcw = er32(RXCW); |
| |
| /* |
| * If we don't have link (auto-negotiation failed or link partner |
| * cannot auto-negotiate), and our link partner is not trying to |
| * auto-negotiate with us (we are receiving idles or data), |
| * we need to force link up. We also need to give auto-negotiation |
| * time to complete. |
| */ |
| /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
| if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { |
| if (hw->autoneg_failed == 0) { |
| hw->autoneg_failed = 1; |
| goto out; |
| } |
| e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = er32(CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| ew32(CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val) { |
| e_dbg("Error configuring flow control\n"); |
| goto out; |
| } |
| } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| /* |
| * If we are forcing link and we are receiving /C/ ordered |
| * sets, re-enable auto-negotiation in the TXCW register |
| * and disable forced link in the Device Control register |
| * in an attempt to auto-negotiate with our link partner. |
| */ |
| e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); |
| ew32(TXCW, hw->txcw); |
| ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| |
| hw->serdes_has_link = true; |
| } else if (!(E1000_TXCW_ANE & er32(TXCW))) { |
| /* |
| * If we force link for non-auto-negotiation switch, check |
| * link status based on MAC synchronization for internal |
| * serdes media type. |
| */ |
| /* SYNCH bit and IV bit are sticky. */ |
| udelay(10); |
| rxcw = er32(RXCW); |
| if (rxcw & E1000_RXCW_SYNCH) { |
| if (!(rxcw & E1000_RXCW_IV)) { |
| hw->serdes_has_link = true; |
| e_dbg("SERDES: Link up - forced.\n"); |
| } |
| } else { |
| hw->serdes_has_link = false; |
| e_dbg("SERDES: Link down - force failed.\n"); |
| } |
| } |
| |
| if (E1000_TXCW_ANE & er32(TXCW)) { |
| status = er32(STATUS); |
| if (status & E1000_STATUS_LU) { |
| /* SYNCH bit and IV bit are sticky, so reread rxcw. */ |
| udelay(10); |
| rxcw = er32(RXCW); |
| if (rxcw & E1000_RXCW_SYNCH) { |
| if (!(rxcw & E1000_RXCW_IV)) { |
| hw->serdes_has_link = true; |
| e_dbg("SERDES: Link up - autoneg " |
| "completed successfully.\n"); |
| } else { |
| hw->serdes_has_link = false; |
| e_dbg("SERDES: Link down - invalid" |
| "codewords detected in autoneg.\n"); |
| } |
| } else { |
| hw->serdes_has_link = false; |
| e_dbg("SERDES: Link down - no sync.\n"); |
| } |
| } else { |
| hw->serdes_has_link = false; |
| e_dbg("SERDES: Link down - autoneg failed\n"); |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_for_link |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Checks to see if the link status of the hardware has changed. |
| * Called by any function that needs to check the link status of the adapter. |
| */ |
| s32 e1000_check_for_link(struct e1000_hw *hw) |
| { |
| u32 rxcw = 0; |
| u32 ctrl; |
| u32 status; |
| u32 rctl; |
| u32 icr; |
| u32 signal = 0; |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_check_for_link"); |
| |
| ctrl = er32(CTRL); |
| status = er32(STATUS); |
| |
| /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal. This applies to fiber media only. |
| */ |
| if ((hw->media_type == e1000_media_type_fiber) || |
| (hw->media_type == e1000_media_type_internal_serdes)) { |
| rxcw = er32(RXCW); |
| |
| if (hw->media_type == e1000_media_type_fiber) { |
| signal = |
| (hw->mac_type > |
| e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
| if (status & E1000_STATUS_LU) |
| hw->get_link_status = false; |
| } |
| } |
| |
| /* If we have a copper PHY then we only want to go out to the PHY |
| * registers to see if Auto-Neg has completed and/or if our link |
| * status has changed. The get_link_status flag will be set if we |
| * receive a Link Status Change interrupt or we have Rx Sequence |
| * Errors. |
| */ |
| if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| * Read the register twice since the link bit is sticky. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| hw->get_link_status = false; |
| /* Check if there was DownShift, must be checked immediately after |
| * link-up */ |
| e1000_check_downshift(hw); |
| |
| /* If we are on 82544 or 82543 silicon and speed/duplex |
| * are forced to 10H or 10F, then we will implement the polarity |
| * reversal workaround. We disable interrupts first, and upon |
| * returning, place the devices interrupt state to its previous |
| * value except for the link status change interrupt which will |
| * happen due to the execution of this workaround. |
| */ |
| |
| if ((hw->mac_type == e1000_82544 |
| || hw->mac_type == e1000_82543) && (!hw->autoneg) |
| && (hw->forced_speed_duplex == e1000_10_full |
| || hw->forced_speed_duplex == e1000_10_half)) { |
| ew32(IMC, 0xffffffff); |
| ret_val = |
| e1000_polarity_reversal_workaround(hw); |
| icr = er32(ICR); |
| ew32(ICS, (icr & ~E1000_ICS_LSC)); |
| ew32(IMS, IMS_ENABLE_MASK); |
| } |
| |
| } else { |
| /* No link detected */ |
| e1000_config_dsp_after_link_change(hw, false); |
| return 0; |
| } |
| |
| /* If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!hw->autoneg) |
| return -E1000_ERR_CONFIG; |
| |
| /* optimize the dsp settings for the igp phy */ |
| e1000_config_dsp_after_link_change(hw, true); |
| |
| /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| * have Si on board that is 82544 or newer, Auto |
| * Speed Detection takes care of MAC speed/duplex |
| * configuration. So we only need to configure Collision |
| * Distance in the MAC. Otherwise, we need to force |
| * speed/duplex on the MAC to the current PHY speed/duplex |
| * settings. |
| */ |
| if ((hw->mac_type >= e1000_82544) && |
| (hw->mac_type != e1000_ce4100)) |
| e1000_config_collision_dist(hw); |
| else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val) { |
| e_dbg |
| ("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Configure Flow Control now that Auto-Neg has completed. First, we |
| * need to restore the desired flow control settings because we may |
| * have had to re-autoneg with a different link partner. |
| */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val) { |
| e_dbg("Error configuring flow control\n"); |
| return ret_val; |
| } |
| |
| /* At this point we know that we are on copper and we have |
| * auto-negotiated link. These are conditions for checking the link |
| * partner capability register. We use the link speed to determine if |
| * TBI compatibility needs to be turned on or off. If the link is not |
| * at gigabit speed, then TBI compatibility is not needed. If we are |
| * at gigabit speed, we turn on TBI compatibility. |
| */ |
| if (hw->tbi_compatibility_en) { |
| u16 speed, duplex; |
| ret_val = |
| e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| if (ret_val) { |
| e_dbg |
| ("Error getting link speed and duplex\n"); |
| return ret_val; |
| } |
| if (speed != SPEED_1000) { |
| /* If link speed is not set to gigabit speed, we do not need |
| * to enable TBI compatibility. |
| */ |
| if (hw->tbi_compatibility_on) { |
| /* If we previously were in the mode, turn it off. */ |
| rctl = er32(RCTL); |
| rctl &= ~E1000_RCTL_SBP; |
| ew32(RCTL, rctl); |
| hw->tbi_compatibility_on = false; |
| } |
| } else { |
| /* If TBI compatibility is was previously off, turn it on. For |
| * compatibility with a TBI link partner, we will store bad |
| * packets. Some frames have an additional byte on the end and |
| * will look like CRC errors to to the hardware. |
| */ |
| if (!hw->tbi_compatibility_on) { |
| hw->tbi_compatibility_on = true; |
| rctl = er32(RCTL); |
| rctl |= E1000_RCTL_SBP; |
| ew32(RCTL, rctl); |
| } |
| } |
| } |
| } |
| |
| if ((hw->media_type == e1000_media_type_fiber) || |
| (hw->media_type == e1000_media_type_internal_serdes)) |
| e1000_check_for_serdes_link_generic(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_speed_and_duplex |
| * @hw: Struct containing variables accessed by shared code |
| * @speed: Speed of the connection |
| * @duplex: Duplex setting of the connection |
| |
| * Detects the current speed and duplex settings of the hardware. |
| */ |
| s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
| { |
| u32 status; |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_get_speed_and_duplex"); |
| |
| if (hw->mac_type >= e1000_82543) { |
| status = er32(STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| e_dbg("1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| e_dbg("100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| e_dbg("10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| e_dbg("Full Duplex\n"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| e_dbg(" Half Duplex\n"); |
| } |
| } else { |
| e_dbg("1000 Mbs, Full Duplex\n"); |
| *speed = SPEED_1000; |
| *duplex = FULL_DUPLEX; |
| } |
| |
| /* IGP01 PHY may advertise full duplex operation after speed downgrade even |
| * if it is operating at half duplex. Here we set the duplex settings to |
| * match the duplex in the link partner's capabilities. |
| */ |
| if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
| *duplex = HALF_DUPLEX; |
| else { |
| ret_val = |
| e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
| if (ret_val) |
| return ret_val; |
| if ((*speed == SPEED_100 |
| && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) |
| || (*speed == SPEED_10 |
| && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
| *duplex = HALF_DUPLEX; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_wait_autoneg |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Blocks until autoneg completes or times out (~4.5 seconds) |
| */ |
| static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 i; |
| u16 phy_data; |
| |
| e_dbg("e1000_wait_autoneg"); |
| e_dbg("Waiting for Auto-Neg to complete.\n"); |
| |
| /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Auto-Neg |
| * Complete bit to be set. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
| return E1000_SUCCESS; |
| } |
| msleep(100); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_raise_mdi_clk - Raises the Management Data Clock |
| * @hw: Struct containing variables accessed by shared code |
| * @ctrl: Device control register's current value |
| */ |
| static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
| { |
| /* Raise the clock input to the Management Data Clock (by setting the MDC |
| * bit), and then delay 10 microseconds. |
| */ |
| ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(); |
| udelay(10); |
| } |
| |
| /** |
| * e1000_lower_mdi_clk - Lowers the Management Data Clock |
| * @hw: Struct containing variables accessed by shared code |
| * @ctrl: Device control register's current value |
| */ |
| static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
| { |
| /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| * bit), and then delay 10 microseconds. |
| */ |
| ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(); |
| udelay(10); |
| } |
| |
| /** |
| * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY |
| * @hw: Struct containing variables accessed by shared code |
| * @data: Data to send out to the PHY |
| * @count: Number of bits to shift out |
| * |
| * Bits are shifted out in MSB to LSB order. |
| */ |
| static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) |
| { |
| u32 ctrl; |
| u32 mask; |
| |
| /* We need to shift "count" number of bits out to the PHY. So, the value |
| * in the "data" parameter will be shifted out to the PHY one bit at a |
| * time. In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01; |
| mask <<= (count - 1); |
| |
| ctrl = er32(CTRL); |
| |
| /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| |
| while (mask) { |
| /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| * then raising and lowering the Management Data Clock. A "0" is |
| * shifted out to the PHY by setting the MDIO bit to "0" and then |
| * raising and lowering the clock. |
| */ |
| if (data & mask) |
| ctrl |= E1000_CTRL_MDIO; |
| else |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| ew32(CTRL, ctrl); |
| E1000_WRITE_FLUSH(); |
| |
| udelay(10); |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| mask = mask >> 1; |
| } |
| } |
| |
| /** |
| * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Bits are shifted in in MSB to LSB order. |
| */ |
| static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| u16 data = 0; |
| u8 i; |
| |
| /* In order to read a register from the PHY, we need to shift in a total |
| * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| * to avoid contention on the MDIO pin when a read operation is performed. |
| * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| * by raising the input to the Management Data Clock (setting the MDC bit), |
| * and then reading the value of the MDIO bit. |
| */ |
| ctrl = er32(CTRL); |
| |
| /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| ctrl &= ~E1000_CTRL_MDIO_DIR; |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| ew32(CTRL, ctrl); |
| E1000_WRITE_FLUSH(); |
| |
| /* Raise and Lower the clock before reading in the data. This accounts for |
| * the turnaround bits. The first clock occurred when we clocked out the |
| * last bit of the Register Address. |
| */ |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| for (data = 0, i = 0; i < 16; i++) { |
| data = data << 1; |
| e1000_raise_mdi_clk(hw, &ctrl); |
| ctrl = er32(CTRL); |
| /* Check to see if we shifted in a "1". */ |
| if (ctrl & E1000_CTRL_MDIO) |
| data |= 1; |
| e1000_lower_mdi_clk(hw, &ctrl); |
| } |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| return data; |
| } |
| |
| |
| /** |
| * e1000_read_phy_reg - read a phy register |
| * @hw: Struct containing variables accessed by shared code |
| * @reg_addr: address of the PHY register to read |
| * |
| * Reads the value from a PHY register, if the value is on a specific non zero |
| * page, sets the page first. |
| */ |
| s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) |
| { |
| u32 ret_val; |
| |
| e_dbg("e1000_read_phy_reg"); |
| |
| if ((hw->phy_type == e1000_phy_igp) && |
| (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| (u16) reg_addr); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
| phy_data); |
| |
| return ret_val; |
| } |
| |
| static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
| u16 *phy_data) |
| { |
| u32 i; |
| u32 mdic = 0; |
| const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; |
| |
| e_dbg("e1000_read_phy_reg_ex"); |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| e_dbg("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, and register address in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| if (hw->mac_type == e1000_ce4100) { |
| mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (INTEL_CE_GBE_MDIC_OP_READ) | |
| (INTEL_CE_GBE_MDIC_GO)); |
| |
| writel(mdic, E1000_MDIO_CMD); |
| |
| /* Poll the ready bit to see if the MDI read |
| * completed |
| */ |
| for (i = 0; i < 64; i++) { |
| udelay(50); |
| mdic = readl(E1000_MDIO_CMD); |
| if (!(mdic & INTEL_CE_GBE_MDIC_GO)) |
| break; |
| } |
| |
| if (mdic & INTEL_CE_GBE_MDIC_GO) { |
| e_dbg("MDI Read did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| mdic = readl(E1000_MDIO_STS); |
| if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { |
| e_dbg("MDI Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| *phy_data = (u16) mdic; |
| } else { |
| mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_READ)); |
| |
| ew32(MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read |
| * completed |
| */ |
| for (i = 0; i < 64; i++) { |
| udelay(50); |
| mdic = er32(MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| e_dbg("MDI Read did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (mdic & E1000_MDIC_ERROR) { |
| e_dbg("MDI Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| *phy_data = (u16) mdic; |
| } |
| } else { |
| /* We must first send a preamble through the MDIO pin to signal the |
| * beginning of an MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the next few fields that are required for a read |
| * operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine five different times. The format of |
| * a MII read instruction consists of a shift out of 14 bits and is |
| * defined as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| * followed by a shift in of 18 bits. This first two bits shifted in |
| * are TurnAround bits used to avoid contention on the MDIO pin when a |
| * READ operation is performed. These two bits are thrown away |
| * followed by a shift in of 16 bits which contains the desired data. |
| */ |
| mdic = ((reg_addr) | (phy_addr << 5) | |
| (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 14); |
| |
| /* Now that we've shifted out the read command to the MII, we need to |
| * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| * register address. |
| */ |
| *phy_data = e1000_shift_in_mdi_bits(hw); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_phy_reg - write a phy register |
| * |
| * @hw: Struct containing variables accessed by shared code |
| * @reg_addr: address of the PHY register to write |
| * @data: data to write to the PHY |
| |
| * Writes a value to a PHY register |
| */ |
| s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) |
| { |
| u32 ret_val; |
| |
| e_dbg("e1000_write_phy_reg"); |
| |
| if ((hw->phy_type == e1000_phy_igp) && |
| (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| (u16) reg_addr); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
| phy_data); |
| |
| return ret_val; |
| } |
| |
| static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
| u16 phy_data) |
| { |
| u32 i; |
| u32 mdic = 0; |
| const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; |
| |
| e_dbg("e1000_write_phy_reg_ex"); |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| e_dbg("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, register address, and data |
| * intended for the PHY register in the MDI Control register. |
| * The MAC will take care of interfacing with the PHY to send |
| * the desired data. |
| */ |
| if (hw->mac_type == e1000_ce4100) { |
| mdic = (((u32) phy_data) | |
| (reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (INTEL_CE_GBE_MDIC_OP_WRITE) | |
| (INTEL_CE_GBE_MDIC_GO)); |
| |
| writel(mdic, E1000_MDIO_CMD); |
| |
| /* Poll the ready bit to see if the MDI read |
| * completed |
| */ |
| for (i = 0; i < 640; i++) { |
| udelay(5); |
| mdic = readl(E1000_MDIO_CMD); |
| if (!(mdic & INTEL_CE_GBE_MDIC_GO)) |
| break; |
| } |
| if (mdic & INTEL_CE_GBE_MDIC_GO) { |
| e_dbg("MDI Write did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| } else { |
| mdic = (((u32) phy_data) | |
| (reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_WRITE)); |
| |
| ew32(MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read |
| * completed |
| */ |
| for (i = 0; i < 641; i++) { |
| udelay(5); |
| mdic = er32(MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| e_dbg("MDI Write did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| } |
| } else { |
| /* We'll need to use the SW defined pins to shift the write command |
| * out to the PHY. We first send a preamble to the PHY to signal the |
| * beginning of the MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the remaining required fields that will indicate a |
| * write operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine for each field in the command. The |
| * format of a MII write instruction is as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| */ |
| mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| mdic <<= 16; |
| mdic |= (u32) phy_data; |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 32); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_hw_reset - reset the phy, hardware style |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Returns the PHY to the power-on reset state |
| */ |
| s32 e1000_phy_hw_reset(struct e1000_hw *hw) |
| { |
| u32 ctrl, ctrl_ext; |
| u32 led_ctrl; |
| |
| e_dbg("e1000_phy_hw_reset"); |
| |
| e_dbg("Resetting Phy...\n"); |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| * bit. Then, take it out of reset. |
| * For e1000 hardware, we delay for 10ms between the assert |
| * and deassert. |
| */ |
| ctrl = er32(CTRL); |
| ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
| E1000_WRITE_FLUSH(); |
| |
| msleep(10); |
| |
| ew32(CTRL, ctrl); |
| E1000_WRITE_FLUSH(); |
| |
| } else { |
| /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| * bit to put the PHY into reset. Then, take it out of reset. |
| */ |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| ew32(CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(); |
| msleep(10); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| ew32(CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(); |
| } |
| udelay(150); |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = er32(LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| ew32(LEDCTL, led_ctrl); |
| } |
| |
| /* Wait for FW to finish PHY configuration. */ |
| return e1000_get_phy_cfg_done(hw); |
| } |
| |
| /** |
| * e1000_phy_reset - reset the phy to commit settings |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Resets the PHY |
| * Sets bit 15 of the MII Control register |
| */ |
| s32 e1000_phy_reset(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_phy_reset"); |
| |
| switch (hw->phy_type) { |
| case e1000_phy_igp: |
| ret_val = e1000_phy_hw_reset(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= MII_CR_RESET; |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| break; |
| } |
| |
| if (hw->phy_type == e1000_phy_igp) |
| e1000_phy_init_script(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_detect_gig_phy - check the phy type |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Probes the expected PHY address for known PHY IDs |
| */ |
| static s32 e1000_detect_gig_phy(struct e1000_hw *hw) |
| { |
| s32 phy_init_status, ret_val; |
| u16 phy_id_high, phy_id_low; |
| bool match = false; |
| |
| e_dbg("e1000_detect_gig_phy"); |
| |
| if (hw->phy_id != 0) |
| return E1000_SUCCESS; |
| |
| /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_id = (u32) (phy_id_high << 16); |
| udelay(20); |
| ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); |
| hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; |
| |
| switch (hw->mac_type) { |
| case e1000_82543: |
| if (hw->phy_id == M88E1000_E_PHY_ID) |
| match = true; |
| break; |
| case e1000_82544: |
| if (hw->phy_id == M88E1000_I_PHY_ID) |
| match = true; |
| break; |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| if (hw->phy_id == M88E1011_I_PHY_ID) |
| match = true; |
| break; |
| case e1000_ce4100: |
| if ((hw->phy_id == RTL8211B_PHY_ID) || |
| (hw->phy_id == RTL8201N_PHY_ID) || |
| (hw->phy_id == M88E1118_E_PHY_ID)) |
| match = true; |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| if (hw->phy_id == IGP01E1000_I_PHY_ID) |
| match = true; |
| break; |
| default: |
| e_dbg("Invalid MAC type %d\n", hw->mac_type); |
| return -E1000_ERR_CONFIG; |
| } |
| phy_init_status = e1000_set_phy_type(hw); |
| |
| if ((match) && (phy_init_status == E1000_SUCCESS)) { |
| e_dbg("PHY ID 0x%X detected\n", hw->phy_id); |
| return E1000_SUCCESS; |
| } |
| e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); |
| return -E1000_ERR_PHY; |
| } |
| |
| /** |
| * e1000_phy_reset_dsp - reset DSP |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Resets the PHY's DSP |
| */ |
| static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| e_dbg("e1000_phy_reset_dsp"); |
| |
| do { |
| ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
| if (ret_val) |
| break; |
| ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
| if (ret_val) |
| break; |
| ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
| if (ret_val) |
| break; |
| ret_val = E1000_SUCCESS; |
| } while (0); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_igp_get_info - get igp specific registers |
| * @hw: Struct containing variables accessed by shared code |
| * @phy_info: PHY information structure |
| * |
| * Get PHY information from various PHY registers for igp PHY only. |
| */ |
| static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info) |
| { |
| s32 ret_val; |
| u16 phy_data, min_length, max_length, average; |
| e1000_rev_polarity polarity; |
| |
| e_dbg("e1000_phy_igp_get_info"); |
| |
| /* The downshift status is checked only once, after link is established, |
| * and it stored in the hw->speed_downgraded parameter. */ |
| phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
| |
| /* IGP01E1000 does not need to support it. */ |
| phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
| |
| /* IGP01E1000 always correct polarity reversal */ |
| phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
| |
| /* Check polarity status */ |
| ret_val = e1000_check_polarity(hw, &polarity); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->cable_polarity = polarity; |
| |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->mdix_mode = |
| (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> |
| IGP01E1000_PSSR_MDIX_SHIFT); |
| |
| if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| /* Local/Remote Receiver Information are only valid at 1000 Mbps */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
| SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
| SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| |
| /* Get cable length */ |
| ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
| if (ret_val) |
| return ret_val; |
| |
| /* Translate to old method */ |
| average = (max_length + min_length) / 2; |
| |
| if (average <= e1000_igp_cable_length_50) |
| phy_info->cable_length = e1000_cable_length_50; |
| else if (average <= e1000_igp_cable_length_80) |
| phy_info->cable_length = e1000_cable_length_50_80; |
| else if (average <= e1000_igp_cable_length_110) |
| phy_info->cable_length = e1000_cable_length_80_110; |
| else if (average <= e1000_igp_cable_length_140) |
| phy_info->cable_length = e1000_cable_length_110_140; |
| else |
| phy_info->cable_length = e1000_cable_length_140; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_m88_get_info - get m88 specific registers |
| * @hw: Struct containing variables accessed by shared code |
| * @phy_info: PHY information structure |
| * |
| * Get PHY information from various PHY registers for m88 PHY only. |
| */ |
| static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| e1000_rev_polarity polarity; |
| |
| e_dbg("e1000_phy_m88_get_info"); |
| |
| /* The downshift status is checked only once, after link is established, |
| * and it stored in the hw->speed_downgraded parameter. */ |
| phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->extended_10bt_distance = |
| ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
| M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? |
| e1000_10bt_ext_dist_enable_lower : |
| e1000_10bt_ext_dist_enable_normal; |
| |
| phy_info->polarity_correction = |
| ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
| M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? |
| e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; |
| |
| /* Check polarity status */ |
| ret_val = e1000_check_polarity(hw, &polarity); |
| if (ret_val) |
| return ret_val; |
| phy_info->cable_polarity = polarity; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->mdix_mode = |
| (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> |
| M88E1000_PSSR_MDIX_SHIFT); |
| |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
| /* Cable Length Estimation and Local/Remote Receiver Information |
| * are only valid at 1000 Mbps. |
| */ |
| phy_info->cable_length = |
| (e1000_cable_length) ((phy_data & |
| M88E1000_PSSR_CABLE_LENGTH) >> |
| M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
| SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
| SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_get_info - request phy info |
| * @hw: Struct containing variables accessed by shared code |
| * @phy_info: PHY information structure |
| * |
| * Get PHY information from various PHY registers |
| */ |
| s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_phy_get_info"); |
| |
| phy_info->cable_length = e1000_cable_length_undefined; |
| phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
| phy_info->cable_polarity = e1000_rev_polarity_undefined; |
| phy_info->downshift = e1000_downshift_undefined; |
| phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
| phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
| phy_info->local_rx = e1000_1000t_rx_status_undefined; |
| phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
| |
| if (hw->media_type != e1000_media_type_copper) { |
| e_dbg("PHY info is only valid for copper media\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
| e_dbg("PHY info is only valid if link is up\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| if (hw->phy_type == e1000_phy_igp) |
| return e1000_phy_igp_get_info(hw, phy_info); |
| else if ((hw->phy_type == e1000_phy_8211) || |
| (hw->phy_type == e1000_phy_8201)) |
| return E1000_SUCCESS; |
| else |
| return e1000_phy_m88_get_info(hw, phy_info); |
| } |
| |
| s32 e1000_validate_mdi_setting(struct e1000_hw *hw) |
| { |
| e_dbg("e1000_validate_mdi_settings"); |
| |
| if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { |
| e_dbg("Invalid MDI setting detected\n"); |
| hw->mdix = 1; |
| return -E1000_ERR_CONFIG; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_eeprom_params - initialize sw eeprom vars |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Sets up eeprom variables in the hw struct. Must be called after mac_type |
| * is configured. |
| */ |
| s32 e1000_init_eeprom_params(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| u32 eecd = er32(EECD); |
| s32 ret_val = E1000_SUCCESS; |
| u16 eeprom_size; |
| |
| e_dbg("e1000_init_eeprom_params"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->word_size = 64; |
| eeprom->opcode_bits = 3; |
| eeprom->address_bits = 6; |
| eeprom->delay_usec = 50; |
| break; |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->opcode_bits = 3; |
| eeprom->delay_usec = 50; |
| if (eecd & E1000_EECD_SIZE) { |
| eeprom->word_size = 256; |
| eeprom->address_bits = 8; |
| } else { |
| eeprom->word_size = 64; |
| eeprom->address_bits = 6; |
| } |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| if (eecd & E1000_EECD_TYPE) { |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| } else { |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->opcode_bits = 3; |
| eeprom->delay_usec = 50; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->word_size = 256; |
| eeprom->address_bits = 8; |
| } else { |
| eeprom->word_size = 64; |
| eeprom->address_bits = 6; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (eeprom->type == e1000_eeprom_spi) { |
| /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
| * 32KB (incremented by powers of 2). |
| */ |
| /* Set to default value for initial eeprom read. */ |
| eeprom->word_size = 64; |
| ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
| if (ret_val) |
| return ret_val; |
| eeprom_size = |
| (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
| /* 256B eeprom size was not supported in earlier hardware, so we |
| * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
| * is never the result used in the shifting logic below. */ |
| if (eeprom_size) |
| eeprom_size++; |
| |
| eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
| } |
| return ret_val; |
| } |
| |
| /** |
| * e1000_raise_ee_clk - Raises the EEPROM's clock input. |
| * @hw: Struct containing variables accessed by shared code |
| * @eecd: EECD's current value |
| */ |
| static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) |
| { |
| /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| * wait <delay> microseconds. |
| */ |
| *eecd = *eecd | E1000_EECD_SK; |
| ew32(EECD, *eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(hw->eeprom.delay_usec); |
| } |
| |
| /** |
| * e1000_lower_ee_clk - Lowers the EEPROM's clock input. |
| * @hw: Struct containing variables accessed by shared code |
| * @eecd: EECD's current value |
| */ |
| static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) |
| { |
| /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| * wait 50 microseconds. |
| */ |
| *eecd = *eecd & ~E1000_EECD_SK; |
| ew32(EECD, *eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(hw->eeprom.delay_usec); |
| } |
| |
| /** |
| * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. |
| * @hw: Struct containing variables accessed by shared code |
| * @data: data to send to the EEPROM |
| * @count: number of bits to shift out |
| */ |
| static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| u32 eecd; |
| u32 mask; |
| |
| /* We need to shift "count" bits out to the EEPROM. So, value in the |
| * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| * In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01 << (count - 1); |
| eecd = er32(EECD); |
| if (eeprom->type == e1000_eeprom_microwire) { |
| eecd &= ~E1000_EECD_DO; |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| eecd |= E1000_EECD_DO; |
| } |
| do { |
| /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| * and then raising and then lowering the clock (the SK bit controls |
| * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| * by setting "DI" to "0" and then raising and then lowering the clock. |
| */ |
| eecd &= ~E1000_EECD_DI; |
| |
| if (data & mask) |
| eecd |= E1000_EECD_DI; |
| |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| |
| udelay(eeprom->delay_usec); |
| |
| e1000_raise_ee_clk(hw, &eecd); |
| e1000_lower_ee_clk(hw, &eecd); |
| |
| mask = mask >> 1; |
| |
| } while (mask); |
| |
| /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| eecd &= ~E1000_EECD_DI; |
| ew32(EECD, eecd); |
| } |
| |
| /** |
| * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM |
| * @hw: Struct containing variables accessed by shared code |
| * @count: number of bits to shift in |
| */ |
| static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) |
| { |
| u32 eecd; |
| u32 i; |
| u16 data; |
| |
| /* In order to read a register from the EEPROM, we need to shift 'count' |
| * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
| * input to the EEPROM (setting the SK bit), and then reading the value of |
| * the "DO" bit. During this "shifting in" process the "DI" bit should |
| * always be clear. |
| */ |
| |
| eecd = er32(EECD); |
| |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| data = 0; |
| |
| for (i = 0; i < count; i++) { |
| data = data << 1; |
| e1000_raise_ee_clk(hw, &eecd); |
| |
| eecd = er32(EECD); |
| |
| eecd &= ~(E1000_EECD_DI); |
| if (eecd & E1000_EECD_DO) |
| data |= 1; |
| |
| e1000_lower_ee_clk(hw, &eecd); |
| } |
| |
| return data; |
| } |
| |
| /** |
| * e1000_acquire_eeprom - Prepares EEPROM for access |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
| * function should be called before issuing a command to the EEPROM. |
| */ |
| static s32 e1000_acquire_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| u32 eecd, i = 0; |
| |
| e_dbg("e1000_acquire_eeprom"); |
| |
| eecd = er32(EECD); |
| |
| /* Request EEPROM Access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd |= E1000_EECD_REQ; |
| ew32(EECD, eecd); |
| eecd = er32(EECD); |
| while ((!(eecd & E1000_EECD_GNT)) && |
| (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
| i++; |
| udelay(5); |
| eecd = er32(EECD); |
| } |
| if (!(eecd & E1000_EECD_GNT)) { |
| eecd &= ~E1000_EECD_REQ; |
| ew32(EECD, eecd); |
| e_dbg("Could not acquire EEPROM grant\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| |
| /* Setup EEPROM for Read/Write */ |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| /* Clear SK and DI */ |
| eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
| ew32(EECD, eecd); |
| |
| /* Set CS */ |
| eecd |= E1000_EECD_CS; |
| ew32(EECD, eecd); |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| /* Clear SK and CS */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| ew32(EECD, eecd); |
| udelay(1); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_standby_eeprom - Returns EEPROM to a "standby" state |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static void e1000_standby_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| u32 eecd; |
| |
| eecd = er32(EECD); |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(eeprom->delay_usec); |
| |
| /* Clock high */ |
| eecd |= E1000_EECD_SK; |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(eeprom->delay_usec); |
| |
| /* Select EEPROM */ |
| eecd |= E1000_EECD_CS; |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(eeprom->delay_usec); |
| |
| /* Clock low */ |
| eecd &= ~E1000_EECD_SK; |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(eeprom->delay_usec); |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| /* Toggle CS to flush commands */ |
| eecd |= E1000_EECD_CS; |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(eeprom->delay_usec); |
| eecd &= ~E1000_EECD_CS; |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(eeprom->delay_usec); |
| } |
| } |
| |
| /** |
| * e1000_release_eeprom - drop chip select |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Terminates a command by inverting the EEPROM's chip select pin |
| */ |
| static void e1000_release_eeprom(struct e1000_hw *hw) |
| { |
| u32 eecd; |
| |
| e_dbg("e1000_release_eeprom"); |
| |
| eecd = er32(EECD); |
| |
| if (hw->eeprom.type == e1000_eeprom_spi) { |
| eecd |= E1000_EECD_CS; /* Pull CS high */ |
| eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
| |
| ew32(EECD, eecd); |
| |
| udelay(hw->eeprom.delay_usec); |
| } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
| /* cleanup eeprom */ |
| |
| /* CS on Microwire is active-high */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| |
| ew32(EECD, eecd); |
| |
| /* Rising edge of clock */ |
| eecd |= E1000_EECD_SK; |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(hw->eeprom.delay_usec); |
| |
| /* Falling edge of clock */ |
| eecd &= ~E1000_EECD_SK; |
| ew32(EECD, eecd); |
| E1000_WRITE_FLUSH(); |
| udelay(hw->eeprom.delay_usec); |
| } |
| |
| /* Stop requesting EEPROM access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd &= ~E1000_EECD_REQ; |
| ew32(EECD, eecd); |
| } |
| } |
| |
| /** |
| * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) |
| { |
| u16 retry_count = 0; |
| u8 spi_stat_reg; |
| |
| e_dbg("e1000_spi_eeprom_ready"); |
| |
| /* Read "Status Register" repeatedly until the LSB is cleared. The |
| * EEPROM will signal that the command has been completed by clearing |
| * bit 0 of the internal status register. If it's not cleared within |
| * 5 milliseconds, then error out. |
| */ |
| retry_count = 0; |
| do { |
| e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
| hw->eeprom.opcode_bits); |
| spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); |
| if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
| break; |
| |
| udelay(5); |
| retry_count += 5; |
| |
| e1000_standby_eeprom(hw); |
| } while (retry_count < EEPROM_MAX_RETRY_SPI); |
| |
| /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
| * only 0-5mSec on 5V devices) |
| */ |
| if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
| e_dbg("SPI EEPROM Status error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. |
| * @hw: Struct containing variables accessed by shared code |
| * @offset: offset of word in the EEPROM to read |
| * @data: word read from the EEPROM |
| * @words: number of words to read |
| */ |
| s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| s32 ret; |
| spin_lock(&e1000_eeprom_lock); |
| ret = e1000_do_read_eeprom(hw, offset, words, data); |
| spin_unlock(&e1000_eeprom_lock); |
| return ret; |
| } |
| |
| static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| u32 i = 0; |
| |
| e_dbg("e1000_read_eeprom"); |
| |
| if (hw->mac_type == e1000_ce4100) { |
| GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, |
| data); |
| return E1000_SUCCESS; |
| } |
| |
| /* If eeprom is not yet detected, do so now */ |
| if (eeprom->word_size == 0) |
| e1000_init_eeprom_params(hw); |
| |
| /* A check for invalid values: offset too large, too many words, and not |
| * enough words. |
| */ |
| if ((offset >= eeprom->word_size) |
| || (words > eeprom->word_size - offset) || (words == 0)) { |
| e_dbg("\"words\" parameter out of bounds. Words = %d," |
| "size = %d\n", offset, eeprom->word_size); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
| * directly. In this case, we need to acquire the EEPROM so that |
| * FW or other port software does not interrupt. |
| */ |
| /* Prepare the EEPROM for bit-bang reading */ |
| if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| return -E1000_ERR_EEPROM; |
| |
| /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
| * acquired the EEPROM at this point, so any returns should release it */ |
| if (eeprom->type == e1000_eeprom_spi) { |
| u16 word_in; |
| u8 read_opcode = EEPROM_READ_OPCODE_SPI; |
| |
| if (e1000_spi_eeprom_ready(hw)) { |
| e1000_release_eeprom(hw); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| e1000_standby_eeprom(hw); |
| |
| /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
| if ((eeprom->address_bits == 8) && (offset >= 128)) |
| read_opcode |= EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
| e1000_shift_out_ee_bits(hw, (u16) (offset * 2), |
| eeprom->address_bits); |
| |
| /* Read the data. The address of the eeprom internally increments with |
| * each byte (spi) being read, saving on the overhead of eeprom setup |
| * and tear-down. The address counter will roll over if reading beyond |
| * the size of the eeprom, thus allowing the entire memory to be read |
| * starting from any offset. */ |
| for (i = 0; i < words; i++) { |
| word_in = e1000_shift_in_ee_bits(hw, 16); |
| data[i] = (word_in >> 8) | (word_in << 8); |
| } |
| } else if (eeprom->type == e1000_eeprom_microwire) { |
| for (i = 0; i < words; i++) { |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, |
| EEPROM_READ_OPCODE_MICROWIRE, |
| eeprom->opcode_bits); |
| e1000_shift_out_ee_bits(hw, (u16) (offset + i), |
| eeprom->address_bits); |
| |
| /* Read the data. For microwire, each word requires the overhead |
| * of eeprom setup and tear-down. */ |
| data[i] = e1000_shift_in_ee_bits(hw, 16); |
| e1000_standby_eeprom(hw); |
| } |
| } |
| |
| /* End this read operation */ |
| e1000_release_eeprom(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| * valid. |
| */ |
| s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
| { |
| u16 checksum = 0; |
| u16 i, eeprom_data; |
| |
| e_dbg("e1000_validate_eeprom_checksum"); |
| |
| for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
| e_dbg("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| checksum += eeprom_data; |
| } |
| |
| if (checksum == (u16) EEPROM_SUM) |
| return E1000_SUCCESS; |
| else { |
| e_dbg("EEPROM Checksum Invalid\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| |
| /** |
| * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
| * Writes the difference to word offset 63 of the EEPROM. |
| */ |
| s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) |
| { |
| u16 checksum = 0; |
| u16 i, eeprom_data; |
| |
| e_dbg("e1000_update_eeprom_checksum"); |
| |
| for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { |
| if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
| e_dbg("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| checksum += eeprom_data; |
| } |
| checksum = (u16) EEPROM_SUM - checksum; |
| if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
| e_dbg("EEPROM Write Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_eeprom - write words to the different EEPROM types. |
| * @hw: Struct containing variables accessed by shared code |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word to be written to the EEPROM |
| * |
| * If e1000_update_eeprom_checksum is not called after this function, the |
| * EEPROM will most likely contain an invalid checksum. |
| */ |
| s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| s32 ret; |
| spin_lock(&e1000_eeprom_lock); |
| ret = e1000_do_write_eeprom(hw, offset, words, data); |
| spin_unlock(&e1000_eeprom_lock); |
| return ret; |
| } |
| |
| static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| s32 status = 0; |
| |
| e_dbg("e1000_write_eeprom"); |
| |
| if (hw->mac_type == e1000_ce4100) { |
| GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, |
| data); |
| return E1000_SUCCESS; |
| } |
| |
| /* If eeprom is not yet detected, do so now */ |
| if (eeprom->word_size == 0) |
| e1000_init_eeprom_params(hw); |
| |
| /* A check for invalid values: offset too large, too many words, and not |
| * enough words. |
| */ |
| if ((offset >= eeprom->word_size) |
| || (words > eeprom->word_size - offset) || (words == 0)) { |
| e_dbg("\"words\" parameter out of bounds\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Prepare the EEPROM for writing */ |
| if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| return -E1000_ERR_EEPROM; |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| status = e1000_write_eeprom_microwire(hw, offset, words, data); |
| } else { |
| status = e1000_write_eeprom_spi(hw, offset, words, data); |
| msleep(10); |
| } |
| |
| /* Done with writing */ |
| e1000_release_eeprom(hw); |
| |
| return status; |
| } |
| |
| /** |
| * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. |
| * @hw: Struct containing variables accessed by shared code |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of words to write |
| * @data: pointer to array of 8 bit words to be written to the EEPROM |
| */ |
| static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| u16 widx = 0; |
| |
| e_dbg("e1000_write_eeprom_spi"); |
| |
| while (widx < words) { |
| u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; |
| |
| if (e1000_spi_eeprom_ready(hw)) |
| return -E1000_ERR_EEPROM; |
| |
| e1000_standby_eeprom(hw); |
| |
| /* Send the WRITE ENABLE command (8 bit opcode ) */ |
| e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
| eeprom->opcode_bits); |
| |
| e1000_standby_eeprom(hw); |
| |
| /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
| if ((eeprom->address_bits == 8) && (offset >= 128)) |
| write_opcode |= EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the Write command (8-bit opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
| |
| e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), |
| eeprom->address_bits); |
| |
| /* Send the data */ |
| |
| /* Loop to allow for up to whole page write (32 bytes) of eeprom */ |
| while (widx < words) { |
| u16 word_out = data[widx]; |
| word_out = (word_out >> 8) | (word_out << 8); |
| e1000_shift_out_ee_bits(hw, word_out, 16); |
| widx++; |
| |
| /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE |
| * operation, while the smaller eeproms are capable of an 8-byte |
| * PAGE WRITE operation. Break the inner loop to pass new address |
| */ |
| if ((((offset + widx) * 2) % eeprom->page_size) == 0) { |
| e1000_standby_eeprom(hw); |
| break; |
| } |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. |
| * @hw: Struct containing variables accessed by shared code |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of words to write |
| * @data: pointer to array of 8 bit words to be written to the EEPROM |
| */ |
| static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| u32 eecd; |
| u16 words_written = 0; |
| u16 i = 0; |
| |
| e_dbg("e1000_write_eeprom_microwire"); |
| |
| /* Send the write enable command to the EEPROM (3-bit opcode plus |
| * 6/8-bit dummy address beginning with 11). It's less work to include |
| * the 11 of the dummy address as part of the opcode than it is to shift |
| * it over the correct number of bits for the address. This puts the |
| * EEPROM into write/erase mode. |
| */ |
| e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
| (u16) (eeprom->opcode_bits + 2)); |
| |
| e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
| |
| /* Prepare the EEPROM */ |
| e1000_standby_eeprom(hw); |
| |
| while (words_written < words) { |
| /* Send the Write command (3-bit opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
| eeprom->opcode_bits); |
| |
| e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), |
| eeprom->address_bits); |
| |
| /* Send the data */ |
| e1000_shift_out_ee_bits(hw, data[words_written], 16); |
| |
| /* Toggle the CS line. This in effect tells the EEPROM to execute |
| * the previous command. |
| */ |
| e1000_standby_eeprom(hw); |
| |
| /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will |
| * signal that the command has been completed by raising the DO signal. |
| * If DO does not go high in 10 milliseconds, then error out. |
| */ |
| for (i = 0; i < 200; i++) { |
| eecd = er32(EECD); |
| if (eecd & E1000_EECD_DO) |
| break; |
| udelay(50); |
| } |
| if (i == 200) { |
| e_dbg("EEPROM Write did not complete\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Recover from write */ |
| e1000_standby_eeprom(hw); |
| |
| words_written++; |
| } |
| |
| /* Send the write disable command to the EEPROM (3-bit opcode plus |
| * 6/8-bit dummy address beginning with 10). It's less work to include |
| * the 10 of the dummy address as part of the opcode than it is to shift |
| * it over the correct number of bits for the address. This takes the |
| * EEPROM out of write/erase mode. |
| */ |
| e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
| (u16) (eeprom->opcode_bits + 2)); |
| |
| e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_mac_addr - read the adapters MAC from eeprom |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| * second function of dual function devices |
| */ |
| s32 e1000_read_mac_addr(struct e1000_hw *hw) |
| { |
| u16 offset; |
| u16 eeprom_data, i; |
| |
| e_dbg("e1000_read_mac_addr"); |
| |
| for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| offset = i >> 1; |
| if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
| e_dbg("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); |
| hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); |
| } |
| |
| switch (hw->mac_type) { |
| default: |
| break; |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| if (er32(STATUS) & E1000_STATUS_FUNC_1) |
| hw->perm_mac_addr[5] ^= 0x01; |
| break; |
| } |
| |
| for (i = 0; i < NODE_ADDRESS_SIZE; i++) |
| hw->mac_addr[i] = hw->perm_mac_addr[i]; |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_rx_addrs - Initializes receive address filters. |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive address registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| */ |
| static void e1000_init_rx_addrs(struct e1000_hw *hw) |
| { |
| u32 i; |
| u32 rar_num; |
| |
| e_dbg("e1000_init_rx_addrs"); |
| |
| /* Setup the receive address. */ |
| e_dbg("Programming MAC Address into RAR[0]\n"); |
| |
| e1000_rar_set(hw, hw->mac_addr, 0); |
| |
| rar_num = E1000_RAR_ENTRIES; |
| |
| /* Zero out the other 15 receive addresses. */ |
| e_dbg("Clearing RAR[1-15]\n"); |
| for (i = 1; i < rar_num; i++) { |
| E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| E1000_WRITE_FLUSH(); |
| E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| E1000_WRITE_FLUSH(); |
| } |
| } |
| |
| /** |
| * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table |
| * @hw: Struct containing variables accessed by shared code |
| * @mc_addr: the multicast address to hash |
| */ |
| u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
| { |
| u32 hash_value = 0; |
| |
| /* The portion of the address that is used for the hash table is |
| * determined by the mc_filter_type setting. |
| */ |
| switch (hw->mc_filter_type) { |
| /* [0] [1] [2] [3] [4] [5] |
| * 01 AA 00 12 34 56 |
| * LSB MSB |
| */ |
| case 0: |
| /* [47:36] i.e. 0x563 for above example address */ |
| hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); |
| break; |
| case 1: |
| /* [46:35] i.e. 0xAC6 for above example address */ |
| hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); |
| break; |
| case 2: |
| /* [45:34] i.e. 0x5D8 for above example address */ |
| hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); |
| break; |
| case 3: |
| /* [43:32] i.e. 0x634 for above example address */ |
| hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); |
| break; |
| } |
| |
| hash_value &= 0xFFF; |
| return hash_value; |
| } |
| |
| /** |
| * e1000_rar_set - Puts an ethernet address into a receive address register. |
| * @hw: Struct containing variables accessed by shared code |
| * @addr: Address to put into receive address register |
| * @index: Receive address register to write |
| */ |
| void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
| { |
| u32 rar_low, rar_high; |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
| ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
| rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
| |
| /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx |
| * unit hang. |
| * |
| * Description: |
| * If there are any Rx frames queued up or otherwise present in the HW |
| * before RSS is enabled, and then we enable RSS, the HW Rx unit will |
| * hang. To work around this issue, we have to disable receives and |
| * flush out all Rx frames before we enable RSS. To do so, we modify we |
| * redirect all Rx traffic to manageability and then reset the HW. |
| * This flushes away Rx frames, and (since the redirections to |
| * manageability persists across resets) keeps new ones from coming in |
| * while we work. Then, we clear the Address Valid AV bit for all MAC |
| * addresses and undo the re-direction to manageability. |
| * Now, frames are coming in again, but the MAC won't accept them, so |
| * far so good. We now proceed to initialize RSS (if necessary) and |
| * configure the Rx unit. Last, we re-enable the AV bits and continue |
| * on our merry way. |
| */ |
| switch (hw->mac_type) { |
| default: |
| /* Indicate to hardware the Address is Valid. */ |
| rar_high |= E1000_RAH_AV; |
| break; |
| } |
| |
| E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
| E1000_WRITE_FLUSH(); |
| E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
| E1000_WRITE_FLUSH(); |
| } |
| |
| /** |
| * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. |
| * @hw: Struct containing variables accessed by shared code |
| * @offset: Offset in VLAN filer table to write |
| * @value: Value to write into VLAN filter table |
| */ |
| void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
| { |
| u32 temp; |
| |
| if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
| temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| E1000_WRITE_FLUSH(); |
| E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
| E1000_WRITE_FLUSH(); |
| } else { |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| E1000_WRITE_FLUSH(); |
| } |
| } |
| |
| /** |
| * e1000_clear_vfta - Clears the VLAN filer table |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static void e1000_clear_vfta(struct e1000_hw *hw) |
| { |
| u32 offset; |
| u32 vfta_value = 0; |
| u32 vfta_offset = 0; |
| u32 vfta_bit_in_reg = 0; |
| |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| /* If the offset we want to clear is the same offset of the |
| * manageability VLAN ID, then clear all bits except that of the |
| * manageability unit */ |
| vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
| E1000_WRITE_FLUSH(); |
| } |
| } |
| |
| static s32 e1000_id_led_init(struct e1000_hw *hw) |
| { |
| u32 ledctl; |
| const u32 ledctl_mask = 0x000000FF; |
| const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
| const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
| u16 eeprom_data, i, temp; |
| const u16 led_mask = 0x0F; |
| |
| e_dbg("e1000_id_led_init"); |
| |
| if (hw->mac_type < e1000_82540) { |
| /* Nothing to do */ |
| return E1000_SUCCESS; |
| } |
| |
| ledctl = er32(LEDCTL); |
| hw->ledctl_default = ledctl; |
| hw->ledctl_mode1 = hw->ledctl_default; |
| hw->ledctl_mode2 = hw->ledctl_default; |
| |
| if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
| e_dbg("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| if ((eeprom_data == ID_LED_RESERVED_0000) || |
| (eeprom_data == ID_LED_RESERVED_FFFF)) { |
| eeprom_data = ID_LED_DEFAULT; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| temp = (eeprom_data >> (i << 2)) & led_mask; |
| switch (temp) { |
| case ID_LED_ON1_DEF2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_ON1_OFF2: |
| hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode1 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_OFF1_DEF2: |
| case ID_LED_OFF1_ON2: |
| case ID_LED_OFF1_OFF2: |
| hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode1 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| switch (temp) { |
| case ID_LED_DEF1_ON2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_OFF1_ON2: |
| hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode2 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_DEF1_OFF2: |
| case ID_LED_ON1_OFF2: |
| case ID_LED_OFF1_OFF2: |
| hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode2 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_setup_led |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Prepares SW controlable LED for use and saves the current state of the LED. |
| */ |
| s32 e1000_setup_led(struct e1000_hw *hw) |
| { |
| u32 ledctl; |
| s32 ret_val = E1000_SUCCESS; |
| |
| e_dbg("e1000_setup_led"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| /* No setup necessary */ |
| break; |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| /* Turn off PHY Smart Power Down (if enabled) */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| &hw->phy_spd_default); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| (u16) (hw->phy_spd_default & |
| ~IGP01E1000_GMII_SPD)); |
| if (ret_val) |
| return ret_val; |
| /* Fall Through */ |
| default: |
| if (hw->media_type == e1000_media_type_fiber) { |
| ledctl = er32(LEDCTL); |
| /* Save current LEDCTL settings */ |
| hw->ledctl_default = ledctl; |
| /* Turn off LED0 */ |
| ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
| E1000_LEDCTL_LED0_BLINK | |
| E1000_LEDCTL_LED0_MODE_MASK); |
| ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
| E1000_LEDCTL_LED0_MODE_SHIFT); |
| ew32(LEDCTL, ledctl); |
| } else if (hw->media_type == e1000_media_type_copper) |
| ew32(LEDCTL, hw->ledctl_mode1); |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_cleanup_led - Restores the saved state of the SW controlable LED. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| s32 e1000_cleanup_led(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| |
| e_dbg("e1000_cleanup_led"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| /* No cleanup necessary */ |
| break; |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| /* Turn on PHY Smart Power Down (if previously enabled) */ |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| hw->phy_spd_default); |
| if (ret_val) |
| return ret_val; |
| /* Fall Through */ |
| default: |
| /* Restore LEDCTL settings */ |
| ew32(LEDCTL, hw->ledctl_default); |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_led_on - Turns on the software controllable LED |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| s32 e1000_led_on(struct e1000_hw *hw) |
| { |
| u32 ctrl = er32(CTRL); |
| |
| e_dbg("e1000_led_on"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| /* Set SW Defineable Pin 0 to turn on the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| break; |
| case e1000_82544: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Set SW Defineable Pin 0 to turn on the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else { |
| /* Clear SW Defineable Pin 0 to turn on the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } |
| break; |
| default: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Clear SW Defineable Pin 0 to turn on the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else if (hw->media_type == e1000_media_type_copper) { |
| ew32(LEDCTL, hw->ledctl_mode2); |
| return E1000_SUCCESS; |
| } |
| break; |
| } |
| |
| ew32(CTRL, ctrl); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_led_off - Turns off the software controllable LED |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| s32 e1000_led_off(struct e1000_hw *hw) |
| { |
| u32 ctrl = er32(CTRL); |
| |
| e_dbg("e1000_led_off"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| /* Clear SW Defineable Pin 0 to turn off the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| break; |
| case e1000_82544: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Clear SW Defineable Pin 0 to turn off the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else { |
| /* Set SW Defineable Pin 0 to turn off the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } |
| break; |
| default: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Set SW Defineable Pin 0 to turn off the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else if (hw->media_type == e1000_media_type_copper) { |
| ew32(LEDCTL, hw->ledctl_mode1); |
| return E1000_SUCCESS; |
| } |
| break; |
| } |
| |
| ew32(CTRL, ctrl); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs - Clears all hardware statistics counters. |
| * @hw: Struct containing variables accessed by shared code |
| */ |
| static void e1000_clear_hw_cntrs(struct e1000_hw *hw) |
| { |
| volatile u32 temp; |
| |
| temp = er32(CRCERRS); |
| temp = er32(SYMERRS); |
| temp = er32(MPC); |
| temp = er32(SCC); |
| temp = er32(ECOL); |
| temp = er32(MCC); |
| temp = er32(LATECOL); |
| temp = er32(COLC); |
| temp = er32(DC); |
| temp = er32(SEC); |
| temp = er32(RLEC); |
| temp = er32(XONRXC); |
| temp = er32(XONTXC); |
| temp = er32(XOFFRXC); |
| temp = er32(XOFFTXC); |
| temp = er32(FCRUC); |
| |
| temp = er32(PRC64); |
| temp = er32(PRC127); |
| temp = er32(PRC255); |
| temp = er32(PRC511); |
| temp = er32(PRC1023); |
| temp = er32(PRC1522); |
| |
| temp = er32(GPRC); |
| temp = er32(BPRC); |
| temp = er32(MPRC); |
| temp = er32(GPTC); |
| temp = er32(GORCL); |
| temp = er32(GORCH); |
| temp = er32(GOTCL); |
| temp = er32(GOTCH); |
| temp = er32(RNBC); |
| temp = er32(RUC); |
| temp = er32(RFC); |
| temp = er32(ROC); |
| temp = er32(RJC); |
| temp = er32(TORL); |
| temp = er32(TORH); |
| temp = er32(TOTL); |
| temp = er32(TOTH); |
| temp = er32(TPR); |
| temp = er32(TPT); |
| |
| temp = er32(PTC64); |
| temp = er32(PTC127); |
| temp = er32(PTC255); |
| temp = er32(PTC511); |
| temp = er32(PTC1023); |
| temp = er32(PTC1522); |
| |
| temp = er32(MPTC); |
| temp = er32(BPTC); |
| |
| if (hw->mac_type < e1000_82543) |
| return; |
| |
| temp = er32(ALGNERRC); |
| temp = er32(RXERRC); |
| temp = er32(TNCRS); |
| temp = er32(CEXTERR); |
| temp = er32(TSCTC); |
| temp = er32(TSCTFC); |
| |
| if (hw->mac_type <= e1000_82544) |
| return; |
| |
| temp = er32(MGTPRC); |
| temp = er32(MGTPDC); |
| temp = er32(MGTPTC); |
| } |
| |
| /** |
| * e1000_reset_adaptive - Resets Adaptive IFS to its default state. |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Call this after e1000_init_hw. You may override the IFS defaults by setting |
| * hw->ifs_params_forced to true. However, you must initialize hw-> |
| * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
| * before calling this function. |
| */ |
| void e1000_reset_adaptive(struct e1000_hw *hw) |
| { |
| e_dbg("e1000_reset_adaptive"); |
| |
| if (hw->adaptive_ifs) { |
| if (!hw->ifs_params_forced) { |
| hw->current_ifs_val = 0; |
| hw->ifs_min_val = IFS_MIN; |
| hw->ifs_max_val = IFS_MAX; |
| hw->ifs_step_size = IFS_STEP; |
| hw->ifs_ratio = IFS_RATIO; |
| } |
| hw->in_ifs_mode = false; |
| ew32(AIT, 0); |
| } else { |
| e_dbg("Not in Adaptive IFS mode!\n"); |
| } |
| } |
| |
| /** |
| * e1000_update_adaptive - update adaptive IFS |
| * @hw: Struct containing variables accessed by shared code |
| * @tx_packets: Number of transmits since last callback |
| * @total_collisions: Number of collisions since last callback |
| * |
| * Called during the callback/watchdog routine to update IFS value based on |
| * the ratio of transmits to collisions. |
| */ |
| void e1000_update_adaptive(struct e1000_hw *hw) |
| { |
| e_dbg("e1000_update_adaptive"); |
| |
| if (hw->adaptive_ifs) { |
| if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { |
| if (hw->tx_packet_delta > MIN_NUM_XMITS) { |
| hw->in_ifs_mode = true; |
| if (hw->current_ifs_val < hw->ifs_max_val) { |
| if (hw->current_ifs_val == 0) |
| hw->current_ifs_val = |
| hw->ifs_min_val; |
| else |
| hw->current_ifs_val += |
| hw->ifs_step_size; |
| ew32(AIT, hw->current_ifs_val); |
| } |
| } |
| } else { |
| if (hw->in_ifs_mode |
| && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
| hw->current_ifs_val = 0; |
| hw->in_ifs_mode = false; |
| ew32(AIT, 0); |
| } |
| } |
| } else { |
| e_dbg("Not in Adaptive IFS mode!\n"); |
| } |
| } |
| |
| /** |
| * e1000_tbi_adjust_stats |
| * @hw: Struct containing variables accessed by shared code |
| * @frame_len: The length of the frame in question |
| * @mac_addr: The Ethernet destination address of the frame in question |
| * |
| * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
| */ |
| void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, |
| u32 frame_len, u8 *mac_addr) |
| { |
| u64 carry_bit; |
| |
| /* First adjust the frame length. */ |
| frame_len--; |
| /* We need to adjust the statistics counters, since the hardware |
| * counters overcount this packet as a CRC error and undercount |
| * the packet as a good packet |
| */ |
| /* This packet should not be counted as a CRC error. */ |
| stats->crcerrs--; |
| /* This packet does count as a Good Packet Received. */ |
| stats->gprc++; |
| |
| /* Adjust the Good Octets received counters */ |
| carry_bit = 0x80000000 & stats->gorcl; |
| stats->gorcl += frame_len; |
| /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
| * Received Count) was one before the addition, |
| * AND it is zero after, then we lost the carry out, |
| * need to add one to Gorch (Good Octets Received Count High). |
| * This could be simplified if all environments supported |
| * 64-bit integers. |
| */ |
| if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
| stats->gorch++; |
| /* Is this a broadcast or multicast? Check broadcast first, |
| * since the test for a multicast frame will test positive on |
| * a broadcast frame. |
| */ |
| if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) |
| /* Broadcast packet */ |
| stats->bprc++; |
| else if (*mac_addr & 0x01) |
| /* Multicast packet */ |
| stats->mprc++; |
| |
| if (frame_len == hw->max_frame_size) { |
| /* In this case, the hardware has overcounted the number of |
| * oversize frames. |
| */ |
| if (stats->roc > 0) |
| stats->roc--; |
| } |
| |
| /* Adjust the bin counters when the extra byte put the frame in the |
| * wrong bin. Remember that the frame_len was adjusted above. |
| */ |
| if (frame_len == 64) { |
| stats->prc64++; |
| stats->prc127--; |
| } else if (frame_len == 127) { |
| stats->prc127++; |
| stats->prc255--; |
| } else if (frame_len == 255) { |
| stats->prc255++; |
| stats->prc511--; |
| } else if (frame_len == 511) { |
| stats->prc511++; |
| stats->prc1023--; |
| } else if (frame_len == 1023) { |
| stats->prc1023++; |
| stats->prc1522--; |
| } else if (frame_len == 1522) { |
| stats->prc1522++; |
| } |
| } |
| |
| /** |
| * e1000_get_bus_info |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Gets the current PCI bus type, speed, and width of the hardware |
| */ |
| void e1000_get_bus_info(struct e1000_hw *hw) |
| { |
| u32 status; |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| hw->bus_type = e1000_bus_type_pci; |
| hw->bus_speed = e1000_bus_speed_unknown; |
| hw->bus_width = e1000_bus_width_unknown; |
| break; |
| default: |
| status = er32(STATUS); |
| hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| e1000_bus_type_pcix : e1000_bus_type_pci; |
| |
| if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
| hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
| e1000_bus_speed_66 : e1000_bus_speed_120; |
| } else if (hw->bus_type == e1000_bus_type_pci) { |
| hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
| e1000_bus_speed_66 : e1000_bus_speed_33; |
| } else { |
| switch (status & E1000_STATUS_PCIX_SPEED) { |
| case E1000_STATUS_PCIX_SPEED_66: |
| hw->bus_speed = e1000_bus_speed_66; |
| break; |
| case E1000_STATUS_PCIX_SPEED_100: |
| hw->bus_speed = e1000_bus_speed_100; |
| break; |
| case E1000_STATUS_PCIX_SPEED_133: |
| hw->bus_speed = e1000_bus_speed_133; |
| break; |
| default: |
| hw->bus_speed = e1000_bus_speed_reserved; |
| break; |
| } |
| } |
| hw->bus_width = (status & E1000_STATUS_BUS64) ? |
| e1000_bus_width_64 : e1000_bus_width_32; |
| break; |
| } |
| } |
| |
| /** |
| * e1000_write_reg_io |
| * @hw: Struct containing variables accessed by shared code |
| * @offset: offset to write to |
| * @value: value to write |
| * |
| * Writes a value to one of the devices registers using port I/O (as opposed to |
| * memory mapped I/O). Only 82544 and newer devices support port I/O. |
| */ |
| static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) |
| { |
| unsigned long io_addr = hw->io_base; |
| unsigned long io_data = hw->io_base + 4; |
| |
| e1000_io_write(hw, io_addr, offset); |
| e1000_io_write(hw, io_data, value); |
| } |
| |
| /** |
| * e1000_get_cable_length - Estimates the cable length. |
| * @hw: Struct containing variables accessed by shared code |
| * @min_length: The estimated minimum length |
| * @max_length: The estimated maximum length |
| * |
| * returns: - E1000_ERR_XXX |
| * E1000_SUCCESS |
| * |
| * This function always returns a ranged length (minimum & maximum). |
| * So for M88 phy's, this function interprets the one value returned from the |
| * register to the minimum and maximum range. |
| * For IGP phy's, the function calculates the range by the AGC registers. |
| */ |
| static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
| u16 *max_length) |
| { |
| s32 ret_val; |
| u16 agc_value = 0; |
| u16 i, phy_data; |
| u16 cable_length; |
| |
| e_dbg("e1000_get_cable_length"); |
| |
| *min_length = *max_length = 0; |
| |
| /* Use old method for Phy older than IGP */ |
| if (hw->phy_type == e1000_phy_m88) { |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
| |
| /* Convert the enum value to ranged values */ |
| switch (cable_length) { |
| case e1000_cable_length_50: |
| *min_length = 0; |
| *max_length = e1000_igp_cable_length_50; |
| break; |
| case e1000_cable_length_50_80: |
| *min_length = e1000_igp_cable_length_50; |
| *max_length = e1000_igp_cable_length_80; |
| break; |
| case e1000_cable_length_80_110: |
| *min_length = e1000_igp_cable_length_80; |
| *max_length = e1000_igp_cable_length_110; |
| break; |
| case e1000_cable_length_110_140: |
| *min_length = e1000_igp_cable_length_110; |
| *max_length = e1000_igp_cable_length_140; |
| break; |
| case e1000_cable_length_140: |
| *min_length = e1000_igp_cable_length_140; |
| *max_length = e1000_igp_cable_length_170; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
| u16 cur_agc_value; |
| u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
| static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { |
| IGP01E1000_PHY_AGC_A, |
| IGP01E1000_PHY_AGC_B, |
| IGP01E1000_PHY_AGC_C, |
| IGP01E1000_PHY_AGC_D |
| }; |
| /* Read the AGC registers for all channels */ |
| for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| |
| ret_val = |
| e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
| |
| /* Value bound check. */ |
| if ((cur_agc_value >= |
| IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) |
| || (cur_agc_value == 0)) |
| return -E1000_ERR_PHY; |
| |
| agc_value += cur_agc_value; |
| |
| /* Update minimal AGC value. */ |
| if (min_agc_value > cur_agc_value) |
| min_agc_value = cur_agc_value; |
| } |
| |
| /* Remove the minimal AGC result for length < 50m */ |
| if (agc_value < |
| IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
| agc_value -= min_agc_value; |
| |
| /* Get the average length of the remaining 3 channels */ |
| agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
| } else { |
| /* Get the average length of all the 4 channels. */ |
| agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
| } |
| |
| /* Set the range of the calculated length. */ |
| *min_length = ((e1000_igp_cable_length_table[agc_value] - |
| IGP01E1000_AGC_RANGE) > 0) ? |
| (e1000_igp_cable_length_table[agc_value] - |
| IGP01E1000_AGC_RANGE) : 0; |
| *max_length = e1000_igp_cable_length_table[agc_value] + |
| IGP01E1000_AGC_RANGE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_check_polarity - Check the cable polarity |
| * @hw: Struct containing variables accessed by shared code |
| * @polarity: output parameter : 0 - Polarity is not reversed |
| * 1 - Polarity is reversed. |
| * |
| * returns: - E1000_ERR_XXX |
| * E1000_SUCCESS |
| * |
| * For phy's older than IGP, this function simply reads the polarity bit in the |
| * Phy Status register. For IGP phy's, this bit is valid only if link speed is |
| * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
| * return 0. If the link speed is 1000 Mbps the polarity status is in the |
| * IGP01E1000_PHY_PCS_INIT_REG. |
| */ |
| static s32 e1000_check_polarity(struct e1000_hw *hw, |
| e1000_rev_polarity *polarity) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_check_polarity"); |
| |
| if (hw->phy_type == e1000_phy_m88) { |
| /* return the Polarity bit in the Status register. */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> |
| M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
| e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
| |
| } else if (hw->phy_type == e1000_phy_igp) { |
| /* Read the Status register to check the speed */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to |
| * find the polarity status */ |
| if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| |
| /* Read the GIG initialization PCS register (0x00B4) */ |
| ret_val = |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Check the polarity bits */ |
| *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? |
| e1000_rev_polarity_reversed : |
| e1000_rev_polarity_normal; |
| } else { |
| /* For 10 Mbps, read the polarity bit in the status register. (for |
| * 100 Mbps this bit is always 0) */ |
| *polarity = |
| (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
| e1000_rev_polarity_reversed : |
| e1000_rev_polarity_normal; |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_check_downshift - Check if Downshift occurred |
| * @hw: Struct containing variables accessed by shared code |
| * @downshift: output parameter : 0 - No Downshift occurred. |
| * 1 - Downshift occurred. |
| * |
| * returns: - E1000_ERR_XXX |
| * E1000_SUCCESS |
| * |
| * For phy's older than IGP, this function reads the Downshift bit in the Phy |
| * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
| * Link Health register. In IGP this bit is latched high, so the driver must |
| * read it immediately after link is established. |
| */ |
| static s32 e1000_check_downshift(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| e_dbg("e1000_check_downshift"); |
| |
| if (hw->phy_type == e1000_phy_igp) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| hw->speed_downgraded = |
| (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
| } else if (hw->phy_type == e1000_phy_m88) { |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
| M88E1000_PSSR_DOWNSHIFT_SHIFT; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_config_dsp_after_link_change |
| * @hw: Struct containing variables accessed by shared code |
| * @link_up: was link up at the time this was called |
| * |
| * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| * E1000_SUCCESS at any other case. |
| * |
| * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
| * gigabit link is achieved to improve link quality. |
| */ |
| |
| static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) |
| { |
| s32 ret_val; |
| u16 phy_data, phy_saved_data, speed, duplex, i; |
| static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { |
| IGP01E1000_PHY_AGC_PARAM_A, |
| IGP01E1000_PHY_AGC_PARAM_B, |
| IGP01E1000_PHY_AGC_PARAM_C, |
| IGP01E1000_PHY_AGC_PARAM_D |
| }; |
| u16 min_length, max_length; |
| |
| e_dbg("e1000_config_dsp_after_link_change"); |
| |
| if (hw->phy_type != e1000_phy_igp) |
| return E1000_SUCCESS; |
| |
| if (link_up) { |
| ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| if (ret_val) { |
| e_dbg("Error getting link speed and duplex\n"); |
| return ret_val; |
| } |
| |
| if (speed == SPEED_1000) { |
| |
| ret_val = |
| e1000_get_cable_length(hw, &min_length, |
| &max_length); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->dsp_config_state == e1000_dsp_config_enabled) |
| && min_length >= e1000_igp_cable_length_50) { |
| |
| for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| ret_val = |
| e1000_read_phy_reg(hw, |
| dsp_reg_array[i], |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= |
| ~IGP01E1000_PHY_EDAC_MU_INDEX; |
| |
| ret_val = |
| e1000_write_phy_reg(hw, |
| dsp_reg_array |
| [i], phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| hw->dsp_config_state = |
| e1000_dsp_config_activated; |
| } |
| |
| if ((hw->ffe_config_state == e1000_ffe_config_enabled) |
| && (min_length < e1000_igp_cable_length_50)) { |
| |
| u16 ffe_idle_err_timeout = |
| FFE_IDLE_ERR_COUNT_TIMEOUT_20; |
| u32 idle_errs = 0; |
| |
| /* clear previous idle error counts */ |
| ret_val = |
| e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| for (i = 0; i < ffe_idle_err_timeout; i++) { |
| udelay(1000); |
| ret_val = |
| e1000_read_phy_reg(hw, |
| PHY_1000T_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| idle_errs += |
| (phy_data & |
| SR_1000T_IDLE_ERROR_CNT); |
| if (idle_errs > |
| SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) |
| { |
| hw->ffe_config_state = |
| e1000_ffe_config_active; |
| |
| ret_val = |
| e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_DSP_FFE, |
| IGP01E1000_PHY_DSP_FFE_CM_CP); |
| if (ret_val) |
| return ret_val; |
| break; |
| } |
| |
| if (idle_errs) |
| ffe_idle_err_timeout = |
| FFE_IDLE_ERR_COUNT_TIMEOUT_100; |
| } |
| } |
| } |
| } else { |
| if (hw->dsp_config_state == e1000_dsp_config_activated) { |
| /* Save off the current value of register 0x2F5B to be restored at |
| * the end of the routines. */ |
| ret_val = |
| e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable the PHY transmitter */ |
| ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_FORCE_GIGA); |
| if (ret_val) |
| return ret_val; |
| for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| ret_val = |
| e1000_read_phy_reg(hw, dsp_reg_array[i], |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
| phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; |
| |
| ret_val = |
| e1000_write_phy_reg(hw, dsp_reg_array[i], |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_RESTART_AUTONEG); |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| /* Now enable the transmitter */ |
| ret_val = |
| e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| } |
| |
| if (hw->ffe_config_state == e1000_ffe_config_active) { |
| /* Save off the current value of register 0x2F5B to be restored at |
| * the end of the routines. */ |
| ret_val = |
| e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable the PHY transmitter */ |
| ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_FORCE_GIGA); |
| if (ret_val) |
| return ret_val; |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, |
| IGP01E1000_PHY_DSP_FFE_DEFAULT); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_RESTART_AUTONEG); |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| /* Now enable the transmitter */ |
| ret_val = |
| e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| hw->ffe_config_state = e1000_ffe_config_enabled; |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_phy_mode - Set PHY to class A mode |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Assumes the following operations will follow to enable the new class mode. |
| * 1. Do a PHY soft reset |
| * 2. Restart auto-negotiation or force link. |
| */ |
| static s32 e1000_set_phy_mode(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 eeprom_data; |
| |
| e_dbg("e1000_set_phy_mode"); |
| |
| if ((hw->mac_type == e1000_82545_rev_3) && |
| (hw->media_type == e1000_media_type_copper)) { |
| ret_val = |
| e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, |
| &eeprom_data); |
| if (ret_val) { |
| return ret_val; |
| } |
| |
| if ((eeprom_data != EEPROM_RESERVED_WORD) && |
| (eeprom_data & EEPROM_PHY_CLASS_A)) { |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, |
| 0x000B); |
| if (ret_val) |
| return ret_val; |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, |
| 0x8104); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_reset_disable = false; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_d3_lplu_state - set d3 link power state |
| * @hw: Struct containing variables accessed by shared code |
| * @active: true to enable lplu false to disable lplu. |
| * |
| * This function sets the lplu state according to the active flag. When |
| * activating lplu this function also disables smart speed and vise versa. |
| * lplu will not be activated unless the device autonegotiation advertisement |
| * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * |
| * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| * E1000_SUCCESS at any other case. |
| */ |
| static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| e_dbg("e1000_set_d3_lplu_state"); |
| |
| if (hw->phy_type != e1000_phy_igp) |
| return E1000_SUCCESS; |
| |
| /* During driver activity LPLU should not be used or it will attain link |
| * from the lowest speeds starting from 10Mbps. The capability is used for |
| * Dx transitions and states */ |
| if (hw->mac_type == e1000_82541_rev_2 |
| || hw->mac_type == e1000_82547_rev_2) { |
| ret_val = |
| e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (!active) { |
| if (hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547_rev_2) { |
| phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| * Dx states where the power conservation is most important. During |
| * driver activity we should enable SmartSpeed, so performance is |
| * maintained. */ |
| if (hw->smart_speed == e1000_smart_speed_on) { |
| ret_val = |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->smart_speed == e1000_smart_speed_off) { |
| ret_val = |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) |
| || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) |
| || (hw->autoneg_advertised == |
| AUTONEG_ADVERTISE_10_100_ALL)) { |
| |
| if (hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547_rev_2) { |
| phy_data |= IGP01E1000_GMII_FLEX_SPD; |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* When LPLU is enabled we should disable SmartSpeed */ |
| ret_val = |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_vco_speed |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
| */ |
| static s32 e1000_set_vco_speed(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 default_page = 0; |
| u16 phy_data; |
| |
| e_dbg("e1000_set_vco_speed"); |
| |
| switch (hw->mac_type) { |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| break; |
| default: |
| return E1000_SUCCESS; |
| } |
| |
| /* Set PHY register 30, page 5, bit 8 to 0 */ |
| |
| ret_val = |
| e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Set PHY register 30, page 4, bit 11 to 1 */ |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = |
| e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
| if (ret_val) |
| return ret_val; |
| |
| return E1000_SUCCESS; |
| } |
| |
| |
| /** |
| * e1000_enable_mng_pass_thru - check for bmc pass through |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Verifies the hardware needs to allow ARPs to be processed by the host |
| * returns: - true/false |
| */ |
| u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
| { |
| u32 manc; |
| |
| if (hw->asf_firmware_present) { |
| manc = er32(MANC); |
| |
| if (!(manc & E1000_MANC_RCV_TCO_EN) || |
| !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
| return false; |
| if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
| return true; |
| } |
| return false; |
| } |
| |
| static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 mii_status_reg; |
| u16 i; |
| |
| /* Polarity reversal workaround for forced 10F/10H links. */ |
| |
| /* Disable the transmitter on the PHY */ |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
| if (ret_val) |
| return ret_val; |
| |
| /* This loop will early-out if the NO link condition has been met. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Link Status bit |
| * to be clear. |
| */ |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) |
| break; |
| mdelay(100); |
| } |
| |
| /* Recommended delay time after link has been lost */ |
| mdelay(1000); |
| |
| /* Now we will re-enable th transmitter on the PHY */ |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
| if (ret_val) |
| return ret_val; |
| mdelay(50); |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); |
| if (ret_val) |
| return ret_val; |
| mdelay(50); |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); |
| if (ret_val) |
| return ret_val; |
| mdelay(50); |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
| if (ret_val) |
| return ret_val; |
| |
| /* This loop will early-out if the link condition has been met. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Link Status bit |
| * to be set. |
| */ |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (mii_status_reg & MII_SR_LINK_STATUS) |
| break; |
| mdelay(100); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_auto_rd_done |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Check for EEPROM Auto Read bit done. |
| * returns: - E1000_ERR_RESET if fail to reset MAC |
| * E1000_SUCCESS at any other case. |
| */ |
| static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) |
| { |
| e_dbg("e1000_get_auto_rd_done"); |
| msleep(5); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_phy_cfg_done |
| * @hw: Struct containing variables accessed by shared code |
| * |
| * Checks if the PHY configuration is done |
| * returns: - E1000_ERR_RESET if fail to reset MAC |
| * E1000_SUCCESS at any other case. |
| */ |
| static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
| { |
| e_dbg("e1000_get_phy_cfg_done"); |
| mdelay(10); |
| return E1000_SUCCESS; |
| } |