blob: cd93eb530b743742a8461de356fc3f5eb28f74e5 [file] [log] [blame]
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mount.h>
#include <linux/mpage.h>
#include <linux/namei.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/statfs.h>
#include <linux/compat.h>
#include <linux/bit_spinlock.h>
#include <linux/security.h>
#include <linux/xattr.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include "compat.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "ioctl.h"
#include "print-tree.h"
#include "volumes.h"
#include "locking.h"
#include "inode-map.h"
#include "backref.h"
#include "rcu-string.h"
/* Mask out flags that are inappropriate for the given type of inode. */
static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
{
if (S_ISDIR(mode))
return flags;
else if (S_ISREG(mode))
return flags & ~FS_DIRSYNC_FL;
else
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
}
/*
* Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
*/
static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
{
unsigned int iflags = 0;
if (flags & BTRFS_INODE_SYNC)
iflags |= FS_SYNC_FL;
if (flags & BTRFS_INODE_IMMUTABLE)
iflags |= FS_IMMUTABLE_FL;
if (flags & BTRFS_INODE_APPEND)
iflags |= FS_APPEND_FL;
if (flags & BTRFS_INODE_NODUMP)
iflags |= FS_NODUMP_FL;
if (flags & BTRFS_INODE_NOATIME)
iflags |= FS_NOATIME_FL;
if (flags & BTRFS_INODE_DIRSYNC)
iflags |= FS_DIRSYNC_FL;
if (flags & BTRFS_INODE_NODATACOW)
iflags |= FS_NOCOW_FL;
if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
iflags |= FS_COMPR_FL;
else if (flags & BTRFS_INODE_NOCOMPRESS)
iflags |= FS_NOCOMP_FL;
return iflags;
}
/*
* Update inode->i_flags based on the btrfs internal flags.
*/
void btrfs_update_iflags(struct inode *inode)
{
struct btrfs_inode *ip = BTRFS_I(inode);
inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
if (ip->flags & BTRFS_INODE_SYNC)
inode->i_flags |= S_SYNC;
if (ip->flags & BTRFS_INODE_IMMUTABLE)
inode->i_flags |= S_IMMUTABLE;
if (ip->flags & BTRFS_INODE_APPEND)
inode->i_flags |= S_APPEND;
if (ip->flags & BTRFS_INODE_NOATIME)
inode->i_flags |= S_NOATIME;
if (ip->flags & BTRFS_INODE_DIRSYNC)
inode->i_flags |= S_DIRSYNC;
}
/*
* Inherit flags from the parent inode.
*
* Currently only the compression flags and the cow flags are inherited.
*/
void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
{
unsigned int flags;
if (!dir)
return;
flags = BTRFS_I(dir)->flags;
if (flags & BTRFS_INODE_NOCOMPRESS) {
BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
} else if (flags & BTRFS_INODE_COMPRESS) {
BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
}
if (flags & BTRFS_INODE_NODATACOW)
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
btrfs_update_iflags(inode);
}
static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
{
struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
if (copy_to_user(arg, &flags, sizeof(flags)))
return -EFAULT;
return 0;
}
static int check_flags(unsigned int flags)
{
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
FS_NOATIME_FL | FS_NODUMP_FL | \
FS_SYNC_FL | FS_DIRSYNC_FL | \
FS_NOCOMP_FL | FS_COMPR_FL |
FS_NOCOW_FL))
return -EOPNOTSUPP;
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
return -EINVAL;
return 0;
}
static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
{
struct inode *inode = file->f_path.dentry->d_inode;
struct btrfs_inode *ip = BTRFS_I(inode);
struct btrfs_root *root = ip->root;
struct btrfs_trans_handle *trans;
unsigned int flags, oldflags;
int ret;
u64 ip_oldflags;
unsigned int i_oldflags;
if (btrfs_root_readonly(root))
return -EROFS;
if (copy_from_user(&flags, arg, sizeof(flags)))
return -EFAULT;
ret = check_flags(flags);
if (ret)
return ret;
if (!inode_owner_or_capable(inode))
return -EACCES;
ret = mnt_want_write_file(file);
if (ret)
return ret;
mutex_lock(&inode->i_mutex);
ip_oldflags = ip->flags;
i_oldflags = inode->i_flags;
flags = btrfs_mask_flags(inode->i_mode, flags);
oldflags = btrfs_flags_to_ioctl(ip->flags);
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
if (!capable(CAP_LINUX_IMMUTABLE)) {
ret = -EPERM;
goto out_unlock;
}
}
if (flags & FS_SYNC_FL)
ip->flags |= BTRFS_INODE_SYNC;
else
ip->flags &= ~BTRFS_INODE_SYNC;
if (flags & FS_IMMUTABLE_FL)
ip->flags |= BTRFS_INODE_IMMUTABLE;
else
ip->flags &= ~BTRFS_INODE_IMMUTABLE;
if (flags & FS_APPEND_FL)
ip->flags |= BTRFS_INODE_APPEND;
else
ip->flags &= ~BTRFS_INODE_APPEND;
if (flags & FS_NODUMP_FL)
ip->flags |= BTRFS_INODE_NODUMP;
else
ip->flags &= ~BTRFS_INODE_NODUMP;
if (flags & FS_NOATIME_FL)
ip->flags |= BTRFS_INODE_NOATIME;
else
ip->flags &= ~BTRFS_INODE_NOATIME;
if (flags & FS_DIRSYNC_FL)
ip->flags |= BTRFS_INODE_DIRSYNC;
else
ip->flags &= ~BTRFS_INODE_DIRSYNC;
if (flags & FS_NOCOW_FL)
ip->flags |= BTRFS_INODE_NODATACOW;
else
ip->flags &= ~BTRFS_INODE_NODATACOW;
/*
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
* flag may be changed automatically if compression code won't make
* things smaller.
*/
if (flags & FS_NOCOMP_FL) {
ip->flags &= ~BTRFS_INODE_COMPRESS;
ip->flags |= BTRFS_INODE_NOCOMPRESS;
} else if (flags & FS_COMPR_FL) {
ip->flags |= BTRFS_INODE_COMPRESS;
ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
} else {
ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_drop;
}
btrfs_update_iflags(inode);
inode_inc_iversion(inode);
inode->i_ctime = CURRENT_TIME;
ret = btrfs_update_inode(trans, root, inode);
btrfs_end_transaction(trans, root);
out_drop:
if (ret) {
ip->flags = ip_oldflags;
inode->i_flags = i_oldflags;
}
out_unlock:
mutex_unlock(&inode->i_mutex);
mnt_drop_write_file(file);
return ret;
}
static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
{
struct inode *inode = file->f_path.dentry->d_inode;
return put_user(inode->i_generation, arg);
}
static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
{
struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
struct btrfs_device *device;
struct request_queue *q;
struct fstrim_range range;
u64 minlen = ULLONG_MAX;
u64 num_devices = 0;
u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
rcu_read_lock();
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
dev_list) {
if (!device->bdev)
continue;
q = bdev_get_queue(device->bdev);
if (blk_queue_discard(q)) {
num_devices++;
minlen = min((u64)q->limits.discard_granularity,
minlen);
}
}
rcu_read_unlock();
if (!num_devices)
return -EOPNOTSUPP;
if (copy_from_user(&range, arg, sizeof(range)))
return -EFAULT;
if (range.start > total_bytes)
return -EINVAL;
range.len = min(range.len, total_bytes - range.start);
range.minlen = max(range.minlen, minlen);
ret = btrfs_trim_fs(fs_info->tree_root, &range);
if (ret < 0)
return ret;
if (copy_to_user(arg, &range, sizeof(range)))
return -EFAULT;
return 0;
}
static noinline int create_subvol(struct btrfs_root *root,
struct dentry *dentry,
char *name, int namelen,
u64 *async_transid)
{
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_root_item root_item;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
struct btrfs_root *new_root;
struct dentry *parent = dentry->d_parent;
struct inode *dir;
int ret;
int err;
u64 objectid;
u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
u64 index = 0;
ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
if (ret)
return ret;
dir = parent->d_inode;
/*
* 1 - inode item
* 2 - refs
* 1 - root item
* 2 - dir items
*/
trans = btrfs_start_transaction(root, 6);
if (IS_ERR(trans))
return PTR_ERR(trans);
leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
0, objectid, NULL, 0, 0, 0);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
goto fail;
}
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
btrfs_set_header_bytenr(leaf, leaf->start);
btrfs_set_header_generation(leaf, trans->transid);
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(leaf, objectid);
write_extent_buffer(leaf, root->fs_info->fsid,
(unsigned long)btrfs_header_fsid(leaf),
BTRFS_FSID_SIZE);
write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
(unsigned long)btrfs_header_chunk_tree_uuid(leaf),
BTRFS_UUID_SIZE);
btrfs_mark_buffer_dirty(leaf);
inode_item = &root_item.inode;
memset(inode_item, 0, sizeof(*inode_item));
inode_item->generation = cpu_to_le64(1);
inode_item->size = cpu_to_le64(3);
inode_item->nlink = cpu_to_le32(1);
inode_item->nbytes = cpu_to_le64(root->leafsize);
inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
root_item.flags = 0;
root_item.byte_limit = 0;
inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
btrfs_set_root_bytenr(&root_item, leaf->start);
btrfs_set_root_generation(&root_item, trans->transid);
btrfs_set_root_level(&root_item, 0);
btrfs_set_root_refs(&root_item, 1);
btrfs_set_root_used(&root_item, leaf->len);
btrfs_set_root_last_snapshot(&root_item, 0);
memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
root_item.drop_level = 0;
btrfs_tree_unlock(leaf);
free_extent_buffer(leaf);
leaf = NULL;
btrfs_set_root_dirid(&root_item, new_dirid);
key.objectid = objectid;
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
&root_item);
if (ret)
goto fail;
key.offset = (u64)-1;
new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
if (IS_ERR(new_root)) {
btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
ret = PTR_ERR(new_root);
goto fail;
}
btrfs_record_root_in_trans(trans, new_root);
ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
if (ret) {
/* We potentially lose an unused inode item here */
btrfs_abort_transaction(trans, root, ret);
goto fail;
}
/*
* insert the directory item
*/
ret = btrfs_set_inode_index(dir, &index);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto fail;
}
ret = btrfs_insert_dir_item(trans, root,
name, namelen, dir, &key,
BTRFS_FT_DIR, index);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto fail;
}
btrfs_i_size_write(dir, dir->i_size + namelen * 2);
ret = btrfs_update_inode(trans, root, dir);
BUG_ON(ret);
ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
objectid, root->root_key.objectid,
btrfs_ino(dir), index, name, namelen);
BUG_ON(ret);
d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
fail:
if (async_transid) {
*async_transid = trans->transid;
err = btrfs_commit_transaction_async(trans, root, 1);
} else {
err = btrfs_commit_transaction(trans, root);
}
if (err && !ret)
ret = err;
return ret;
}
static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
char *name, int namelen, u64 *async_transid,
bool readonly)
{
struct inode *inode;
struct btrfs_pending_snapshot *pending_snapshot;
struct btrfs_trans_handle *trans;
int ret;
if (!root->ref_cows)
return -EINVAL;
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
if (!pending_snapshot)
return -ENOMEM;
btrfs_init_block_rsv(&pending_snapshot->block_rsv);
pending_snapshot->dentry = dentry;
pending_snapshot->root = root;
pending_snapshot->readonly = readonly;
trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto fail;
}
ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
BUG_ON(ret);
spin_lock(&root->fs_info->trans_lock);
list_add(&pending_snapshot->list,
&trans->transaction->pending_snapshots);
spin_unlock(&root->fs_info->trans_lock);
if (async_transid) {
*async_transid = trans->transid;
ret = btrfs_commit_transaction_async(trans,
root->fs_info->extent_root, 1);
} else {
ret = btrfs_commit_transaction(trans,
root->fs_info->extent_root);
}
BUG_ON(ret);
ret = pending_snapshot->error;
if (ret)
goto fail;
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
if (ret)
goto fail;
inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto fail;
}
BUG_ON(!inode);
d_instantiate(dentry, inode);
ret = 0;
fail:
kfree(pending_snapshot);
return ret;
}
/* copy of check_sticky in fs/namei.c()
* It's inline, so penalty for filesystems that don't use sticky bit is
* minimal.
*/
static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
{
uid_t fsuid = current_fsuid();
if (!(dir->i_mode & S_ISVTX))
return 0;
if (inode->i_uid == fsuid)
return 0;
if (dir->i_uid == fsuid)
return 0;
return !capable(CAP_FOWNER);
}
/* copy of may_delete in fs/namei.c()
* Check whether we can remove a link victim from directory dir, check
* whether the type of victim is right.
* 1. We can't do it if dir is read-only (done in permission())
* 2. We should have write and exec permissions on dir
* 3. We can't remove anything from append-only dir
* 4. We can't do anything with immutable dir (done in permission())
* 5. If the sticky bit on dir is set we should either
* a. be owner of dir, or
* b. be owner of victim, or
* c. have CAP_FOWNER capability
* 6. If the victim is append-only or immutable we can't do antyhing with
* links pointing to it.
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
* 9. We can't remove a root or mountpoint.
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
* nfs_async_unlink().
*/
static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
{
int error;
if (!victim->d_inode)
return -ENOENT;
BUG_ON(victim->d_parent->d_inode != dir);
audit_inode_child(victim, dir);
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
if (error)
return error;
if (IS_APPEND(dir))
return -EPERM;
if (btrfs_check_sticky(dir, victim->d_inode)||
IS_APPEND(victim->d_inode)||
IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
return -EPERM;
if (isdir) {
if (!S_ISDIR(victim->d_inode->i_mode))
return -ENOTDIR;
if (IS_ROOT(victim))
return -EBUSY;
} else if (S_ISDIR(victim->d_inode->i_mode))
return -EISDIR;
if (IS_DEADDIR(dir))
return -ENOENT;
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
return -EBUSY;
return 0;
}
/* copy of may_create in fs/namei.c() */
static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
{
if (child->d_inode)
return -EEXIST;
if (IS_DEADDIR(dir))
return -ENOENT;
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
}
/*
* Create a new subvolume below @parent. This is largely modeled after
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
* inside this filesystem so it's quite a bit simpler.
*/
static noinline int btrfs_mksubvol(struct path *parent,
char *name, int namelen,
struct btrfs_root *snap_src,
u64 *async_transid, bool readonly)
{
struct inode *dir = parent->dentry->d_inode;
struct dentry *dentry;
int error;
error = mnt_want_write(parent->mnt);
if (error)
return error;
mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
dentry = lookup_one_len(name, parent->dentry, namelen);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto out_unlock;
error = -EEXIST;
if (dentry->d_inode)
goto out_dput;
error = btrfs_may_create(dir, dentry);
if (error)
goto out_dput;
down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
goto out_up_read;
if (snap_src) {
error = create_snapshot(snap_src, dentry,
name, namelen, async_transid, readonly);
} else {
error = create_subvol(BTRFS_I(dir)->root, dentry,
name, namelen, async_transid);
}
if (!error)
fsnotify_mkdir(dir, dentry);
out_up_read:
up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
out_dput:
dput(dentry);
out_unlock:
mutex_unlock(&dir->i_mutex);
mnt_drop_write(parent->mnt);
return error;
}
/*
* When we're defragging a range, we don't want to kick it off again
* if it is really just waiting for delalloc to send it down.
* If we find a nice big extent or delalloc range for the bytes in the
* file you want to defrag, we return 0 to let you know to skip this
* part of the file
*/
static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
{
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_map *em = NULL;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
u64 end;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
read_unlock(&em_tree->lock);
if (em) {
end = extent_map_end(em);
free_extent_map(em);
if (end - offset > thresh)
return 0;
}
/* if we already have a nice delalloc here, just stop */
thresh /= 2;
end = count_range_bits(io_tree, &offset, offset + thresh,
thresh, EXTENT_DELALLOC, 1);
if (end >= thresh)
return 0;
return 1;
}
/*
* helper function to walk through a file and find extents
* newer than a specific transid, and smaller than thresh.
*
* This is used by the defragging code to find new and small
* extents
*/
static int find_new_extents(struct btrfs_root *root,
struct inode *inode, u64 newer_than,
u64 *off, int thresh)
{
struct btrfs_path *path;
struct btrfs_key min_key;
struct btrfs_key max_key;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *extent;
int type;
int ret;
u64 ino = btrfs_ino(inode);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
min_key.objectid = ino;
min_key.type = BTRFS_EXTENT_DATA_KEY;
min_key.offset = *off;
max_key.objectid = ino;
max_key.type = (u8)-1;
max_key.offset = (u64)-1;
path->keep_locks = 1;
while(1) {
ret = btrfs_search_forward(root, &min_key, &max_key,
path, 0, newer_than);
if (ret != 0)
goto none;
if (min_key.objectid != ino)
goto none;
if (min_key.type != BTRFS_EXTENT_DATA_KEY)
goto none;
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
type = btrfs_file_extent_type(leaf, extent);
if (type == BTRFS_FILE_EXTENT_REG &&
btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
check_defrag_in_cache(inode, min_key.offset, thresh)) {
*off = min_key.offset;
btrfs_free_path(path);
return 0;
}
if (min_key.offset == (u64)-1)
goto none;
min_key.offset++;
btrfs_release_path(path);
}
none:
btrfs_free_path(path);
return -ENOENT;
}
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_map *em;
u64 len = PAGE_CACHE_SIZE;
/*
* hopefully we have this extent in the tree already, try without
* the full extent lock
*/
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
read_unlock(&em_tree->lock);
if (!em) {
/* get the big lock and read metadata off disk */
lock_extent(io_tree, start, start + len - 1);
em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
unlock_extent(io_tree, start, start + len - 1);
if (IS_ERR(em))
return NULL;
}
return em;
}
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
{
struct extent_map *next;
bool ret = true;
/* this is the last extent */
if (em->start + em->len >= i_size_read(inode))
return false;
next = defrag_lookup_extent(inode, em->start + em->len);
if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
ret = false;
free_extent_map(next);
return ret;
}
static int should_defrag_range(struct inode *inode, u64 start, int thresh,
u64 *last_len, u64 *skip, u64 *defrag_end)
{
struct extent_map *em;
int ret = 1;
bool next_mergeable = true;
/*
* make sure that once we start defragging an extent, we keep on
* defragging it
*/
if (start < *defrag_end)
return 1;
*skip = 0;
em = defrag_lookup_extent(inode, start);
if (!em)
return 0;
/* this will cover holes, and inline extents */
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
ret = 0;
goto out;
}
next_mergeable = defrag_check_next_extent(inode, em);
/*
* we hit a real extent, if it is big or the next extent is not a
* real extent, don't bother defragging it
*/
if ((*last_len == 0 || *last_len >= thresh) &&
(em->len >= thresh || !next_mergeable))
ret = 0;
out:
/*
* last_len ends up being a counter of how many bytes we've defragged.
* every time we choose not to defrag an extent, we reset *last_len
* so that the next tiny extent will force a defrag.
*
* The end result of this is that tiny extents before a single big
* extent will force at least part of that big extent to be defragged.
*/
if (ret) {
*defrag_end = extent_map_end(em);
} else {
*last_len = 0;
*skip = extent_map_end(em);
*defrag_end = 0;
}
free_extent_map(em);
return ret;
}
/*
* it doesn't do much good to defrag one or two pages
* at a time. This pulls in a nice chunk of pages
* to COW and defrag.
*
* It also makes sure the delalloc code has enough
* dirty data to avoid making new small extents as part
* of the defrag
*
* It's a good idea to start RA on this range
* before calling this.
*/
static int cluster_pages_for_defrag(struct inode *inode,
struct page **pages,
unsigned long start_index,
int num_pages)
{
unsigned long file_end;
u64 isize = i_size_read(inode);
u64 page_start;
u64 page_end;
u64 page_cnt;
int ret;
int i;
int i_done;
struct btrfs_ordered_extent *ordered;
struct extent_state *cached_state = NULL;
struct extent_io_tree *tree;
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
if (!isize || start_index > file_end)
return 0;
page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
ret = btrfs_delalloc_reserve_space(inode,
page_cnt << PAGE_CACHE_SHIFT);
if (ret)
return ret;
i_done = 0;
tree = &BTRFS_I(inode)->io_tree;
/* step one, lock all the pages */
for (i = 0; i < page_cnt; i++) {
struct page *page;
again:
page = find_or_create_page(inode->i_mapping,
start_index + i, mask);
if (!page)
break;
page_start = page_offset(page);
page_end = page_start + PAGE_CACHE_SIZE - 1;
while (1) {
lock_extent(tree, page_start, page_end);
ordered = btrfs_lookup_ordered_extent(inode,
page_start);
unlock_extent(tree, page_start, page_end);
if (!ordered)
break;
unlock_page(page);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
lock_page(page);
/*
* we unlocked the page above, so we need check if
* it was released or not.
*/
if (page->mapping != inode->i_mapping) {
unlock_page(page);
page_cache_release(page);
goto again;
}
}
if (!PageUptodate(page)) {
btrfs_readpage(NULL, page);
lock_page(page);
if (!PageUptodate(page)) {
unlock_page(page);
page_cache_release(page);
ret = -EIO;
break;
}
}
if (page->mapping != inode->i_mapping) {
unlock_page(page);
page_cache_release(page);
goto again;
}
pages[i] = page;
i_done++;
}
if (!i_done || ret)
goto out;
if (!(inode->i_sb->s_flags & MS_ACTIVE))
goto out;
/*
* so now we have a nice long stream of locked
* and up to date pages, lets wait on them
*/
for (i = 0; i < i_done; i++)
wait_on_page_writeback(pages[i]);
page_start = page_offset(pages[0]);
page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
lock_extent_bits(&BTRFS_I(inode)->io_tree,
page_start, page_end - 1, 0, &cached_state);
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
GFP_NOFS);
if (i_done != page_cnt) {
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->outstanding_extents++;
spin_unlock(&BTRFS_I(inode)->lock);
btrfs_delalloc_release_space(inode,
(page_cnt - i_done) << PAGE_CACHE_SHIFT);
}
btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
&cached_state);
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
page_start, page_end - 1, &cached_state,
GFP_NOFS);
for (i = 0; i < i_done; i++) {
clear_page_dirty_for_io(pages[i]);
ClearPageChecked(pages[i]);
set_page_extent_mapped(pages[i]);
set_page_dirty(pages[i]);
unlock_page(pages[i]);
page_cache_release(pages[i]);
}
return i_done;
out:
for (i = 0; i < i_done; i++) {
unlock_page(pages[i]);
page_cache_release(pages[i]);
}
btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
return ret;
}
int btrfs_defrag_file(struct inode *inode, struct file *file,
struct btrfs_ioctl_defrag_range_args *range,
u64 newer_than, unsigned long max_to_defrag)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_super_block *disk_super;
struct file_ra_state *ra = NULL;
unsigned long last_index;
u64 isize = i_size_read(inode);
u64 features;
u64 last_len = 0;
u64 skip = 0;
u64 defrag_end = 0;
u64 newer_off = range->start;
unsigned long i;
unsigned long ra_index = 0;
int ret;
int defrag_count = 0;
int compress_type = BTRFS_COMPRESS_ZLIB;
int extent_thresh = range->extent_thresh;
int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
int cluster = max_cluster;
u64 new_align = ~((u64)128 * 1024 - 1);
struct page **pages = NULL;
if (extent_thresh == 0)
extent_thresh = 256 * 1024;
if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
if (range->compress_type > BTRFS_COMPRESS_TYPES)
return -EINVAL;
if (range->compress_type)
compress_type = range->compress_type;
}
if (isize == 0)
return 0;
/*
* if we were not given a file, allocate a readahead
* context
*/
if (!file) {
ra = kzalloc(sizeof(*ra), GFP_NOFS);
if (!ra)
return -ENOMEM;
file_ra_state_init(ra, inode->i_mapping);
} else {
ra = &file->f_ra;
}
pages = kmalloc(sizeof(struct page *) * max_cluster,
GFP_NOFS);
if (!pages) {
ret = -ENOMEM;
goto out_ra;
}
/* find the last page to defrag */
if (range->start + range->len > range->start) {
last_index = min_t(u64, isize - 1,
range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
} else {
last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
}
if (newer_than) {
ret = find_new_extents(root, inode, newer_than,
&newer_off, 64 * 1024);
if (!ret) {
range->start = newer_off;
/*
* we always align our defrag to help keep
* the extents in the file evenly spaced
*/
i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
} else
goto out_ra;
} else {
i = range->start >> PAGE_CACHE_SHIFT;
}
if (!max_to_defrag)
max_to_defrag = last_index + 1;
/*
* make writeback starts from i, so the defrag range can be
* written sequentially.
*/
if (i < inode->i_mapping->writeback_index)
inode->i_mapping->writeback_index = i;
while (i <= last_index && defrag_count < max_to_defrag &&
(i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT)) {
/*
* make sure we stop running if someone unmounts
* the FS
*/
if (!(inode->i_sb->s_flags & MS_ACTIVE))
break;
if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
extent_thresh, &last_len, &skip,
&defrag_end)) {
unsigned long next;
/*
* the should_defrag function tells us how much to skip
* bump our counter by the suggested amount
*/
next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
i = max(i + 1, next);
continue;
}
if (!newer_than) {
cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
PAGE_CACHE_SHIFT) - i;
cluster = min(cluster, max_cluster);
} else {
cluster = max_cluster;
}
if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
BTRFS_I(inode)->force_compress = compress_type;
if (i + cluster > ra_index) {
ra_index = max(i, ra_index);
btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
cluster);
ra_index += max_cluster;
}
mutex_lock(&inode->i_mutex);
ret = cluster_pages_for_defrag(inode, pages, i, cluster);
if (ret < 0) {
mutex_unlock(&inode->i_mutex);
goto out_ra;
}
defrag_count += ret;
balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
mutex_unlock(&inode->i_mutex);
if (newer_than) {
if (newer_off == (u64)-1)
break;
if (ret > 0)
i += ret;
newer_off = max(newer_off + 1,
(u64)i << PAGE_CACHE_SHIFT);
ret = find_new_extents(root, inode,
newer_than, &newer_off,
64 * 1024);
if (!ret) {
range->start = newer_off;
i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
} else {
break;
}
} else {
if (ret > 0) {
i += ret;
last_len += ret << PAGE_CACHE_SHIFT;
} else {
i++;
last_len = 0;
}
}
}
if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
filemap_flush(inode->i_mapping);
if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
/* the filemap_flush will queue IO into the worker threads, but
* we have to make sure the IO is actually started and that
* ordered extents get created before we return
*/
atomic_inc(&root->fs_info->async_submit_draining);
while (atomic_read(&root->fs_info->nr_async_submits) ||
atomic_read(&root->fs_info->async_delalloc_pages)) {
wait_event(root->fs_info->async_submit_wait,
(atomic_read(&root->fs_info->nr_async_submits) == 0 &&
atomic_read(&root->fs_info->async_delalloc_pages) == 0));
}
atomic_dec(&root->fs_info->async_submit_draining);
mutex_lock(&inode->i_mutex);
BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
mutex_unlock(&inode->i_mutex);
}
disk_super = root->fs_info->super_copy;
features = btrfs_super_incompat_flags(disk_super);
if (range->compress_type == BTRFS_COMPRESS_LZO) {
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
btrfs_set_super_incompat_flags(disk_super, features);
}
ret = defrag_count;
out_ra:
if (!file)
kfree(ra);
kfree(pages);
return ret;
}
static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
void __user *arg)
{
u64 new_size;
u64 old_size;
u64 devid = 1;
struct btrfs_ioctl_vol_args *vol_args;
struct btrfs_trans_handle *trans;
struct btrfs_device *device = NULL;
char *sizestr;
char *devstr = NULL;
int ret = 0;
int mod = 0;
if (root->fs_info->sb->s_flags & MS_RDONLY)
return -EROFS;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&root->fs_info->volume_mutex);
if (root->fs_info->balance_ctl) {
printk(KERN_INFO "btrfs: balance in progress\n");
ret = -EINVAL;
goto out;
}
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
sizestr = vol_args->name;
devstr = strchr(sizestr, ':');
if (devstr) {
char *end;
sizestr = devstr + 1;
*devstr = '\0';
devstr = vol_args->name;
devid = simple_strtoull(devstr, &end, 10);
printk(KERN_INFO "btrfs: resizing devid %llu\n",
(unsigned long long)devid);
}
device = btrfs_find_device(root, devid, NULL, NULL);
if (!device) {
printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
(unsigned long long)devid);
ret = -EINVAL;
goto out_free;
}
if (device->fs_devices && device->fs_devices->seeding) {
printk(KERN_INFO "btrfs: resizer unable to apply on "
"seeding device %llu\n",
(unsigned long long)devid);
ret = -EINVAL;
goto out_free;
}
if (!strcmp(sizestr, "max"))
new_size = device->bdev->bd_inode->i_size;
else {
if (sizestr[0] == '-') {
mod = -1;
sizestr++;
} else if (sizestr[0] == '+') {
mod = 1;
sizestr++;
}
new_size = memparse(sizestr, NULL);
if (new_size == 0) {
ret = -EINVAL;
goto out_free;
}
}
old_size = device->total_bytes;
if (mod < 0) {
if (new_size > old_size) {
ret = -EINVAL;
goto out_free;
}
new_size = old_size - new_size;
} else if (mod > 0) {
new_size = old_size + new_size;
}
if (new_size < 256 * 1024 * 1024) {
ret = -EINVAL;
goto out_free;
}
if (new_size > device->bdev->bd_inode->i_size) {
ret = -EFBIG;
goto out_free;
}
do_div(new_size, root->sectorsize);
new_size *= root->sectorsize;
printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
rcu_str_deref(device->name),
(unsigned long long)new_size);
if (new_size > old_size) {
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_free;
}
ret = btrfs_grow_device(trans, device, new_size);
btrfs_commit_transaction(trans, root);
} else if (new_size < old_size) {
ret = btrfs_shrink_device(device, new_size);
}
out_free:
kfree(vol_args);
out:
mutex_unlock(&root->fs_info->volume_mutex);
return ret;
}
static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
char *name,
unsigned long fd,
int subvol,
u64 *transid,
bool readonly)
{
struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
struct file *src_file;
int namelen;
int ret = 0;
if (root->fs_info->sb->s_flags & MS_RDONLY)
return -EROFS;
namelen = strlen(name);
if (strchr(name, '/')) {
ret = -EINVAL;
goto out;
}
if (name[0] == '.' &&
(namelen == 1 || (name[1] == '.' && namelen == 2))) {
ret = -EEXIST;
goto out;
}
if (subvol) {
ret = btrfs_mksubvol(&file->f_path, name, namelen,
NULL, transid, readonly);
} else {
struct inode *src_inode;
src_file = fget(fd);
if (!src_file) {
ret = -EINVAL;
goto out;
}
src_inode = src_file->f_path.dentry->d_inode;
if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
printk(KERN_INFO "btrfs: Snapshot src from "
"another FS\n");
ret = -EINVAL;
fput(src_file);
goto out;
}
ret = btrfs_mksubvol(&file->f_path, name, namelen,
BTRFS_I(src_inode)->root,
transid, readonly);
fput(src_file);
}
out:
return ret;
}
static noinline int btrfs_ioctl_snap_create(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args *vol_args;
int ret;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
vol_args->fd, subvol,
NULL, false);
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args_v2 *vol_args;
int ret;
u64 transid = 0;
u64 *ptr = NULL;
bool readonly = false;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
if (vol_args->flags &
~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
ret = -EOPNOTSUPP;
goto out;
}
if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
ptr = &transid;
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
readonly = true;
ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
vol_args->fd, subvol,
ptr, readonly);
if (ret == 0 && ptr &&
copy_to_user(arg +
offsetof(struct btrfs_ioctl_vol_args_v2,
transid), ptr, sizeof(*ptr)))
ret = -EFAULT;
out:
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
void __user *arg)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
u64 flags = 0;
if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
return -EINVAL;
down_read(&root->fs_info->subvol_sem);
if (btrfs_root_readonly(root))
flags |= BTRFS_SUBVOL_RDONLY;
up_read(&root->fs_info->subvol_sem);
if (copy_to_user(arg, &flags, sizeof(flags)))
ret = -EFAULT;
return ret;
}
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
void __user *arg)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
u64 root_flags;
u64 flags;
int ret = 0;
if (root->fs_info->sb->s_flags & MS_RDONLY)
return -EROFS;
if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
return -EINVAL;
if (copy_from_user(&flags, arg, sizeof(flags)))
return -EFAULT;
if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
return -EINVAL;
if (flags & ~BTRFS_SUBVOL_RDONLY)
return -EOPNOTSUPP;
if (!inode_owner_or_capable(inode))
return -EACCES;
down_write(&root->fs_info->subvol_sem);
/* nothing to do */
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
goto out;
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_RDONLY)
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
else
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_reset;
}
ret = btrfs_update_root(trans, root->fs_info->tree_root,
&root->root_key, &root->root_item);
btrfs_commit_transaction(trans, root);
out_reset:
if (ret)
btrfs_set_root_flags(&root->root_item, root_flags);
out:
up_write(&root->fs_info->subvol_sem);
return ret;
}
/*
* helper to check if the subvolume references other subvolumes
*/
static noinline int may_destroy_subvol(struct btrfs_root *root)
{
struct btrfs_path *path;
struct btrfs_key key;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = root->root_key.objectid;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
&key, path, 0, 0);
if (ret < 0)
goto out;
BUG_ON(ret == 0);
ret = 0;
if (path->slots[0] > 0) {
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid == root->root_key.objectid &&
key.type == BTRFS_ROOT_REF_KEY)
ret = -ENOTEMPTY;
}
out:
btrfs_free_path(path);
return ret;
}
static noinline int key_in_sk(struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk)
{
struct btrfs_key test;
int ret;
test.objectid = sk->min_objectid;
test.type = sk->min_type;
test.offset = sk->min_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret < 0)
return 0;
test.objectid = sk->max_objectid;
test.type = sk->max_type;
test.offset = sk->max_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret > 0)
return 0;
return 1;
}
static noinline int copy_to_sk(struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk,
char *buf,
unsigned long *sk_offset,
int *num_found)
{
u64 found_transid;
struct extent_buffer *leaf;
struct btrfs_ioctl_search_header sh;
unsigned long item_off;
unsigned long item_len;
int nritems;
int i;
int slot;
int ret = 0;
leaf = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(leaf);
if (btrfs_header_generation(leaf) > sk->max_transid) {
i = nritems;
goto advance_key;
}
found_transid = btrfs_header_generation(leaf);
for (i = slot; i < nritems; i++) {
item_off = btrfs_item_ptr_offset(leaf, i);
item_len = btrfs_item_size_nr(leaf, i);
if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
item_len = 0;
if (sizeof(sh) + item_len + *sk_offset >
BTRFS_SEARCH_ARGS_BUFSIZE) {
ret = 1;
goto overflow;
}
btrfs_item_key_to_cpu(leaf, key, i);
if (!key_in_sk(key, sk))
continue;
sh.objectid = key->objectid;
sh.offset = key->offset;
sh.type = key->type;
sh.len = item_len;
sh.transid = found_transid;
/* copy search result header */
memcpy(buf + *sk_offset, &sh, sizeof(sh));
*sk_offset += sizeof(sh);
if (item_len) {
char *p = buf + *sk_offset;
/* copy the item */
read_extent_buffer(leaf, p,
item_off, item_len);
*sk_offset += item_len;
}
(*num_found)++;
if (*num_found >= sk->nr_items)
break;
}
advance_key:
ret = 0;
if (key->offset < (u64)-1 && key->offset < sk->max_offset)
key->offset++;
else if (key->type < (u8)-1 && key->type < sk->max_type) {
key->offset = 0;
key->type++;
} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
key->offset = 0;
key->type = 0;
key->objectid++;
} else
ret = 1;
overflow:
return ret;
}
static noinline int search_ioctl(struct inode *inode,
struct btrfs_ioctl_search_args *args)
{
struct btrfs_root *root;
struct btrfs_key key;
struct btrfs_key max_key;
struct btrfs_path *path;
struct btrfs_ioctl_search_key *sk = &args->key;
struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
int ret;
int num_found = 0;
unsigned long sk_offset = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (sk->tree_id == 0) {
/* search the root of the inode that was passed */
root = BTRFS_I(inode)->root;
} else {
key.objectid = sk->tree_id;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
root = btrfs_read_fs_root_no_name(info, &key);
if (IS_ERR(root)) {
printk(KERN_ERR "could not find root %llu\n",
sk->tree_id);
btrfs_free_path(path);
return -ENOENT;
}
}
key.objectid = sk->min_objectid;
key.type = sk->min_type;
key.offset = sk->min_offset;
max_key.objectid = sk->max_objectid;
max_key.type = sk->max_type;
max_key.offset = sk->max_offset;
path->keep_locks = 1;
while(1) {
ret = btrfs_search_forward(root, &key, &max_key, path, 0,
sk->min_transid);
if (ret != 0) {
if (ret > 0)
ret = 0;
goto err;
}
ret = copy_to_sk(root, path, &key, sk, args->buf,
&sk_offset, &num_found);
btrfs_release_path(path);
if (ret || num_found >= sk->nr_items)
break;
}
ret = 0;
err:
sk->nr_items = num_found;
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_tree_search(struct file *file,
void __user *argp)
{
struct btrfs_ioctl_search_args *args;
struct inode *inode;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
inode = fdentry(file)->d_inode;
ret = search_ioctl(inode, args);
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
/*
* Search INODE_REFs to identify path name of 'dirid' directory
* in a 'tree_id' tree. and sets path name to 'name'.
*/
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
u64 tree_id, u64 dirid, char *name)
{
struct btrfs_root *root;
struct btrfs_key key;
char *ptr;
int ret = -1;
int slot;
int len;
int total_len = 0;
struct btrfs_inode_ref *iref;
struct extent_buffer *l;
struct btrfs_path *path;
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
name[0]='\0';
return 0;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
key.objectid = tree_id;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
root = btrfs_read_fs_root_no_name(info, &key);
if (IS_ERR(root)) {
printk(KERN_ERR "could not find root %llu\n", tree_id);
ret = -ENOENT;
goto out;
}
key.objectid = dirid;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while(1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
l = path->nodes[0];
slot = path->slots[0];
if (ret > 0 && slot > 0)
slot--;
btrfs_item_key_to_cpu(l, &key, slot);
if (ret > 0 && (key.objectid != dirid ||
key.type != BTRFS_INODE_REF_KEY)) {
ret = -ENOENT;
goto out;
}
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
len = btrfs_inode_ref_name_len(l, iref);
ptr -= len + 1;
total_len += len + 1;
if (ptr < name)
goto out;
*(ptr + len) = '/';
read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
break;
btrfs_release_path(path);
key.objectid = key.offset;
key.offset = (u64)-1;
dirid = key.objectid;
}
if (ptr < name)
goto out;
memmove(name, ptr, total_len);
name[total_len]='\0';
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_ino_lookup(struct file *file,
void __user *argp)
{
struct btrfs_ioctl_ino_lookup_args *args;
struct inode *inode;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
inode = fdentry(file)->d_inode;
if (args->treeid == 0)
args->treeid = BTRFS_I(inode)->root->root_key.objectid;
ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
args->treeid, args->objectid,
args->name);
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
void __user *arg)
{
struct dentry *parent = fdentry(file);
struct dentry *dentry;
struct inode *dir = parent->d_inode;
struct inode *inode;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *dest = NULL;
struct btrfs_ioctl_vol_args *vol_args;
struct btrfs_trans_handle *trans;
int namelen;
int ret;
int err = 0;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
namelen = strlen(vol_args->name);
if (strchr(vol_args->name, '/') ||
strncmp(vol_args->name, "..", namelen) == 0) {
err = -EINVAL;
goto out;
}
err = mnt_want_write_file(file);
if (err)
goto out;
mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
dentry = lookup_one_len(vol_args->name, parent, namelen);
if (IS_ERR(dentry)) {
err = PTR_ERR(dentry);
goto out_unlock_dir;
}
if (!dentry->d_inode) {
err = -ENOENT;
goto out_dput;
}
inode = dentry->d_inode;
dest = BTRFS_I(inode)->root;
if (!capable(CAP_SYS_ADMIN)){
/*
* Regular user. Only allow this with a special mount
* option, when the user has write+exec access to the
* subvol root, and when rmdir(2) would have been
* allowed.
*
* Note that this is _not_ check that the subvol is
* empty or doesn't contain data that we wouldn't
* otherwise be able to delete.
*
* Users who want to delete empty subvols should try
* rmdir(2).
*/
err = -EPERM;
if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
goto out_dput;
/*
* Do not allow deletion if the parent dir is the same
* as the dir to be deleted. That means the ioctl
* must be called on the dentry referencing the root
* of the subvol, not a random directory contained
* within it.
*/
err = -EINVAL;
if (root == dest)
goto out_dput;
err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
if (err)
goto out_dput;
/* check if subvolume may be deleted by a non-root user */
err = btrfs_may_delete(dir, dentry, 1);
if (err)
goto out_dput;
}
if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
err = -EINVAL;
goto out_dput;
}
mutex_lock(&inode->i_mutex);
err = d_invalidate(dentry);
if (err)
goto out_unlock;
down_write(&root->fs_info->subvol_sem);
err = may_destroy_subvol(dest);
if (err)
goto out_up_write;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
goto out_up_write;
}
trans->block_rsv = &root->fs_info->global_block_rsv;
ret = btrfs_unlink_subvol(trans, root, dir,
dest->root_key.objectid,
dentry->d_name.name,
dentry->d_name.len);
if (ret) {
err = ret;
btrfs_abort_transaction(trans, root, ret);
goto out_end_trans;
}
btrfs_record_root_in_trans(trans, dest);
memset(&dest->root_item.drop_progress, 0,
sizeof(dest->root_item.drop_progress));
dest->root_item.drop_level = 0;
btrfs_set_root_refs(&dest->root_item, 0);
if (!xchg(&dest->orphan_item_inserted, 1)) {
ret = btrfs_insert_orphan_item(trans,
root->fs_info->tree_root,
dest->root_key.objectid);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
err = ret;
goto out_end_trans;
}
}
out_end_trans:
ret = btrfs_end_transaction(trans, root);
if (ret && !err)
err = ret;
inode->i_flags |= S_DEAD;
out_up_write:
up_write(&root->fs_info->subvol_sem);
out_unlock:
mutex_unlock(&inode->i_mutex);
if (!err) {
shrink_dcache_sb(root->fs_info->sb);
btrfs_invalidate_inodes(dest);
d_delete(dentry);
}
out_dput:
dput(dentry);
out_unlock_dir:
mutex_unlock(&dir->i_mutex);
mnt_drop_write_file(file);
out:
kfree(vol_args);
return err;
}
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_defrag_range_args *range;
int ret;
if (btrfs_root_readonly(root))
return -EROFS;
ret = mnt_want_write_file(file);
if (ret)
return ret;
switch (inode->i_mode & S_IFMT) {
case S_IFDIR:
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
ret = btrfs_defrag_root(root, 0);
if (ret)
goto out;
ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
break;
case S_IFREG:
if (!(file->f_mode & FMODE_WRITE)) {
ret = -EINVAL;
goto out;
}
range = kzalloc(sizeof(*range), GFP_KERNEL);
if (!range) {
ret = -ENOMEM;
goto out;
}
if (argp) {
if (copy_from_user(range, argp,
sizeof(*range))) {
ret = -EFAULT;
kfree(range);
goto out;
}
/* compression requires us to start the IO */
if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
range->extent_thresh = (u32)-1;
}
} else {
/* the rest are all set to zero by kzalloc */
range->len = (u64)-1;
}
ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
range, 0, 0);
if (ret > 0)
ret = 0;
kfree(range);
break;
default:
ret = -EINVAL;
}
out:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
{
struct btrfs_ioctl_vol_args *vol_args;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&root->fs_info->volume_mutex);
if (root->fs_info->balance_ctl) {
printk(KERN_INFO "btrfs: balance in progress\n");
ret = -EINVAL;
goto out;
}
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = btrfs_init_new_device(root, vol_args->name);
kfree(vol_args);
out:
mutex_unlock(&root->fs_info->volume_mutex);
return ret;
}
static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
{
struct btrfs_ioctl_vol_args *vol_args;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (root->fs_info->sb->s_flags & MS_RDONLY)
return -EROFS;
mutex_lock(&root->fs_info->volume_mutex);
if (root->fs_info->balance_ctl) {
printk(KERN_INFO "btrfs: balance in progress\n");
ret = -EINVAL;
goto out;
}
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = btrfs_rm_device(root, vol_args->name);
kfree(vol_args);
out:
mutex_unlock(&root->fs_info->volume_mutex);
return ret;
}
static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
{
struct btrfs_ioctl_fs_info_args *fi_args;
struct btrfs_device *device;
struct btrfs_device *next;
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
if (!fi_args)
return -ENOMEM;
fi_args->num_devices = fs_devices->num_devices;
memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
mutex_lock(&fs_devices->device_list_mutex);
list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
if (device->devid > fi_args->max_id)
fi_args->max_id = device->devid;
}
mutex_unlock(&fs_devices->device_list_mutex);
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
ret = -EFAULT;
kfree(fi_args);
return ret;
}
static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
{
struct btrfs_ioctl_dev_info_args *di_args;
struct btrfs_device *dev;
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
int ret = 0;
char *s_uuid = NULL;
char empty_uuid[BTRFS_UUID_SIZE] = {0};
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
di_args = memdup_user(arg, sizeof(*di_args));
if (IS_ERR(di_args))
return PTR_ERR(di_args);
if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
s_uuid = di_args->uuid;
mutex_lock(&fs_devices->device_list_mutex);
dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
mutex_unlock(&fs_devices->device_list_mutex);
if (!dev) {
ret = -ENODEV;
goto out;
}
di_args->devid = dev->devid;
di_args->bytes_used = dev->bytes_used;
di_args->total_bytes = dev->total_bytes;
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
if (dev->name) {
struct rcu_string *name;
rcu_read_lock();
name = rcu_dereference(dev->name);
strncpy(di_args->path, name->str, sizeof(di_args->path));
rcu_read_unlock();
di_args->path[sizeof(di_args->path) - 1] = 0;
} else {
di_args->path[0] = '\0';
}
out:
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
ret = -EFAULT;
kfree(di_args);
return ret;
}
static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
u64 off, u64 olen, u64 destoff)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct file *src_file;
struct inode *src;
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct extent_buffer *leaf;
char *buf;
struct btrfs_key key;
u32 nritems;
int slot;
int ret;
u64 len = olen;
u64 bs = root->fs_info->sb->s_blocksize;
u64 hint_byte;
/*
* TODO:
* - split compressed inline extents. annoying: we need to
* decompress into destination's address_space (the file offset
* may change, so source mapping won't do), then recompress (or
* otherwise reinsert) a subrange.
* - allow ranges within the same file to be cloned (provided
* they don't overlap)?
*/
/* the destination must be opened for writing */
if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
return -EINVAL;
if (btrfs_root_readonly(root))
return -EROFS;
ret = mnt_want_write_file(file);
if (ret)
return ret;
src_file = fget(srcfd);
if (!src_file) {
ret = -EBADF;
goto out_drop_write;
}
src = src_file->f_dentry->d_inode;
ret = -EINVAL;
if (src == inode)
goto out_fput;
/* the src must be open for reading */
if (!(src_file->f_mode & FMODE_READ))
goto out_fput;
/* don't make the dst file partly checksummed */
if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
goto out_fput;
ret = -EISDIR;
if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
goto out_fput;
ret = -EXDEV;
if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
goto out_fput;
ret = -ENOMEM;
buf = vmalloc(btrfs_level_size(root, 0));
if (!buf)
goto out_fput;
path = btrfs_alloc_path();
if (!path) {
vfree(buf);
goto out_fput;
}
path->reada = 2;
if (inode < src) {
mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
} else {
mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
}
/* determine range to clone */
ret = -EINVAL;
if (off + len > src->i_size || off + len < off)
goto out_unlock;
if (len == 0)
olen = len = src->i_size - off;
/* if we extend to eof, continue to block boundary */
if (off + len == src->i_size)
len = ALIGN(src->i_size, bs) - off;
/* verify the end result is block aligned */
if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
!IS_ALIGNED(destoff, bs))
goto out_unlock;
if (destoff > inode->i_size) {
ret = btrfs_cont_expand(inode, inode->i_size, destoff);
if (ret)
goto out_unlock;
}
/* truncate page cache pages from target inode range */
truncate_inode_pages_range(&inode->i_data, destoff,
PAGE_CACHE_ALIGN(destoff + len) - 1);
/* do any pending delalloc/csum calc on src, one way or
another, and lock file content */
while (1) {
struct btrfs_ordered_extent *ordered;
lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
ordered = btrfs_lookup_first_ordered_extent(src, off+len);
if (!ordered &&
!test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
EXTENT_DELALLOC, 0, NULL))
break;
unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
if (ordered)
btrfs_put_ordered_extent(ordered);
btrfs_wait_ordered_range(src, off, len);
}
/* clone data */
key.objectid = btrfs_ino(src);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = 0;
while (1) {
/*
* note the key will change type as we walk through the
* tree.
*/
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (ret > 0)
break;
nritems = btrfs_header_nritems(path->nodes[0]);
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
key.objectid != btrfs_ino(src))
break;
if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
struct btrfs_file_extent_item *extent;
int type;
u32 size;
struct btrfs_key new_key;
u64 disko = 0, diskl = 0;
u64 datao = 0, datal = 0;
u8 comp;
u64 endoff;
size = btrfs_item_size_nr(leaf, slot);
read_extent_buffer(leaf, buf,
btrfs_item_ptr_offset(leaf, slot),
size);
extent = btrfs_item_ptr(leaf, slot,
struct btrfs_file_extent_item);
comp = btrfs_file_extent_compression(leaf, extent);
type = btrfs_file_extent_type(leaf, extent);
if (type == BTRFS_FILE_EXTENT_REG ||
type == BTRFS_FILE_EXTENT_PREALLOC) {
disko = btrfs_file_extent_disk_bytenr(leaf,
extent);
diskl = btrfs_file_extent_disk_num_bytes(leaf,
extent);
datao = btrfs_file_extent_offset(leaf, extent);
datal = btrfs_file_extent_num_bytes(leaf,
extent);
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
/* take upper bound, may be compressed */
datal = btrfs_file_extent_ram_bytes(leaf,
extent);
}
btrfs_release_path(path);
if (key.offset + datal <= off ||
key.offset >= off+len)
goto next;
memcpy(&new_key, &key, sizeof(new_key));
new_key.objectid = btrfs_ino(inode);
if (off <= key.offset)
new_key.offset = key.offset + destoff - off;
else
new_key.offset = destoff;
/*
* 1 - adjusting old extent (we may have to split it)
* 1 - add new extent
* 1 - inode update
*/
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
if (type == BTRFS_FILE_EXTENT_REG ||
type == BTRFS_FILE_EXTENT_PREALLOC) {
/*
* a | --- range to clone ---| b
* | ------------- extent ------------- |
*/
/* substract range b */
if (key.offset + datal > off + len)
datal = off + len - key.offset;
/* substract range a */
if (off > key.offset) {
datao += off - key.offset;
datal -= off - key.offset;
}
ret = btrfs_drop_extents(trans, inode,
new_key.offset,
new_key.offset + datal,
&hint_byte, 1);
if (ret) {
btrfs_abort_transaction(trans, root,
ret);
btrfs_end_transaction(trans, root);
goto out;
}
ret = btrfs_insert_empty_item(trans, root, path,
&new_key, size);
if (ret) {
btrfs_abort_transaction(trans, root,
ret);
btrfs_end_transaction(trans, root);
goto out;
}
leaf = path->nodes[0];
slot = path->slots[0];
write_extent_buffer(leaf, buf,
btrfs_item_ptr_offset(leaf, slot),
size);
extent = btrfs_item_ptr(leaf, slot,
struct btrfs_file_extent_item);
/* disko == 0 means it's a hole */
if (!disko)
datao = 0;
btrfs_set_file_extent_offset(leaf, extent,
datao);
btrfs_set_file_extent_num_bytes(leaf, extent,
datal);
if (disko) {
inode_add_bytes(inode, datal);
ret = btrfs_inc_extent_ref(trans, root,
disko, diskl, 0,
root->root_key.objectid,
btrfs_ino(inode),
new_key.offset - datao,
0);
if (ret) {
btrfs_abort_transaction(trans,
root,
ret);
btrfs_end_transaction(trans,
root);
goto out;
}
}
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
u64 skip = 0;
u64 trim = 0;
if (off > key.offset) {
skip = off - key.offset;
new_key.offset += skip;
}
if (key.offset + datal > off+len)
trim = key.offset + datal - (off+len);
if (comp && (skip || trim)) {
ret = -EINVAL;
btrfs_end_transaction(trans, root);
goto out;
}
size -= skip + trim;
datal -= skip + trim;
ret = btrfs_drop_extents(trans, inode,
new_key.offset,
new_key.offset + datal,
&hint_byte, 1);
if (ret) {
btrfs_abort_transaction(trans, root,
ret);
btrfs_end_transaction(trans, root);
goto out;
}
ret = btrfs_insert_empty_item(trans, root, path,
&new_key, size);
if (ret) {
btrfs_abort_transaction(trans, root,
ret);
btrfs_end_transaction(trans, root);
goto out;
}
if (skip) {
u32 start =
btrfs_file_extent_calc_inline_size(0);
memmove(buf+start, buf+start+skip,
datal);
}
leaf = path->nodes[0];
slot = path->slots[0];
write_extent_buffer(leaf, buf,
btrfs_item_ptr_offset(leaf, slot),
size);
inode_add_bytes(inode, datal);
}
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
inode_inc_iversion(inode);
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
/*
* we round up to the block size at eof when
* determining which extents to clone above,
* but shouldn't round up the file size
*/
endoff = new_key.offset + datal;
if (endoff > destoff+olen)
endoff = destoff+olen;
if (endoff > inode->i_size)
btrfs_i_size_write(inode, endoff);
ret = btrfs_update_inode(trans, root, inode);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
btrfs_end_transaction(trans, root);
goto out;
}
ret = btrfs_end_transaction(trans, root);
}
next:
btrfs_release_path(path);
key.offset++;
}
ret = 0;
out:
btrfs_release_path(path);
unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
out_unlock:
mutex_unlock(&src->i_mutex);
mutex_unlock(&inode->i_mutex);
vfree(buf);
btrfs_free_path(path);
out_fput:
fput(src_file);
out_drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
{
struct btrfs_ioctl_clone_range_args args;
if (copy_from_user(&args, argp, sizeof(args)))
return -EFAULT;
return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
args.src_length, args.dest_offset);
}
/*
* there are many ways the trans_start and trans_end ioctls can lead
* to deadlocks. They should only be used by applications that
* basically own the machine, and have a very in depth understanding
* of all the possible deadlocks and enospc problems.
*/
static long btrfs_ioctl_trans_start(struct file *file)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
int ret;
ret = -EPERM;
if (!capable(CAP_SYS_ADMIN))
goto out;
ret = -EINPROGRESS;
if (file->private_data)
goto out;
ret = -EROFS;
if (btrfs_root_readonly(root))
goto out;
ret = mnt_want_write_file(file);
if (ret)
goto out;
atomic_inc(&root->fs_info->open_ioctl_trans);
ret = -ENOMEM;
trans = btrfs_start_ioctl_transaction(root);
if (IS_ERR(trans))
goto out_drop;
file->private_data = trans;
return 0;
out_drop:
atomic_dec(&root->fs_info->open_ioctl_trans);
mnt_drop_write_file(file);
out:
return ret;
}
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_root *new_root;
struct btrfs_dir_item *di;
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct btrfs_key location;
struct btrfs_disk_key disk_key;
struct btrfs_super_block *disk_super;
u64 features;
u64 objectid = 0;
u64 dir_id;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&objectid, argp, sizeof(objectid)))
return -EFAULT;
if (!objectid)
objectid = root->root_key.objectid;
location.objectid = objectid;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = (u64)-1;
new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
if (IS_ERR(new_root))
return PTR_ERR(new_root);
if (btrfs_root_refs(&new_root->root_item) == 0)
return -ENOENT;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
btrfs_free_path(path);
return PTR_ERR(trans);
}
dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
dir_id, "default", 7, 1);
if (IS_ERR_OR_NULL(di)) {
btrfs_free_path(path);
btrfs_end_transaction(trans, root);
printk(KERN_ERR "Umm, you don't have the default dir item, "
"this isn't going to work\n");
return -ENOENT;
}
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_free_path(path);
disk_super = root->fs_info->super_copy;
features = btrfs_super_incompat_flags(disk_super);
if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
btrfs_set_super_incompat_flags(disk_super, features);
}
btrfs_end_transaction(trans, root);
return 0;
}
static void get_block_group_info(struct list_head *groups_list,
struct btrfs_ioctl_space_info *space)
{
struct btrfs_block_group_cache *block_group;
space->total_bytes = 0;
space->used_bytes = 0;
space->flags = 0;
list_for_each_entry(block_group, groups_list, list) {
space->flags = block_group->flags;
space->total_bytes += block_group->key.offset;
space->used_bytes +=
btrfs_block_group_used(&block_group->item);
}
}
long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
{
struct btrfs_ioctl_space_args space_args;
struct btrfs_ioctl_space_info space;
struct btrfs_ioctl_space_info *dest;
struct btrfs_ioctl_space_info *dest_orig;
struct btrfs_ioctl_space_info __user *user_dest;
struct btrfs_space_info *info;
u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
int num_types = 4;
int alloc_size;
int ret = 0;
u64 slot_count = 0;
int i, c;
if (copy_from_user(&space_args,
(struct btrfs_ioctl_space_args __user *)arg,
sizeof(space_args)))
return -EFAULT;
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
info = NULL;
rcu_read_lock();
list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
rcu_read_unlock();
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c]))
slot_count++;
}
up_read(&info->groups_sem);
}
/* space_slots == 0 means they are asking for a count */
if (space_args.space_slots == 0) {
space_args.total_spaces = slot_count;
goto out;
}
slot_count = min_t(u64, space_args.space_slots, slot_count);
alloc_size = sizeof(*dest) * slot_count;
/* we generally have at most 6 or so space infos, one for each raid
* level. So, a whole page should be more than enough for everyone
*/
if (alloc_size > PAGE_CACHE_SIZE)
return -ENOMEM;
space_args.total_spaces = 0;
dest = kmalloc(alloc_size, GFP_NOFS);
if (!dest)
return -ENOMEM;
dest_orig = dest;
/* now we have a buffer to copy into */
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
if (!slot_count)
break;
info = NULL;
rcu_read_lock();
list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
rcu_read_unlock();
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c])) {
get_block_group_info(&info->block_groups[c],
&space);
memcpy(dest, &space, sizeof(space));
dest++;
space_args.total_spaces++;
slot_count--;
}
if (!slot_count)
break;
}
up_read(&info->groups_sem);
}
user_dest = (struct btrfs_ioctl_space_info __user *)
(arg + sizeof(struct btrfs_ioctl_space_args));
if (copy_to_user(user_dest, dest_orig, alloc_size))
ret = -EFAULT;
kfree(dest_orig);
out:
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
ret = -EFAULT;
return ret;
}
/*
* there are many ways the trans_start and trans_end ioctls can lead
* to deadlocks. They should only be used by applications that
* basically own the machine, and have a very in depth understanding
* of all the possible deadlocks and enospc problems.
*/
long btrfs_ioctl_trans_end(struct file *file)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
trans = file->private_data;
if (!trans)
return -EINVAL;
file->private_data = NULL;
btrfs_end_transaction(trans, root);
atomic_dec(&root->fs_info->open_ioctl_trans);
mnt_drop_write_file(file);
return 0;
}
static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
{
struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
struct btrfs_trans_handle *trans;
u64 transid;
int ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans))
return PTR_ERR(trans);
transid = trans->transid;
ret = btrfs_commit_transaction_async(trans, root, 0);
if (ret) {
btrfs_end_transaction(trans, root);
return ret;
}
if (argp)
if (copy_to_user(argp, &transid, sizeof(transid)))
return -EFAULT;
return 0;
}
static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
{
struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
u64 transid;
if (argp) {
if (copy_from_user(&transid, argp, sizeof(transid)))
return -EFAULT;
} else {
transid = 0; /* current trans */
}
return btrfs_wait_for_commit(root, transid);
}
static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
{
int ret;
struct btrfs_ioctl_scrub_args *sa;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
if (copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return btrfs_scrub_cancel(root);
}
static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
void __user *arg)
{
struct btrfs_ioctl_scrub_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
if (copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
void __user *arg, int reset_after_read)
{
struct btrfs_ioctl_get_dev_stats *sa;
int ret;
if (reset_after_read && !capable(CAP_SYS_ADMIN))
return -EPERM;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = btrfs_get_dev_stats(root, sa, reset_after_read);
if (copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
{
int ret = 0;
int i;
u64 rel_ptr;
int size;
struct btrfs_ioctl_ino_path_args *ipa = NULL;
struct inode_fs_paths *ipath = NULL;
struct btrfs_path *path;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ipa = memdup_user(arg, sizeof(*ipa));
if (IS_ERR(ipa)) {
ret = PTR_ERR(ipa);
ipa = NULL;
goto out;
}
size = min_t(u32, ipa->size, 4096);
ipath = init_ipath(size, root, path);
if (IS_ERR(ipath)) {
ret = PTR_ERR(ipath);
ipath = NULL;
goto out;
}
ret = paths_from_inode(ipa->inum, ipath);
if (ret < 0)
goto out;
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
rel_ptr = ipath->fspath->val[i] -
(u64)(unsigned long)ipath->fspath->val;
ipath->fspath->val[i] = rel_ptr;
}
ret = copy_to_user((void *)(unsigned long)ipa->fspath,
(void *)(unsigned long)ipath->fspath, size);
if (ret) {
ret = -EFAULT;
goto out;
}
out:
btrfs_free_path(path);
free_ipath(ipath);
kfree(ipa);
return ret;
}
static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
{
struct btrfs_data_container *inodes = ctx;
const size_t c = 3 * sizeof(u64);
if (inodes->bytes_left >= c) {
inodes->bytes_left -= c;
inodes->val[inodes->elem_cnt] = inum;
inodes->val[inodes->elem_cnt + 1] = offset;
inodes->val[inodes->elem_cnt + 2] = root;
inodes->elem_cnt += 3;
} else {
inodes->bytes_missing += c - inodes->bytes_left;
inodes->bytes_left = 0;
inodes->elem_missed += 3;
}
return 0;
}
static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
void __user *arg)
{
int ret = 0;
int size;
u64 extent_item_pos;
struct btrfs_ioctl_logical_ino_args *loi;
struct btrfs_data_container *inodes = NULL;
struct btrfs_path *path = NULL;
struct btrfs_key key;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
loi = memdup_user(arg, sizeof(*loi));
if (IS_ERR(loi)) {
ret = PTR_ERR(loi);
loi = NULL;
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
size = min_t(u32, loi->size, 4096);
inodes = init_data_container(size);
if (IS_ERR(inodes)) {
ret = PTR_ERR(inodes);
inodes = NULL;
goto out;
}
ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
btrfs_release_path(path);
if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
ret = -ENOENT;
if (ret < 0)
goto out;
extent_item_pos = loi->logical - key.objectid;
ret = iterate_extent_inodes(root->fs_info, key.objectid,
extent_item_pos, 0, build_ino_list,
inodes);
if (ret < 0)
goto out;
ret = copy_to_user((void *)(unsigned long)loi->inodes,
(void *)(unsigned long)inodes, size);
if (ret)
ret = -EFAULT;
out:
btrfs_free_path(path);
kfree(inodes);
kfree(loi);
return ret;
}
void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
struct btrfs_ioctl_balance_args *bargs)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
bargs->flags = bctl->flags;
if (atomic_read(&fs_info->balance_running))
bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
if (atomic_read(&fs_info->balance_pause_req))
bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
if (atomic_read(&fs_info->balance_cancel_req))
bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
if (lock) {
spin_lock(&fs_info->balance_lock);
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
spin_unlock(&fs_info->balance_lock);
} else {
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
}
}
static long btrfs_ioctl_balance(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_balance_args *bargs;
struct btrfs_balance_control *bctl;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (fs_info->sb->s_flags & MS_RDONLY)
return -EROFS;
ret = mnt_want_write_file(file);
if (ret)
return ret;
mutex_lock(&fs_info->volume_mutex);
mutex_lock(&fs_info->balance_mutex);
if (arg) {
bargs = memdup_user(arg, sizeof(*bargs));
if (IS_ERR(bargs)) {
ret = PTR_ERR(bargs);
goto out;
}
if (bargs->flags & BTRFS_BALANCE_RESUME) {
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out_bargs;
}
bctl = fs_info->balance_ctl;
spin_lock(&fs_info->balance_lock);
bctl->flags |= BTRFS_BALANCE_RESUME;
spin_unlock(&fs_info->balance_lock);
goto do_balance;
}
} else {
bargs = NULL;
}
if (fs_info->balance_ctl) {
ret = -EINPROGRESS;
goto out_bargs;
}
bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
if (!bctl) {
ret = -ENOMEM;
goto out_bargs;
}
bctl->fs_info = fs_info;
if (arg) {
memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
bctl->flags = bargs->flags;
} else {
/* balance everything - no filters */
bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
}
do_balance:
ret = btrfs_balance(bctl, bargs);
/*
* bctl is freed in __cancel_balance or in free_fs_info if
* restriper was paused all the way until unmount
*/
if (arg) {
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
}
out_bargs:
kfree(bargs);
out:
mutex_unlock(&fs_info->balance_mutex);
mutex_unlock(&fs_info->volume_mutex);
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case BTRFS_BALANCE_CTL_PAUSE:
return btrfs_pause_balance(root->fs_info);
case BTRFS_BALANCE_CTL_CANCEL:
return btrfs_cancel_balance(root->fs_info);
}
return -EINVAL;
}
static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
void __user *arg)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_balance_args *bargs;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&fs_info->balance_mutex);
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out;
}
bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
if (!bargs) {
ret = -ENOMEM;
goto out;
}
update_ioctl_balance_args(fs_info, 1, bargs);
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
kfree(bargs);
out:
mutex_unlock(&fs_info->balance_mutex);
return ret;
}
long btrfs_ioctl(struct file *file, unsigned int
cmd, unsigned long arg)
{
struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
void __user *argp = (void __user *)arg;
switch (cmd) {
case FS_IOC_GETFLAGS:
return btrfs_ioctl_getflags(file, argp);
case FS_IOC_SETFLAGS:
return btrfs_ioctl_setflags(file, argp);
case FS_IOC_GETVERSION:
return btrfs_ioctl_getversion(file, argp);
case FITRIM:
return btrfs_ioctl_fitrim(file, argp);
case BTRFS_IOC_SNAP_CREATE:
return btrfs_ioctl_snap_create(file, argp, 0);
case BTRFS_IOC_SNAP_CREATE_V2:
return btrfs_ioctl_snap_create_v2(file, argp, 0);
case BTRFS_IOC_SUBVOL_CREATE:
return btrfs_ioctl_snap_create(file, argp, 1);
case BTRFS_IOC_SNAP_DESTROY:
return btrfs_ioctl_snap_destroy(file, argp);
case BTRFS_IOC_SUBVOL_GETFLAGS:
return btrfs_ioctl_subvol_getflags(file, argp);
case BTRFS_IOC_SUBVOL_SETFLAGS:
return btrfs_ioctl_subvol_setflags(file, argp);
case BTRFS_IOC_DEFAULT_SUBVOL:
return btrfs_ioctl_default_subvol(file, argp);
case BTRFS_IOC_DEFRAG:
return btrfs_ioctl_defrag(file, NULL);
case BTRFS_IOC_DEFRAG_RANGE:
return btrfs_ioctl_defrag(file, argp);
case BTRFS_IOC_RESIZE:
return btrfs_ioctl_resize(root, argp);
case BTRFS_IOC_ADD_DEV:
return btrfs_ioctl_add_dev(root, argp);
case BTRFS_IOC_RM_DEV:
return btrfs_ioctl_rm_dev(root, argp);
case BTRFS_IOC_FS_INFO:
return btrfs_ioctl_fs_info(root, argp);
case BTRFS_IOC_DEV_INFO:
return btrfs_ioctl_dev_info(root, argp);
case BTRFS_IOC_BALANCE:
return btrfs_ioctl_balance(file, NULL);
case BTRFS_IOC_CLONE:
return btrfs_ioctl_clone(file, arg, 0, 0, 0);
case BTRFS_IOC_CLONE_RANGE:
return btrfs_ioctl_clone_range(file, argp);
case BTRFS_IOC_TRANS_START:
return btrfs_ioctl_trans_start(file);
case BTRFS_IOC_TRANS_END:
return btrfs_ioctl_trans_end(file);
case BTRFS_IOC_TREE_SEARCH:
return btrfs_ioctl_tree_search(file, argp);
case BTRFS_IOC_INO_LOOKUP:
return btrfs_ioctl_ino_lookup(file, argp);
case BTRFS_IOC_INO_PATHS:
return btrfs_ioctl_ino_to_path(root, argp);
case BTRFS_IOC_LOGICAL_INO:
return btrfs_ioctl_logical_to_ino(root, argp);
case BTRFS_IOC_SPACE_INFO:
return btrfs_ioctl_space_info(root, argp);
case BTRFS_IOC_SYNC:
btrfs_sync_fs(file->f_dentry->d_sb, 1);
return 0;
case BTRFS_IOC_START_SYNC:
return btrfs_ioctl_start_sync(file, argp);
case BTRFS_IOC_WAIT_SYNC:
return btrfs_ioctl_wait_sync(file, argp);
case BTRFS_IOC_SCRUB:
return btrfs_ioctl_scrub(root, argp);
case BTRFS_IOC_SCRUB_CANCEL:
return btrfs_ioctl_scrub_cancel(root, argp);
case BTRFS_IOC_SCRUB_PROGRESS:
return btrfs_ioctl_scrub_progress(root, argp);
case BTRFS_IOC_BALANCE_V2:
return btrfs_ioctl_balance(file, argp);
case BTRFS_IOC_BALANCE_CTL:
return btrfs_ioctl_balance_ctl(root, arg);
case BTRFS_IOC_BALANCE_PROGRESS:
return btrfs_ioctl_balance_progress(root, argp);
case BTRFS_IOC_GET_DEV_STATS:
return btrfs_ioctl_get_dev_stats(root, argp, 0);
case BTRFS_IOC_GET_AND_RESET_DEV_STATS:
return btrfs_ioctl_get_dev_stats(root, argp, 1);
}
return -ENOTTY;
}