| /* |
| * PMU support |
| * |
| * Copyright (C) 2012 ARM Limited |
| * Author: Will Deacon <will.deacon@arm.com> |
| * |
| * This code is based heavily on the ARMv7 perf event code. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| #define pr_fmt(fmt) "hw perfevents: " fmt |
| |
| #include <linux/bitmap.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/pmu.h> |
| #include <asm/stacktrace.h> |
| |
| /* |
| * ARMv8 supports a maximum of 32 events. |
| * The cycle counter is included in this total. |
| */ |
| #define ARMPMU_MAX_HWEVENTS 32 |
| |
| static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events); |
| static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask); |
| static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events); |
| |
| #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu)) |
| |
| /* Set at runtime when we know what CPU type we are. */ |
| static struct arm_pmu *cpu_pmu; |
| |
| int |
| armpmu_get_max_events(void) |
| { |
| int max_events = 0; |
| |
| if (cpu_pmu != NULL) |
| max_events = cpu_pmu->num_events; |
| |
| return max_events; |
| } |
| EXPORT_SYMBOL_GPL(armpmu_get_max_events); |
| |
| int perf_num_counters(void) |
| { |
| return armpmu_get_max_events(); |
| } |
| EXPORT_SYMBOL_GPL(perf_num_counters); |
| |
| #define HW_OP_UNSUPPORTED 0xFFFF |
| |
| #define C(_x) \ |
| PERF_COUNT_HW_CACHE_##_x |
| |
| #define CACHE_OP_UNSUPPORTED 0xFFFF |
| |
| static int |
| armpmu_map_cache_event(const unsigned (*cache_map) |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| u64 config) |
| { |
| unsigned int cache_type, cache_op, cache_result, ret; |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return -EINVAL; |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return -EINVAL; |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; |
| |
| if (ret == CACHE_OP_UNSUPPORTED) |
| return -ENOENT; |
| |
| return ret; |
| } |
| |
| static int |
| armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) |
| { |
| int mapping = (*event_map)[config]; |
| return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; |
| } |
| |
| static int |
| armpmu_map_raw_event(u32 raw_event_mask, u64 config) |
| { |
| return (int)(config & raw_event_mask); |
| } |
| |
| static int map_cpu_event(struct perf_event *event, |
| const unsigned (*event_map)[PERF_COUNT_HW_MAX], |
| const unsigned (*cache_map) |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| u32 raw_event_mask) |
| { |
| u64 config = event->attr.config; |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_HARDWARE: |
| return armpmu_map_event(event_map, config); |
| case PERF_TYPE_HW_CACHE: |
| return armpmu_map_cache_event(cache_map, config); |
| case PERF_TYPE_RAW: |
| return armpmu_map_raw_event(raw_event_mask, config); |
| } |
| |
| return -ENOENT; |
| } |
| |
| int |
| armpmu_event_set_period(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| s64 left = local64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int ret = 0; |
| |
| if (unlikely(left <= -period)) { |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (left > (s64)armpmu->max_period) |
| left = armpmu->max_period; |
| |
| local64_set(&hwc->prev_count, (u64)-left); |
| |
| armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| u64 |
| armpmu_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| u64 delta, prev_raw_count, new_raw_count; |
| |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = armpmu->read_counter(idx); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| delta = (new_raw_count - prev_raw_count) & armpmu->max_period; |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| static void |
| armpmu_read(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* Don't read disabled counters! */ |
| if (hwc->idx < 0) |
| return; |
| |
| armpmu_event_update(event, hwc, hwc->idx); |
| } |
| |
| static void |
| armpmu_stop(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * ARM pmu always has to update the counter, so ignore |
| * PERF_EF_UPDATE, see comments in armpmu_start(). |
| */ |
| if (!(hwc->state & PERF_HES_STOPPED)) { |
| armpmu->disable(hwc, hwc->idx); |
| barrier(); /* why? */ |
| armpmu_event_update(event, hwc, hwc->idx); |
| hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void |
| armpmu_start(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * ARM pmu always has to reprogram the period, so ignore |
| * PERF_EF_RELOAD, see the comment below. |
| */ |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| hwc->state = 0; |
| /* |
| * Set the period again. Some counters can't be stopped, so when we |
| * were stopped we simply disabled the IRQ source and the counter |
| * may have been left counting. If we don't do this step then we may |
| * get an interrupt too soon or *way* too late if the overflow has |
| * happened since disabling. |
| */ |
| armpmu_event_set_period(event, hwc, hwc->idx); |
| armpmu->enable(hwc, hwc->idx); |
| } |
| |
| static void |
| armpmu_del(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *hw_events = armpmu->get_hw_events(); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| WARN_ON(idx < 0); |
| |
| armpmu_stop(event, PERF_EF_UPDATE); |
| hw_events->events[idx] = NULL; |
| clear_bit(idx, hw_events->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static int |
| armpmu_add(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *hw_events = armpmu->get_hw_events(); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| int err = 0; |
| |
| perf_pmu_disable(event->pmu); |
| |
| /* If we don't have a space for the counter then finish early. */ |
| idx = armpmu->get_event_idx(hw_events, hwc); |
| if (idx < 0) { |
| err = idx; |
| goto out; |
| } |
| |
| /* |
| * If there is an event in the counter we are going to use then make |
| * sure it is disabled. |
| */ |
| event->hw.idx = idx; |
| armpmu->disable(hwc, idx); |
| hw_events->events[idx] = event; |
| |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| if (flags & PERF_EF_START) |
| armpmu_start(event, PERF_EF_RELOAD); |
| |
| /* Propagate our changes to the userspace mapping. */ |
| perf_event_update_userpage(event); |
| |
| out: |
| perf_pmu_enable(event->pmu); |
| return err; |
| } |
| |
| static int |
| validate_event(struct pmu_hw_events *hw_events, |
| struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event fake_event = event->hw; |
| struct pmu *leader_pmu = event->group_leader->pmu; |
| |
| if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF) |
| return 1; |
| |
| return armpmu->get_event_idx(hw_events, &fake_event) >= 0; |
| } |
| |
| static int |
| validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct pmu_hw_events fake_pmu; |
| DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS); |
| |
| /* |
| * Initialise the fake PMU. We only need to populate the |
| * used_mask for the purposes of validation. |
| */ |
| memset(fake_used_mask, 0, sizeof(fake_used_mask)); |
| fake_pmu.used_mask = fake_used_mask; |
| |
| if (!validate_event(&fake_pmu, leader)) |
| return -EINVAL; |
| |
| list_for_each_entry(sibling, &leader->sibling_list, group_entry) { |
| if (!validate_event(&fake_pmu, sibling)) |
| return -EINVAL; |
| } |
| |
| if (!validate_event(&fake_pmu, event)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static void |
| armpmu_release_hardware(struct arm_pmu *armpmu) |
| { |
| int i, irq, irqs; |
| struct platform_device *pmu_device = armpmu->plat_device; |
| |
| irqs = min(pmu_device->num_resources, num_possible_cpus()); |
| |
| for (i = 0; i < irqs; ++i) { |
| if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs)) |
| continue; |
| irq = platform_get_irq(pmu_device, i); |
| if (irq >= 0) |
| free_irq(irq, armpmu); |
| } |
| } |
| |
| static int |
| armpmu_reserve_hardware(struct arm_pmu *armpmu) |
| { |
| int i, err, irq, irqs; |
| struct platform_device *pmu_device = armpmu->plat_device; |
| |
| if (!pmu_device) { |
| pr_err("no PMU device registered\n"); |
| return -ENODEV; |
| } |
| |
| irqs = min(pmu_device->num_resources, num_possible_cpus()); |
| if (irqs < 1) { |
| pr_err("no irqs for PMUs defined\n"); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < irqs; ++i) { |
| err = 0; |
| irq = platform_get_irq(pmu_device, i); |
| if (irq < 0) |
| continue; |
| |
| /* |
| * If we have a single PMU interrupt that we can't shift, |
| * assume that we're running on a uniprocessor machine and |
| * continue. Otherwise, continue without this interrupt. |
| */ |
| if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) { |
| pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n", |
| irq, i); |
| continue; |
| } |
| |
| err = request_irq(irq, armpmu->handle_irq, |
| IRQF_NOBALANCING, |
| "arm-pmu", armpmu); |
| if (err) { |
| pr_err("unable to request IRQ%d for ARM PMU counters\n", |
| irq); |
| armpmu_release_hardware(armpmu); |
| return err; |
| } |
| |
| cpumask_set_cpu(i, &armpmu->active_irqs); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| hw_perf_event_destroy(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| atomic_t *active_events = &armpmu->active_events; |
| struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; |
| |
| if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { |
| armpmu_release_hardware(armpmu); |
| mutex_unlock(pmu_reserve_mutex); |
| } |
| } |
| |
| static int |
| event_requires_mode_exclusion(struct perf_event_attr *attr) |
| { |
| return attr->exclude_idle || attr->exclude_user || |
| attr->exclude_kernel || attr->exclude_hv; |
| } |
| |
| static int |
| __hw_perf_event_init(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| int mapping, err; |
| |
| mapping = armpmu->map_event(event); |
| |
| if (mapping < 0) { |
| pr_debug("event %x:%llx not supported\n", event->attr.type, |
| event->attr.config); |
| return mapping; |
| } |
| |
| /* |
| * We don't assign an index until we actually place the event onto |
| * hardware. Use -1 to signify that we haven't decided where to put it |
| * yet. For SMP systems, each core has it's own PMU so we can't do any |
| * clever allocation or constraints checking at this point. |
| */ |
| hwc->idx = -1; |
| hwc->config_base = 0; |
| hwc->config = 0; |
| hwc->event_base = 0; |
| |
| /* |
| * Check whether we need to exclude the counter from certain modes. |
| */ |
| if ((!armpmu->set_event_filter || |
| armpmu->set_event_filter(hwc, &event->attr)) && |
| event_requires_mode_exclusion(&event->attr)) { |
| pr_debug("ARM performance counters do not support mode exclusion\n"); |
| return -EPERM; |
| } |
| |
| /* |
| * Store the event encoding into the config_base field. |
| */ |
| hwc->config_base |= (unsigned long)mapping; |
| |
| if (!hwc->sample_period) { |
| /* |
| * For non-sampling runs, limit the sample_period to half |
| * of the counter width. That way, the new counter value |
| * is far less likely to overtake the previous one unless |
| * you have some serious IRQ latency issues. |
| */ |
| hwc->sample_period = armpmu->max_period >> 1; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| err = 0; |
| if (event->group_leader != event) { |
| err = validate_group(event); |
| if (err) |
| return -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| static int armpmu_event_init(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| int err = 0; |
| atomic_t *active_events = &armpmu->active_events; |
| |
| if (armpmu->map_event(event) == -ENOENT) |
| return -ENOENT; |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| if (!atomic_inc_not_zero(active_events)) { |
| mutex_lock(&armpmu->reserve_mutex); |
| if (atomic_read(active_events) == 0) |
| err = armpmu_reserve_hardware(armpmu); |
| |
| if (!err) |
| atomic_inc(active_events); |
| mutex_unlock(&armpmu->reserve_mutex); |
| } |
| |
| if (err) |
| return err; |
| |
| err = __hw_perf_event_init(event); |
| if (err) |
| hw_perf_event_destroy(event); |
| |
| return err; |
| } |
| |
| static void armpmu_enable(struct pmu *pmu) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| struct pmu_hw_events *hw_events = armpmu->get_hw_events(); |
| int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); |
| |
| if (enabled) |
| armpmu->start(); |
| } |
| |
| static void armpmu_disable(struct pmu *pmu) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| armpmu->stop(); |
| } |
| |
| static void __init armpmu_init(struct arm_pmu *armpmu) |
| { |
| atomic_set(&armpmu->active_events, 0); |
| mutex_init(&armpmu->reserve_mutex); |
| |
| armpmu->pmu = (struct pmu) { |
| .pmu_enable = armpmu_enable, |
| .pmu_disable = armpmu_disable, |
| .event_init = armpmu_event_init, |
| .add = armpmu_add, |
| .del = armpmu_del, |
| .start = armpmu_start, |
| .stop = armpmu_stop, |
| .read = armpmu_read, |
| }; |
| } |
| |
| int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type) |
| { |
| armpmu_init(armpmu); |
| return perf_pmu_register(&armpmu->pmu, name, type); |
| } |
| |
| /* |
| * ARMv8 PMUv3 Performance Events handling code. |
| * Common event types. |
| */ |
| enum armv8_pmuv3_perf_types { |
| /* Required events. */ |
| ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00, |
| ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03, |
| ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04, |
| ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10, |
| ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11, |
| ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12, |
| |
| /* At least one of the following is required. */ |
| ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08, |
| ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B, |
| |
| /* Common architectural events. */ |
| ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06, |
| ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07, |
| ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09, |
| ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A, |
| ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B, |
| ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C, |
| ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D, |
| ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E, |
| ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F, |
| ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C, |
| |
| /* Common microarchitectural events. */ |
| ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01, |
| ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02, |
| ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05, |
| ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13, |
| ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14, |
| ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15, |
| ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16, |
| ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17, |
| ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18, |
| ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19, |
| ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A, |
| ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D, |
| |
| /* |
| * This isn't an architected event. |
| * We detect this event number and use the cycle counter instead. |
| */ |
| ARMV8_PMUV3_PERFCTR_CPU_CYCLES = 0xFF, |
| }; |
| |
| /* PMUv3 HW events mapping. */ |
| static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES, |
| [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS, |
| [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = HW_OP_UNSUPPORTED, |
| [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED, |
| [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, |
| [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED, |
| [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = HW_OP_UNSUPPORTED, |
| }; |
| |
| static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS, |
| [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS, |
| [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED, |
| [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED, |
| [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(NODE)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| }; |
| |
| /* |
| * Perf Events' indices |
| */ |
| #define ARMV8_IDX_CYCLE_COUNTER 0 |
| #define ARMV8_IDX_COUNTER0 1 |
| #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1) |
| |
| #define ARMV8_MAX_COUNTERS 32 |
| #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1) |
| |
| /* |
| * ARMv8 low level PMU access |
| */ |
| |
| /* |
| * Perf Event to low level counters mapping |
| */ |
| #define ARMV8_IDX_TO_COUNTER(x) \ |
| (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK) |
| |
| /* |
| * Per-CPU PMCR: config reg |
| */ |
| #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */ |
| #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */ |
| #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */ |
| #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */ |
| #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */ |
| #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/ |
| #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */ |
| #define ARMV8_PMCR_N_MASK 0x1f |
| #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */ |
| |
| /* |
| * PMOVSR: counters overflow flag status reg |
| */ |
| #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */ |
| #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK |
| |
| /* |
| * PMXEVTYPER: Event selection reg |
| */ |
| #define ARMV8_EVTYPE_MASK 0xc00000ff /* Mask for writable bits */ |
| #define ARMV8_EVTYPE_EVENT 0xff /* Mask for EVENT bits */ |
| |
| /* |
| * Event filters for PMUv3 |
| */ |
| #define ARMV8_EXCLUDE_EL1 (1 << 31) |
| #define ARMV8_EXCLUDE_EL0 (1 << 30) |
| #define ARMV8_INCLUDE_EL2 (1 << 27) |
| |
| static inline u32 armv8pmu_pmcr_read(void) |
| { |
| u32 val; |
| asm volatile("mrs %0, pmcr_el0" : "=r" (val)); |
| return val; |
| } |
| |
| static inline void armv8pmu_pmcr_write(u32 val) |
| { |
| val &= ARMV8_PMCR_MASK; |
| isb(); |
| asm volatile("msr pmcr_el0, %0" :: "r" (val)); |
| } |
| |
| static inline int armv8pmu_has_overflowed(u32 pmovsr) |
| { |
| return pmovsr & ARMV8_OVERFLOWED_MASK; |
| } |
| |
| static inline int armv8pmu_counter_valid(int idx) |
| { |
| return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST; |
| } |
| |
| static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx) |
| { |
| int ret = 0; |
| u32 counter; |
| |
| if (!armv8pmu_counter_valid(idx)) { |
| pr_err("CPU%u checking wrong counter %d overflow status\n", |
| smp_processor_id(), idx); |
| } else { |
| counter = ARMV8_IDX_TO_COUNTER(idx); |
| ret = pmnc & BIT(counter); |
| } |
| |
| return ret; |
| } |
| |
| static inline int armv8pmu_select_counter(int idx) |
| { |
| u32 counter; |
| |
| if (!armv8pmu_counter_valid(idx)) { |
| pr_err("CPU%u selecting wrong PMNC counter %d\n", |
| smp_processor_id(), idx); |
| return -EINVAL; |
| } |
| |
| counter = ARMV8_IDX_TO_COUNTER(idx); |
| asm volatile("msr pmselr_el0, %0" :: "r" (counter)); |
| isb(); |
| |
| return idx; |
| } |
| |
| static inline u32 armv8pmu_read_counter(int idx) |
| { |
| u32 value = 0; |
| |
| if (!armv8pmu_counter_valid(idx)) |
| pr_err("CPU%u reading wrong counter %d\n", |
| smp_processor_id(), idx); |
| else if (idx == ARMV8_IDX_CYCLE_COUNTER) |
| asm volatile("mrs %0, pmccntr_el0" : "=r" (value)); |
| else if (armv8pmu_select_counter(idx) == idx) |
| asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value)); |
| |
| return value; |
| } |
| |
| static inline void armv8pmu_write_counter(int idx, u32 value) |
| { |
| if (!armv8pmu_counter_valid(idx)) |
| pr_err("CPU%u writing wrong counter %d\n", |
| smp_processor_id(), idx); |
| else if (idx == ARMV8_IDX_CYCLE_COUNTER) |
| asm volatile("msr pmccntr_el0, %0" :: "r" (value)); |
| else if (armv8pmu_select_counter(idx) == idx) |
| asm volatile("msr pmxevcntr_el0, %0" :: "r" (value)); |
| } |
| |
| static inline void armv8pmu_write_evtype(int idx, u32 val) |
| { |
| if (armv8pmu_select_counter(idx) == idx) { |
| val &= ARMV8_EVTYPE_MASK; |
| asm volatile("msr pmxevtyper_el0, %0" :: "r" (val)); |
| } |
| } |
| |
| static inline int armv8pmu_enable_counter(int idx) |
| { |
| u32 counter; |
| |
| if (!armv8pmu_counter_valid(idx)) { |
| pr_err("CPU%u enabling wrong PMNC counter %d\n", |
| smp_processor_id(), idx); |
| return -EINVAL; |
| } |
| |
| counter = ARMV8_IDX_TO_COUNTER(idx); |
| asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter))); |
| return idx; |
| } |
| |
| static inline int armv8pmu_disable_counter(int idx) |
| { |
| u32 counter; |
| |
| if (!armv8pmu_counter_valid(idx)) { |
| pr_err("CPU%u disabling wrong PMNC counter %d\n", |
| smp_processor_id(), idx); |
| return -EINVAL; |
| } |
| |
| counter = ARMV8_IDX_TO_COUNTER(idx); |
| asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter))); |
| return idx; |
| } |
| |
| static inline int armv8pmu_enable_intens(int idx) |
| { |
| u32 counter; |
| |
| if (!armv8pmu_counter_valid(idx)) { |
| pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n", |
| smp_processor_id(), idx); |
| return -EINVAL; |
| } |
| |
| counter = ARMV8_IDX_TO_COUNTER(idx); |
| asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter))); |
| return idx; |
| } |
| |
| static inline int armv8pmu_disable_intens(int idx) |
| { |
| u32 counter; |
| |
| if (!armv8pmu_counter_valid(idx)) { |
| pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n", |
| smp_processor_id(), idx); |
| return -EINVAL; |
| } |
| |
| counter = ARMV8_IDX_TO_COUNTER(idx); |
| asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter))); |
| isb(); |
| /* Clear the overflow flag in case an interrupt is pending. */ |
| asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter))); |
| isb(); |
| return idx; |
| } |
| |
| static inline u32 armv8pmu_getreset_flags(void) |
| { |
| u32 value; |
| |
| /* Read */ |
| asm volatile("mrs %0, pmovsclr_el0" : "=r" (value)); |
| |
| /* Write to clear flags */ |
| value &= ARMV8_OVSR_MASK; |
| asm volatile("msr pmovsclr_el0, %0" :: "r" (value)); |
| |
| return value; |
| } |
| |
| static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx) |
| { |
| unsigned long flags; |
| struct pmu_hw_events *events = cpu_pmu->get_hw_events(); |
| |
| /* |
| * Enable counter and interrupt, and set the counter to count |
| * the event that we're interested in. |
| */ |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| |
| /* |
| * Disable counter |
| */ |
| armv8pmu_disable_counter(idx); |
| |
| /* |
| * Set event (if destined for PMNx counters). |
| */ |
| armv8pmu_write_evtype(idx, hwc->config_base); |
| |
| /* |
| * Enable interrupt for this counter |
| */ |
| armv8pmu_enable_intens(idx); |
| |
| /* |
| * Enable counter |
| */ |
| armv8pmu_enable_counter(idx); |
| |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx) |
| { |
| unsigned long flags; |
| struct pmu_hw_events *events = cpu_pmu->get_hw_events(); |
| |
| /* |
| * Disable counter and interrupt |
| */ |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| |
| /* |
| * Disable counter |
| */ |
| armv8pmu_disable_counter(idx); |
| |
| /* |
| * Disable interrupt for this counter |
| */ |
| armv8pmu_disable_intens(idx); |
| |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev) |
| { |
| u32 pmovsr; |
| struct perf_sample_data data; |
| struct pmu_hw_events *cpuc; |
| struct pt_regs *regs; |
| int idx; |
| |
| /* |
| * Get and reset the IRQ flags |
| */ |
| pmovsr = armv8pmu_getreset_flags(); |
| |
| /* |
| * Did an overflow occur? |
| */ |
| if (!armv8pmu_has_overflowed(pmovsr)) |
| return IRQ_NONE; |
| |
| /* |
| * Handle the counter(s) overflow(s) |
| */ |
| regs = get_irq_regs(); |
| |
| cpuc = &__get_cpu_var(cpu_hw_events); |
| for (idx = 0; idx < cpu_pmu->num_events; ++idx) { |
| struct perf_event *event = cpuc->events[idx]; |
| struct hw_perf_event *hwc; |
| |
| /* Ignore if we don't have an event. */ |
| if (!event) |
| continue; |
| |
| /* |
| * We have a single interrupt for all counters. Check that |
| * each counter has overflowed before we process it. |
| */ |
| if (!armv8pmu_counter_has_overflowed(pmovsr, idx)) |
| continue; |
| |
| hwc = &event->hw; |
| armpmu_event_update(event, hwc, idx); |
| perf_sample_data_init(&data, 0, hwc->last_period); |
| if (!armpmu_event_set_period(event, hwc, idx)) |
| continue; |
| |
| if (perf_event_overflow(event, &data, regs)) |
| cpu_pmu->disable(hwc, idx); |
| } |
| |
| /* |
| * Handle the pending perf events. |
| * |
| * Note: this call *must* be run with interrupts disabled. For |
| * platforms that can have the PMU interrupts raised as an NMI, this |
| * will not work. |
| */ |
| irq_work_run(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void armv8pmu_start(void) |
| { |
| unsigned long flags; |
| struct pmu_hw_events *events = cpu_pmu->get_hw_events(); |
| |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| /* Enable all counters */ |
| armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E); |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static void armv8pmu_stop(void) |
| { |
| unsigned long flags; |
| struct pmu_hw_events *events = cpu_pmu->get_hw_events(); |
| |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| /* Disable all counters */ |
| armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E); |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc, |
| struct hw_perf_event *event) |
| { |
| int idx; |
| unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT; |
| |
| /* Always place a cycle counter into the cycle counter. */ |
| if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) { |
| if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask)) |
| return -EAGAIN; |
| |
| return ARMV8_IDX_CYCLE_COUNTER; |
| } |
| |
| /* |
| * For anything other than a cycle counter, try and use |
| * the events counters |
| */ |
| for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) { |
| if (!test_and_set_bit(idx, cpuc->used_mask)) |
| return idx; |
| } |
| |
| /* The counters are all in use. */ |
| return -EAGAIN; |
| } |
| |
| /* |
| * Add an event filter to a given event. This will only work for PMUv2 PMUs. |
| */ |
| static int armv8pmu_set_event_filter(struct hw_perf_event *event, |
| struct perf_event_attr *attr) |
| { |
| unsigned long config_base = 0; |
| |
| if (attr->exclude_idle) |
| return -EPERM; |
| if (attr->exclude_user) |
| config_base |= ARMV8_EXCLUDE_EL0; |
| if (attr->exclude_kernel) |
| config_base |= ARMV8_EXCLUDE_EL1; |
| if (!attr->exclude_hv) |
| config_base |= ARMV8_INCLUDE_EL2; |
| |
| /* |
| * Install the filter into config_base as this is used to |
| * construct the event type. |
| */ |
| event->config_base = config_base; |
| |
| return 0; |
| } |
| |
| static void armv8pmu_reset(void *info) |
| { |
| u32 idx, nb_cnt = cpu_pmu->num_events; |
| |
| /* The counter and interrupt enable registers are unknown at reset. */ |
| for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx) |
| armv8pmu_disable_event(NULL, idx); |
| |
| /* Initialize & Reset PMNC: C and P bits. */ |
| armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C); |
| |
| /* Disable access from userspace. */ |
| asm volatile("msr pmuserenr_el0, %0" :: "r" (0)); |
| } |
| |
| static int armv8_pmuv3_map_event(struct perf_event *event) |
| { |
| return map_cpu_event(event, &armv8_pmuv3_perf_map, |
| &armv8_pmuv3_perf_cache_map, 0xFF); |
| } |
| |
| static struct arm_pmu armv8pmu = { |
| .handle_irq = armv8pmu_handle_irq, |
| .enable = armv8pmu_enable_event, |
| .disable = armv8pmu_disable_event, |
| .read_counter = armv8pmu_read_counter, |
| .write_counter = armv8pmu_write_counter, |
| .get_event_idx = armv8pmu_get_event_idx, |
| .start = armv8pmu_start, |
| .stop = armv8pmu_stop, |
| .reset = armv8pmu_reset, |
| .max_period = (1LLU << 32) - 1, |
| }; |
| |
| static u32 __init armv8pmu_read_num_pmnc_events(void) |
| { |
| u32 nb_cnt; |
| |
| /* Read the nb of CNTx counters supported from PMNC */ |
| nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK; |
| |
| /* Add the CPU cycles counter and return */ |
| return nb_cnt + 1; |
| } |
| |
| static struct arm_pmu *__init armv8_pmuv3_pmu_init(void) |
| { |
| armv8pmu.name = "arm/armv8-pmuv3"; |
| armv8pmu.map_event = armv8_pmuv3_map_event; |
| armv8pmu.num_events = armv8pmu_read_num_pmnc_events(); |
| armv8pmu.set_event_filter = armv8pmu_set_event_filter; |
| return &armv8pmu; |
| } |
| |
| /* |
| * Ensure the PMU has sane values out of reset. |
| * This requires SMP to be available, so exists as a separate initcall. |
| */ |
| static int __init |
| cpu_pmu_reset(void) |
| { |
| if (cpu_pmu && cpu_pmu->reset) |
| return on_each_cpu(cpu_pmu->reset, NULL, 1); |
| return 0; |
| } |
| arch_initcall(cpu_pmu_reset); |
| |
| /* |
| * PMU platform driver and devicetree bindings. |
| */ |
| static struct of_device_id armpmu_of_device_ids[] = { |
| {.compatible = "arm,armv8-pmuv3"}, |
| {}, |
| }; |
| |
| static int __devinit armpmu_device_probe(struct platform_device *pdev) |
| { |
| if (!cpu_pmu) |
| return -ENODEV; |
| |
| cpu_pmu->plat_device = pdev; |
| return 0; |
| } |
| |
| static struct platform_driver armpmu_driver = { |
| .driver = { |
| .name = "arm-pmu", |
| .of_match_table = armpmu_of_device_ids, |
| }, |
| .probe = armpmu_device_probe, |
| }; |
| |
| static int __init register_pmu_driver(void) |
| { |
| return platform_driver_register(&armpmu_driver); |
| } |
| device_initcall(register_pmu_driver); |
| |
| static struct pmu_hw_events *armpmu_get_cpu_events(void) |
| { |
| return &__get_cpu_var(cpu_hw_events); |
| } |
| |
| static void __init cpu_pmu_init(struct arm_pmu *armpmu) |
| { |
| int cpu; |
| for_each_possible_cpu(cpu) { |
| struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu); |
| events->events = per_cpu(hw_events, cpu); |
| events->used_mask = per_cpu(used_mask, cpu); |
| raw_spin_lock_init(&events->pmu_lock); |
| } |
| armpmu->get_hw_events = armpmu_get_cpu_events; |
| } |
| |
| static int __init init_hw_perf_events(void) |
| { |
| u64 dfr = read_cpuid(ID_AA64DFR0_EL1); |
| |
| switch ((dfr >> 8) & 0xf) { |
| case 0x1: /* PMUv3 */ |
| cpu_pmu = armv8_pmuv3_pmu_init(); |
| break; |
| } |
| |
| if (cpu_pmu) { |
| pr_info("enabled with %s PMU driver, %d counters available\n", |
| cpu_pmu->name, cpu_pmu->num_events); |
| cpu_pmu_init(cpu_pmu); |
| armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW); |
| } else { |
| pr_info("no hardware support available\n"); |
| } |
| |
| return 0; |
| } |
| early_initcall(init_hw_perf_events); |
| |
| /* |
| * Callchain handling code. |
| */ |
| struct frame_tail { |
| struct frame_tail __user *fp; |
| unsigned long lr; |
| } __attribute__((packed)); |
| |
| /* |
| * Get the return address for a single stackframe and return a pointer to the |
| * next frame tail. |
| */ |
| static struct frame_tail __user * |
| user_backtrace(struct frame_tail __user *tail, |
| struct perf_callchain_entry *entry) |
| { |
| struct frame_tail buftail; |
| unsigned long err; |
| |
| /* Also check accessibility of one struct frame_tail beyond */ |
| if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) |
| return NULL; |
| |
| pagefault_disable(); |
| err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail)); |
| pagefault_enable(); |
| |
| if (err) |
| return NULL; |
| |
| perf_callchain_store(entry, buftail.lr); |
| |
| /* |
| * Frame pointers should strictly progress back up the stack |
| * (towards higher addresses). |
| */ |
| if (tail >= buftail.fp) |
| return NULL; |
| |
| return buftail.fp; |
| } |
| |
| void perf_callchain_user(struct perf_callchain_entry *entry, |
| struct pt_regs *regs) |
| { |
| struct frame_tail __user *tail; |
| |
| tail = (struct frame_tail __user *)regs->regs[29]; |
| |
| while (entry->nr < PERF_MAX_STACK_DEPTH && |
| tail && !((unsigned long)tail & 0xf)) |
| tail = user_backtrace(tail, entry); |
| } |
| |
| /* |
| * Gets called by walk_stackframe() for every stackframe. This will be called |
| * whist unwinding the stackframe and is like a subroutine return so we use |
| * the PC. |
| */ |
| static int callchain_trace(struct stackframe *frame, void *data) |
| { |
| struct perf_callchain_entry *entry = data; |
| perf_callchain_store(entry, frame->pc); |
| return 0; |
| } |
| |
| void perf_callchain_kernel(struct perf_callchain_entry *entry, |
| struct pt_regs *regs) |
| { |
| struct stackframe frame; |
| |
| frame.fp = regs->regs[29]; |
| frame.sp = regs->sp; |
| frame.pc = regs->pc; |
| walk_stackframe(&frame, callchain_trace, entry); |
| } |