| /* |
| * Intel SMP support routines. |
| * |
| * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> |
| * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com> |
| * (c) 2002,2003 Andi Kleen, SuSE Labs. |
| * |
| * This code is released under the GNU General Public License version 2 or |
| * later. |
| */ |
| |
| #include <linux/init.h> |
| |
| #include <linux/mm.h> |
| #include <linux/delay.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp_lock.h> |
| #include <linux/smp.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/mtrr.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mach_apic.h> |
| #include <asm/mmu_context.h> |
| #include <asm/proto.h> |
| #include <asm/apicdef.h> |
| |
| #define __cpuinit __init |
| |
| /* |
| * Smarter SMP flushing macros. |
| * c/o Linus Torvalds. |
| * |
| * These mean you can really definitely utterly forget about |
| * writing to user space from interrupts. (Its not allowed anyway). |
| * |
| * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| * |
| * More scalable flush, from Andi Kleen |
| * |
| * To avoid global state use 8 different call vectors. |
| * Each CPU uses a specific vector to trigger flushes on other |
| * CPUs. Depending on the received vector the target CPUs look into |
| * the right per cpu variable for the flush data. |
| * |
| * With more than 8 CPUs they are hashed to the 8 available |
| * vectors. The limited global vector space forces us to this right now. |
| * In future when interrupts are split into per CPU domains this could be |
| * fixed, at the cost of triggering multiple IPIs in some cases. |
| */ |
| |
| union smp_flush_state { |
| struct { |
| cpumask_t flush_cpumask; |
| struct mm_struct *flush_mm; |
| unsigned long flush_va; |
| #define FLUSH_ALL -1ULL |
| spinlock_t tlbstate_lock; |
| }; |
| char pad[SMP_CACHE_BYTES]; |
| } ____cacheline_aligned; |
| |
| /* State is put into the per CPU data section, but padded |
| to a full cache line because other CPUs can access it and we don't |
| want false sharing in the per cpu data segment. */ |
| static DEFINE_PER_CPU(union smp_flush_state, flush_state); |
| |
| /* |
| * We cannot call mmdrop() because we are in interrupt context, |
| * instead update mm->cpu_vm_mask. |
| */ |
| static inline void leave_mm(int cpu) |
| { |
| if (read_pda(mmu_state) == TLBSTATE_OK) |
| BUG(); |
| clear_bit(cpu, &read_pda(active_mm)->cpu_vm_mask); |
| load_cr3(swapper_pg_dir); |
| } |
| |
| /* |
| * |
| * The flush IPI assumes that a thread switch happens in this order: |
| * [cpu0: the cpu that switches] |
| * 1) switch_mm() either 1a) or 1b) |
| * 1a) thread switch to a different mm |
| * 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask); |
| * Stop ipi delivery for the old mm. This is not synchronized with |
| * the other cpus, but smp_invalidate_interrupt ignore flush ipis |
| * for the wrong mm, and in the worst case we perform a superfluous |
| * tlb flush. |
| * 1a2) set cpu mmu_state to TLBSTATE_OK |
| * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 |
| * was in lazy tlb mode. |
| * 1a3) update cpu active_mm |
| * Now cpu0 accepts tlb flushes for the new mm. |
| * 1a4) set_bit(cpu, &new_mm->cpu_vm_mask); |
| * Now the other cpus will send tlb flush ipis. |
| * 1a4) change cr3. |
| * 1b) thread switch without mm change |
| * cpu active_mm is correct, cpu0 already handles |
| * flush ipis. |
| * 1b1) set cpu mmu_state to TLBSTATE_OK |
| * 1b2) test_and_set the cpu bit in cpu_vm_mask. |
| * Atomically set the bit [other cpus will start sending flush ipis], |
| * and test the bit. |
| * 1b3) if the bit was 0: leave_mm was called, flush the tlb. |
| * 2) switch %%esp, ie current |
| * |
| * The interrupt must handle 2 special cases: |
| * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. |
| * - the cpu performs speculative tlb reads, i.e. even if the cpu only |
| * runs in kernel space, the cpu could load tlb entries for user space |
| * pages. |
| * |
| * The good news is that cpu mmu_state is local to each cpu, no |
| * write/read ordering problems. |
| */ |
| |
| /* |
| * TLB flush IPI: |
| * |
| * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. |
| * 2) Leave the mm if we are in the lazy tlb mode. |
| * |
| * Interrupts are disabled. |
| */ |
| |
| asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs) |
| { |
| int cpu; |
| int sender; |
| union smp_flush_state *f; |
| |
| cpu = smp_processor_id(); |
| /* |
| * orig_rax contains the interrupt vector - 256. |
| * Use that to determine where the sender put the data. |
| */ |
| sender = regs->orig_rax + 256 - INVALIDATE_TLB_VECTOR_START; |
| f = &per_cpu(flush_state, sender); |
| |
| if (!cpu_isset(cpu, f->flush_cpumask)) |
| goto out; |
| /* |
| * This was a BUG() but until someone can quote me the |
| * line from the intel manual that guarantees an IPI to |
| * multiple CPUs is retried _only_ on the erroring CPUs |
| * its staying as a return |
| * |
| * BUG(); |
| */ |
| |
| if (f->flush_mm == read_pda(active_mm)) { |
| if (read_pda(mmu_state) == TLBSTATE_OK) { |
| if (f->flush_va == FLUSH_ALL) |
| local_flush_tlb(); |
| else |
| __flush_tlb_one(f->flush_va); |
| } else |
| leave_mm(cpu); |
| } |
| out: |
| ack_APIC_irq(); |
| cpu_clear(cpu, f->flush_cpumask); |
| } |
| |
| static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm, |
| unsigned long va) |
| { |
| int sender; |
| union smp_flush_state *f; |
| |
| /* Caller has disabled preemption */ |
| sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS; |
| f = &per_cpu(flush_state, sender); |
| |
| /* Could avoid this lock when |
| num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is |
| probably not worth checking this for a cache-hot lock. */ |
| spin_lock(&f->tlbstate_lock); |
| |
| f->flush_mm = mm; |
| f->flush_va = va; |
| cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask); |
| |
| /* |
| * We have to send the IPI only to |
| * CPUs affected. |
| */ |
| send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender); |
| |
| while (!cpus_empty(f->flush_cpumask)) |
| cpu_relax(); |
| |
| f->flush_mm = NULL; |
| f->flush_va = 0; |
| spin_unlock(&f->tlbstate_lock); |
| } |
| |
| int __cpuinit init_smp_flush(void) |
| { |
| int i; |
| for_each_cpu_mask(i, cpu_possible_map) { |
| spin_lock_init(&per_cpu(flush_state.tlbstate_lock, i)); |
| } |
| return 0; |
| } |
| |
| core_initcall(init_smp_flush); |
| |
| void flush_tlb_current_task(void) |
| { |
| struct mm_struct *mm = current->mm; |
| cpumask_t cpu_mask; |
| |
| preempt_disable(); |
| cpu_mask = mm->cpu_vm_mask; |
| cpu_clear(smp_processor_id(), cpu_mask); |
| |
| local_flush_tlb(); |
| if (!cpus_empty(cpu_mask)) |
| flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| preempt_enable(); |
| } |
| |
| void flush_tlb_mm (struct mm_struct * mm) |
| { |
| cpumask_t cpu_mask; |
| |
| preempt_disable(); |
| cpu_mask = mm->cpu_vm_mask; |
| cpu_clear(smp_processor_id(), cpu_mask); |
| |
| if (current->active_mm == mm) { |
| if (current->mm) |
| local_flush_tlb(); |
| else |
| leave_mm(smp_processor_id()); |
| } |
| if (!cpus_empty(cpu_mask)) |
| flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| |
| preempt_enable(); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| cpumask_t cpu_mask; |
| |
| preempt_disable(); |
| cpu_mask = mm->cpu_vm_mask; |
| cpu_clear(smp_processor_id(), cpu_mask); |
| |
| if (current->active_mm == mm) { |
| if(current->mm) |
| __flush_tlb_one(va); |
| else |
| leave_mm(smp_processor_id()); |
| } |
| |
| if (!cpus_empty(cpu_mask)) |
| flush_tlb_others(cpu_mask, mm, va); |
| |
| preempt_enable(); |
| } |
| |
| static void do_flush_tlb_all(void* info) |
| { |
| unsigned long cpu = smp_processor_id(); |
| |
| __flush_tlb_all(); |
| if (read_pda(mmu_state) == TLBSTATE_LAZY) |
| leave_mm(cpu); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| on_each_cpu(do_flush_tlb_all, NULL, 1, 1); |
| } |
| |
| void smp_kdb_stop(void) |
| { |
| send_IPI_allbutself(KDB_VECTOR); |
| } |
| |
| /* |
| * this function sends a 'reschedule' IPI to another CPU. |
| * it goes straight through and wastes no time serializing |
| * anything. Worst case is that we lose a reschedule ... |
| */ |
| |
| void smp_send_reschedule(int cpu) |
| { |
| send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR); |
| } |
| |
| /* |
| * Structure and data for smp_call_function(). This is designed to minimise |
| * static memory requirements. It also looks cleaner. |
| */ |
| static DEFINE_SPINLOCK(call_lock); |
| |
| struct call_data_struct { |
| void (*func) (void *info); |
| void *info; |
| atomic_t started; |
| atomic_t finished; |
| int wait; |
| }; |
| |
| static struct call_data_struct * call_data; |
| |
| void lock_ipi_call_lock(void) |
| { |
| spin_lock_irq(&call_lock); |
| } |
| |
| void unlock_ipi_call_lock(void) |
| { |
| spin_unlock_irq(&call_lock); |
| } |
| |
| /* |
| * this function sends a 'generic call function' IPI to one other CPU |
| * in the system. |
| * |
| * cpu is a standard Linux logical CPU number. |
| */ |
| static void |
| __smp_call_function_single(int cpu, void (*func) (void *info), void *info, |
| int nonatomic, int wait) |
| { |
| struct call_data_struct data; |
| int cpus = 1; |
| |
| data.func = func; |
| data.info = info; |
| atomic_set(&data.started, 0); |
| data.wait = wait; |
| if (wait) |
| atomic_set(&data.finished, 0); |
| |
| call_data = &data; |
| wmb(); |
| /* Send a message to all other CPUs and wait for them to respond */ |
| send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR); |
| |
| /* Wait for response */ |
| while (atomic_read(&data.started) != cpus) |
| cpu_relax(); |
| |
| if (!wait) |
| return; |
| |
| while (atomic_read(&data.finished) != cpus) |
| cpu_relax(); |
| } |
| |
| /* |
| * smp_call_function_single - Run a function on another CPU |
| * @func: The function to run. This must be fast and non-blocking. |
| * @info: An arbitrary pointer to pass to the function. |
| * @nonatomic: Currently unused. |
| * @wait: If true, wait until function has completed on other CPUs. |
| * |
| * Retrurns 0 on success, else a negative status code. |
| * |
| * Does not return until the remote CPU is nearly ready to execute <func> |
| * or is or has executed. |
| */ |
| |
| int smp_call_function_single (int cpu, void (*func) (void *info), void *info, |
| int nonatomic, int wait) |
| { |
| /* prevent preemption and reschedule on another processor */ |
| int me = get_cpu(); |
| if (cpu == me) { |
| WARN_ON(1); |
| put_cpu(); |
| return -EBUSY; |
| } |
| spin_lock_bh(&call_lock); |
| __smp_call_function_single(cpu, func, info, nonatomic, wait); |
| spin_unlock_bh(&call_lock); |
| put_cpu(); |
| return 0; |
| } |
| |
| /* |
| * this function sends a 'generic call function' IPI to all other CPUs |
| * in the system. |
| */ |
| static void __smp_call_function (void (*func) (void *info), void *info, |
| int nonatomic, int wait) |
| { |
| struct call_data_struct data; |
| int cpus = num_online_cpus()-1; |
| |
| if (!cpus) |
| return; |
| |
| data.func = func; |
| data.info = info; |
| atomic_set(&data.started, 0); |
| data.wait = wait; |
| if (wait) |
| atomic_set(&data.finished, 0); |
| |
| call_data = &data; |
| wmb(); |
| /* Send a message to all other CPUs and wait for them to respond */ |
| send_IPI_allbutself(CALL_FUNCTION_VECTOR); |
| |
| /* Wait for response */ |
| while (atomic_read(&data.started) != cpus) |
| cpu_relax(); |
| |
| if (!wait) |
| return; |
| |
| while (atomic_read(&data.finished) != cpus) |
| cpu_relax(); |
| } |
| |
| /* |
| * smp_call_function - run a function on all other CPUs. |
| * @func: The function to run. This must be fast and non-blocking. |
| * @info: An arbitrary pointer to pass to the function. |
| * @nonatomic: currently unused. |
| * @wait: If true, wait (atomically) until function has completed on other |
| * CPUs. |
| * |
| * Returns 0 on success, else a negative status code. Does not return until |
| * remote CPUs are nearly ready to execute func or are or have executed. |
| * |
| * You must not call this function with disabled interrupts or from a |
| * hardware interrupt handler or from a bottom half handler. |
| * Actually there are a few legal cases, like panic. |
| */ |
| int smp_call_function (void (*func) (void *info), void *info, int nonatomic, |
| int wait) |
| { |
| spin_lock(&call_lock); |
| __smp_call_function(func,info,nonatomic,wait); |
| spin_unlock(&call_lock); |
| return 0; |
| } |
| |
| void smp_stop_cpu(void) |
| { |
| /* |
| * Remove this CPU: |
| */ |
| cpu_clear(smp_processor_id(), cpu_online_map); |
| local_irq_disable(); |
| disable_local_APIC(); |
| local_irq_enable(); |
| } |
| |
| static void smp_really_stop_cpu(void *dummy) |
| { |
| smp_stop_cpu(); |
| for (;;) |
| asm("hlt"); |
| } |
| |
| void smp_send_stop(void) |
| { |
| int nolock = 0; |
| if (reboot_force) |
| return; |
| /* Don't deadlock on the call lock in panic */ |
| if (!spin_trylock(&call_lock)) { |
| /* ignore locking because we have paniced anyways */ |
| nolock = 1; |
| } |
| __smp_call_function(smp_really_stop_cpu, NULL, 0, 0); |
| if (!nolock) |
| spin_unlock(&call_lock); |
| |
| local_irq_disable(); |
| disable_local_APIC(); |
| local_irq_enable(); |
| } |
| |
| /* |
| * Reschedule call back. Nothing to do, |
| * all the work is done automatically when |
| * we return from the interrupt. |
| */ |
| asmlinkage void smp_reschedule_interrupt(void) |
| { |
| ack_APIC_irq(); |
| } |
| |
| asmlinkage void smp_call_function_interrupt(void) |
| { |
| void (*func) (void *info) = call_data->func; |
| void *info = call_data->info; |
| int wait = call_data->wait; |
| |
| ack_APIC_irq(); |
| /* |
| * Notify initiating CPU that I've grabbed the data and am |
| * about to execute the function |
| */ |
| mb(); |
| atomic_inc(&call_data->started); |
| /* |
| * At this point the info structure may be out of scope unless wait==1 |
| */ |
| irq_enter(); |
| (*func)(info); |
| irq_exit(); |
| if (wait) { |
| mb(); |
| atomic_inc(&call_data->finished); |
| } |
| } |
| |
| int safe_smp_processor_id(void) |
| { |
| int apicid, i; |
| |
| if (disable_apic) |
| return 0; |
| |
| apicid = hard_smp_processor_id(); |
| if (x86_cpu_to_apicid[apicid] == apicid) |
| return apicid; |
| |
| for (i = 0; i < NR_CPUS; ++i) { |
| if (x86_cpu_to_apicid[i] == apicid) |
| return i; |
| } |
| |
| /* No entries in x86_cpu_to_apicid? Either no MPS|ACPI, |
| * or called too early. Either way, we must be CPU 0. */ |
| if (x86_cpu_to_apicid[0] == BAD_APICID) |
| return 0; |
| |
| return 0; /* Should not happen */ |
| } |