| /* |
| * cx18 ADEC audio functions |
| * |
| * Derived from cx25840-audio.c |
| * |
| * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| */ |
| |
| #include "cx18-driver.h" |
| |
| static int set_audclk_freq(struct cx18 *cx, u32 freq) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| |
| if (freq != 32000 && freq != 44100 && freq != 48000) |
| return -EINVAL; |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x10 */ |
| cx18_av_write(cx, 0x127, 0x50); |
| |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| switch (freq) { |
| case 32000: |
| /* VID_PLL and AUX_PLL */ |
| cx18_av_write4(cx, 0x108, 0x1408040f); |
| |
| /* AUX_PLL_FRAC */ |
| /* 0x8.9504318a * 28,636,363.636 / 0x14 = 32000 * 384 */ |
| cx18_av_write4(cx, 0x110, 0x012a0863); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.f77f = (4 * 15734.26) / 32000 */ |
| cx18_av_write4(cx, 0x900, 0x0801f77f); |
| cx18_av_write4(cx, 0x904, 0x0801f77f); |
| cx18_av_write4(cx, 0x90c, 0x0801f77f); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */ |
| cx18_av_write(cx, 0x127, 0x54); |
| |
| /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11202fff); |
| |
| /* |
| * EN_AV_LOCK = 1 |
| * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = |
| * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa10d2ef8); |
| break; |
| |
| case 44100: |
| /* VID_PLL and AUX_PLL */ |
| cx18_av_write4(cx, 0x108, 0x1009040f); |
| |
| /* AUX_PLL_FRAC */ |
| /* 0x9.7635e7 * 28,636,363.63 / 0x10 = 44100 * 384 */ |
| cx18_av_write4(cx, 0x110, 0x00ec6bce); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.6d59 = (4 * 15734.26) / 44100 */ |
| cx18_av_write4(cx, 0x900, 0x08016d59); |
| cx18_av_write4(cx, 0x904, 0x08016d59); |
| cx18_av_write4(cx, 0x90c, 0x08016d59); |
| |
| /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x112092ff); |
| |
| /* |
| * EN_AV_LOCK = 1 |
| * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = |
| * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa11d4bf8); |
| break; |
| |
| case 48000: |
| /* VID_PLL and AUX_PLL */ |
| cx18_av_write4(cx, 0x108, 0x100a040f); |
| |
| /* AUX_PLL_FRAC */ |
| /* 0xa.4c6b6ea * 28,636,363.63 / 0x10 = 48000 * 384 */ |
| cx18_av_write4(cx, 0x110, 0x0098d6dd); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.4faa = (4 * 15734.26) / 48000 */ |
| cx18_av_write4(cx, 0x900, 0x08014faa); |
| cx18_av_write4(cx, 0x904, 0x08014faa); |
| cx18_av_write4(cx, 0x90c, 0x08014faa); |
| |
| /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11205fff); |
| |
| /* |
| * EN_AV_LOCK = 1 |
| * VID_COUNT = 0x1193f8 = 143999.000 * 8 = |
| * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa11193f8); |
| break; |
| } |
| } else { |
| switch (freq) { |
| case 32000: |
| /* VID_PLL and AUX_PLL */ |
| cx18_av_write4(cx, 0x108, 0x1e08040f); |
| |
| /* AUX_PLL_FRAC */ |
| /* 0x8.9504318 * 28,636,363.63 / 0x1e = 32000 * 256 */ |
| cx18_av_write4(cx, 0x110, 0x012a0863); |
| |
| /* src1_ctl */ |
| /* 0x1.0000 = 32000/32000 */ |
| cx18_av_write4(cx, 0x8f8, 0x08010000); |
| |
| /* src3/4/6_ctl */ |
| /* 0x2.0000 = 2 * (32000/32000) */ |
| cx18_av_write4(cx, 0x900, 0x08020000); |
| cx18_av_write4(cx, 0x904, 0x08020000); |
| cx18_av_write4(cx, 0x90c, 0x08020000); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */ |
| cx18_av_write(cx, 0x127, 0x54); |
| |
| /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11201fff); |
| |
| /* |
| * EN_AV_LOCK = 1 |
| * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = |
| * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa10d2ef8); |
| break; |
| |
| case 44100: |
| /* VID_PLL and AUX_PLL */ |
| cx18_av_write4(cx, 0x108, 0x1809040f); |
| |
| /* AUX_PLL_FRAC */ |
| /* 0x9.7635e74 * 28,636,363.63 / 0x18 = 44100 * 256 */ |
| cx18_av_write4(cx, 0x110, 0x00ec6bce); |
| |
| /* src1_ctl */ |
| /* 0x1.60cd = 44100/32000 */ |
| cx18_av_write4(cx, 0x8f8, 0x080160cd); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.7385 = 2 * (32000/44100) */ |
| cx18_av_write4(cx, 0x900, 0x08017385); |
| cx18_av_write4(cx, 0x904, 0x08017385); |
| cx18_av_write4(cx, 0x90c, 0x08017385); |
| |
| /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x112061ff); |
| |
| /* |
| * EN_AV_LOCK = 1 |
| * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = |
| * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa11d4bf8); |
| break; |
| |
| case 48000: |
| /* VID_PLL and AUX_PLL */ |
| cx18_av_write4(cx, 0x108, 0x180a040f); |
| |
| /* AUX_PLL_FRAC */ |
| /* 0xa.4c6b6ea * 28,636,363.63 / 0x18 = 48000 * 256 */ |
| cx18_av_write4(cx, 0x110, 0x0098d6dd); |
| |
| /* src1_ctl */ |
| /* 0x1.8000 = 48000/32000 */ |
| cx18_av_write4(cx, 0x8f8, 0x08018000); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.5555 = 2 * (32000/48000) */ |
| cx18_av_write4(cx, 0x900, 0x08015555); |
| cx18_av_write4(cx, 0x904, 0x08015555); |
| cx18_av_write4(cx, 0x90c, 0x08015555); |
| |
| /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11203fff); |
| |
| /* |
| * EN_AV_LOCK = 1 |
| * VID_COUNT = 0x1193f8 = 143999.000 * 8 = |
| * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa11193f8); |
| break; |
| } |
| } |
| |
| state->audclk_freq = freq; |
| |
| return 0; |
| } |
| |
| void cx18_av_audio_set_path(struct cx18 *cx) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| |
| /* stop microcontroller */ |
| cx18_av_and_or(cx, 0x803, ~0x10, 0); |
| |
| /* assert soft reset */ |
| cx18_av_and_or(cx, 0x810, ~0x1, 0x01); |
| |
| /* Mute everything to prevent the PFFT! */ |
| cx18_av_write(cx, 0x8d3, 0x1f); |
| |
| if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) { |
| /* Set Path1 to Serial Audio Input */ |
| cx18_av_write4(cx, 0x8d0, 0x01011012); |
| |
| /* The microcontroller should not be started for the |
| * non-tuner inputs: autodetection is specific for |
| * TV audio. */ |
| } else { |
| /* Set Path1 to Analog Demod Main Channel */ |
| cx18_av_write4(cx, 0x8d0, 0x1f063870); |
| } |
| |
| set_audclk_freq(cx, state->audclk_freq); |
| |
| /* deassert soft reset */ |
| cx18_av_and_or(cx, 0x810, ~0x1, 0x00); |
| |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| /* When the microcontroller detects the |
| * audio format, it will unmute the lines */ |
| cx18_av_and_or(cx, 0x803, ~0x10, 0x10); |
| } |
| } |
| |
| static int get_volume(struct cx18 *cx) |
| { |
| /* Volume runs +18dB to -96dB in 1/2dB steps |
| * change to fit the msp3400 -114dB to +12dB range */ |
| |
| /* check PATH1_VOLUME */ |
| int vol = 228 - cx18_av_read(cx, 0x8d4); |
| vol = (vol / 2) + 23; |
| return vol << 9; |
| } |
| |
| static void set_volume(struct cx18 *cx, int volume) |
| { |
| /* First convert the volume to msp3400 values (0-127) */ |
| int vol = volume >> 9; |
| /* now scale it up to cx18_av values |
| * -114dB to -96dB maps to 0 |
| * this should be 19, but in my testing that was 4dB too loud */ |
| if (vol <= 23) |
| vol = 0; |
| else |
| vol -= 23; |
| |
| /* PATH1_VOLUME */ |
| cx18_av_write(cx, 0x8d4, 228 - (vol * 2)); |
| } |
| |
| static int get_bass(struct cx18 *cx) |
| { |
| /* bass is 49 steps +12dB to -12dB */ |
| |
| /* check PATH1_EQ_BASS_VOL */ |
| int bass = cx18_av_read(cx, 0x8d9) & 0x3f; |
| bass = (((48 - bass) * 0xffff) + 47) / 48; |
| return bass; |
| } |
| |
| static void set_bass(struct cx18 *cx, int bass) |
| { |
| /* PATH1_EQ_BASS_VOL */ |
| cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff)); |
| } |
| |
| static int get_treble(struct cx18 *cx) |
| { |
| /* treble is 49 steps +12dB to -12dB */ |
| |
| /* check PATH1_EQ_TREBLE_VOL */ |
| int treble = cx18_av_read(cx, 0x8db) & 0x3f; |
| treble = (((48 - treble) * 0xffff) + 47) / 48; |
| return treble; |
| } |
| |
| static void set_treble(struct cx18 *cx, int treble) |
| { |
| /* PATH1_EQ_TREBLE_VOL */ |
| cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff)); |
| } |
| |
| static int get_balance(struct cx18 *cx) |
| { |
| /* balance is 7 bit, 0 to -96dB */ |
| |
| /* check PATH1_BAL_LEVEL */ |
| int balance = cx18_av_read(cx, 0x8d5) & 0x7f; |
| /* check PATH1_BAL_LEFT */ |
| if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0) |
| balance = 0x80 - balance; |
| else |
| balance = 0x80 + balance; |
| return balance << 8; |
| } |
| |
| static void set_balance(struct cx18 *cx, int balance) |
| { |
| int bal = balance >> 8; |
| if (bal > 0x80) { |
| /* PATH1_BAL_LEFT */ |
| cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80); |
| /* PATH1_BAL_LEVEL */ |
| cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f); |
| } else { |
| /* PATH1_BAL_LEFT */ |
| cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00); |
| /* PATH1_BAL_LEVEL */ |
| cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal); |
| } |
| } |
| |
| static int get_mute(struct cx18 *cx) |
| { |
| /* check SRC1_MUTE_EN */ |
| return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0; |
| } |
| |
| static void set_mute(struct cx18 *cx, int mute) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| /* Must turn off microcontroller in order to mute sound. |
| * Not sure if this is the best method, but it does work. |
| * If the microcontroller is running, then it will undo any |
| * changes to the mute register. */ |
| if (mute) { |
| /* disable microcontroller */ |
| cx18_av_and_or(cx, 0x803, ~0x10, 0x00); |
| cx18_av_write(cx, 0x8d3, 0x1f); |
| } else { |
| /* enable microcontroller */ |
| cx18_av_and_or(cx, 0x803, ~0x10, 0x10); |
| } |
| } else { |
| /* SRC1_MUTE_EN */ |
| cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00); |
| } |
| } |
| |
| int cx18_av_audio(struct cx18 *cx, unsigned int cmd, void *arg) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| struct v4l2_control *ctrl = arg; |
| int retval; |
| |
| switch (cmd) { |
| case VIDIOC_INT_AUDIO_CLOCK_FREQ: |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| cx18_av_and_or(cx, 0x803, ~0x10, 0); |
| cx18_av_write(cx, 0x8d3, 0x1f); |
| } |
| cx18_av_and_or(cx, 0x810, ~0x1, 1); |
| retval = set_audclk_freq(cx, *(u32 *)arg); |
| cx18_av_and_or(cx, 0x810, ~0x1, 0); |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) |
| cx18_av_and_or(cx, 0x803, ~0x10, 0x10); |
| return retval; |
| |
| case VIDIOC_G_CTRL: |
| switch (ctrl->id) { |
| case V4L2_CID_AUDIO_VOLUME: |
| ctrl->value = get_volume(cx); |
| break; |
| case V4L2_CID_AUDIO_BASS: |
| ctrl->value = get_bass(cx); |
| break; |
| case V4L2_CID_AUDIO_TREBLE: |
| ctrl->value = get_treble(cx); |
| break; |
| case V4L2_CID_AUDIO_BALANCE: |
| ctrl->value = get_balance(cx); |
| break; |
| case V4L2_CID_AUDIO_MUTE: |
| ctrl->value = get_mute(cx); |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| |
| case VIDIOC_S_CTRL: |
| switch (ctrl->id) { |
| case V4L2_CID_AUDIO_VOLUME: |
| set_volume(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_BASS: |
| set_bass(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_TREBLE: |
| set_treble(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_BALANCE: |
| set_balance(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_MUTE: |
| set_mute(cx, ctrl->value); |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |