| /* |
| * linux/arch/arm/mm/mm-armv.c |
| * |
| * Copyright (C) 1998-2005 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Page table sludge for ARM v3 and v4 processor architectures. |
| */ |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/nodemask.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/page.h> |
| #include <asm/setup.h> |
| #include <asm/tlbflush.h> |
| |
| #include <asm/mach/map.h> |
| |
| #define CPOLICY_UNCACHED 0 |
| #define CPOLICY_BUFFERED 1 |
| #define CPOLICY_WRITETHROUGH 2 |
| #define CPOLICY_WRITEBACK 3 |
| #define CPOLICY_WRITEALLOC 4 |
| |
| static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; |
| static unsigned int ecc_mask __initdata = 0; |
| pgprot_t pgprot_kernel; |
| |
| EXPORT_SYMBOL(pgprot_kernel); |
| |
| pmd_t *top_pmd; |
| |
| struct cachepolicy { |
| const char policy[16]; |
| unsigned int cr_mask; |
| unsigned int pmd; |
| unsigned int pte; |
| }; |
| |
| static struct cachepolicy cache_policies[] __initdata = { |
| { |
| .policy = "uncached", |
| .cr_mask = CR_W|CR_C, |
| .pmd = PMD_SECT_UNCACHED, |
| .pte = 0, |
| }, { |
| .policy = "buffered", |
| .cr_mask = CR_C, |
| .pmd = PMD_SECT_BUFFERED, |
| .pte = PTE_BUFFERABLE, |
| }, { |
| .policy = "writethrough", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WT, |
| .pte = PTE_CACHEABLE, |
| }, { |
| .policy = "writeback", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WB, |
| .pte = PTE_BUFFERABLE|PTE_CACHEABLE, |
| }, { |
| .policy = "writealloc", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WBWA, |
| .pte = PTE_BUFFERABLE|PTE_CACHEABLE, |
| } |
| }; |
| |
| /* |
| * These are useful for identifing cache coherency |
| * problems by allowing the cache or the cache and |
| * writebuffer to be turned off. (Note: the write |
| * buffer should not be on and the cache off). |
| */ |
| static void __init early_cachepolicy(char **p) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { |
| int len = strlen(cache_policies[i].policy); |
| |
| if (memcmp(*p, cache_policies[i].policy, len) == 0) { |
| cachepolicy = i; |
| cr_alignment &= ~cache_policies[i].cr_mask; |
| cr_no_alignment &= ~cache_policies[i].cr_mask; |
| *p += len; |
| break; |
| } |
| } |
| if (i == ARRAY_SIZE(cache_policies)) |
| printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); |
| flush_cache_all(); |
| set_cr(cr_alignment); |
| } |
| |
| static void __init early_nocache(char **__unused) |
| { |
| char *p = "buffered"; |
| printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); |
| early_cachepolicy(&p); |
| } |
| |
| static void __init early_nowrite(char **__unused) |
| { |
| char *p = "uncached"; |
| printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); |
| early_cachepolicy(&p); |
| } |
| |
| static void __init early_ecc(char **p) |
| { |
| if (memcmp(*p, "on", 2) == 0) { |
| ecc_mask = PMD_PROTECTION; |
| *p += 2; |
| } else if (memcmp(*p, "off", 3) == 0) { |
| ecc_mask = 0; |
| *p += 3; |
| } |
| } |
| |
| __early_param("nocache", early_nocache); |
| __early_param("nowb", early_nowrite); |
| __early_param("cachepolicy=", early_cachepolicy); |
| __early_param("ecc=", early_ecc); |
| |
| static int __init noalign_setup(char *__unused) |
| { |
| cr_alignment &= ~CR_A; |
| cr_no_alignment &= ~CR_A; |
| set_cr(cr_alignment); |
| return 1; |
| } |
| |
| __setup("noalign", noalign_setup); |
| |
| #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD) |
| |
| static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt) |
| { |
| return pmd_offset(pgd, virt); |
| } |
| |
| static inline pmd_t *pmd_off_k(unsigned long virt) |
| { |
| return pmd_off(pgd_offset_k(virt), virt); |
| } |
| |
| /* |
| * need to get a 16k page for level 1 |
| */ |
| pgd_t *get_pgd_slow(struct mm_struct *mm) |
| { |
| pgd_t *new_pgd, *init_pgd; |
| pmd_t *new_pmd, *init_pmd; |
| pte_t *new_pte, *init_pte; |
| |
| new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2); |
| if (!new_pgd) |
| goto no_pgd; |
| |
| memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t)); |
| |
| /* |
| * Copy over the kernel and IO PGD entries |
| */ |
| init_pgd = pgd_offset_k(0); |
| memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR, |
| (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t)); |
| |
| clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t)); |
| |
| if (!vectors_high()) { |
| /* |
| * On ARM, first page must always be allocated since it |
| * contains the machine vectors. |
| */ |
| new_pmd = pmd_alloc(mm, new_pgd, 0); |
| if (!new_pmd) |
| goto no_pmd; |
| |
| new_pte = pte_alloc_map(mm, new_pmd, 0); |
| if (!new_pte) |
| goto no_pte; |
| |
| init_pmd = pmd_offset(init_pgd, 0); |
| init_pte = pte_offset_map_nested(init_pmd, 0); |
| set_pte(new_pte, *init_pte); |
| pte_unmap_nested(init_pte); |
| pte_unmap(new_pte); |
| } |
| |
| return new_pgd; |
| |
| no_pte: |
| pmd_free(new_pmd); |
| no_pmd: |
| free_pages((unsigned long)new_pgd, 2); |
| no_pgd: |
| return NULL; |
| } |
| |
| void free_pgd_slow(pgd_t *pgd) |
| { |
| pmd_t *pmd; |
| struct page *pte; |
| |
| if (!pgd) |
| return; |
| |
| /* pgd is always present and good */ |
| pmd = pmd_off(pgd, 0); |
| if (pmd_none(*pmd)) |
| goto free; |
| if (pmd_bad(*pmd)) { |
| pmd_ERROR(*pmd); |
| pmd_clear(pmd); |
| goto free; |
| } |
| |
| pte = pmd_page(*pmd); |
| pmd_clear(pmd); |
| dec_zone_page_state(virt_to_page((unsigned long *)pgd), NR_PAGETABLE); |
| pte_lock_deinit(pte); |
| pte_free(pte); |
| pmd_free(pmd); |
| free: |
| free_pages((unsigned long) pgd, 2); |
| } |
| |
| /* |
| * Create a SECTION PGD between VIRT and PHYS in domain |
| * DOMAIN with protection PROT. This operates on half- |
| * pgdir entry increments. |
| */ |
| static inline void |
| alloc_init_section(unsigned long virt, unsigned long phys, int prot) |
| { |
| pmd_t *pmdp = pmd_off_k(virt); |
| |
| if (virt & (1 << 20)) |
| pmdp++; |
| |
| *pmdp = __pmd(phys | prot); |
| flush_pmd_entry(pmdp); |
| } |
| |
| /* |
| * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT |
| */ |
| static inline void |
| alloc_init_supersection(unsigned long virt, unsigned long phys, int prot) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i += 1) { |
| alloc_init_section(virt, phys, prot | PMD_SECT_SUPER); |
| |
| virt += (PGDIR_SIZE / 2); |
| } |
| } |
| |
| /* |
| * Add a PAGE mapping between VIRT and PHYS in domain |
| * DOMAIN with protection PROT. Note that due to the |
| * way we map the PTEs, we must allocate two PTE_SIZE'd |
| * blocks - one for the Linux pte table, and one for |
| * the hardware pte table. |
| */ |
| static inline void |
| alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot) |
| { |
| pmd_t *pmdp = pmd_off_k(virt); |
| pte_t *ptep; |
| |
| if (pmd_none(*pmdp)) { |
| ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * |
| sizeof(pte_t)); |
| |
| __pmd_populate(pmdp, __pa(ptep) | prot_l1); |
| } |
| ptep = pte_offset_kernel(pmdp, virt); |
| |
| set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); |
| } |
| |
| struct mem_types { |
| unsigned int prot_pte; |
| unsigned int prot_l1; |
| unsigned int prot_sect; |
| unsigned int domain; |
| }; |
| |
| static struct mem_types mem_types[] __initdata = { |
| [MT_DEVICE] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_WRITE, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | |
| PMD_SECT_AP_WRITE, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_CACHECLEAN] = { |
| .prot_sect = PMD_TYPE_SECT, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MINICLEAN] = { |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_LOW_VECTORS] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_EXEC, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_USER, |
| }, |
| [MT_HIGH_VECTORS] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_USER | L_PTE_EXEC, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_USER, |
| }, |
| [MT_MEMORY] = { |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_ROM] = { |
| .prot_sect = PMD_TYPE_SECT, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */ |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_WRITE, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | |
| PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE | |
| PMD_SECT_TEX(1), |
| .domain = DOMAIN_IO, |
| }, |
| [MT_NONSHARED_DEVICE] = { |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_NONSHARED_DEV | |
| PMD_SECT_AP_WRITE, |
| .domain = DOMAIN_IO, |
| } |
| }; |
| |
| /* |
| * Adjust the PMD section entries according to the CPU in use. |
| */ |
| void __init build_mem_type_table(void) |
| { |
| struct cachepolicy *cp; |
| unsigned int cr = get_cr(); |
| unsigned int user_pgprot, kern_pgprot; |
| int cpu_arch = cpu_architecture(); |
| int i; |
| |
| #if defined(CONFIG_CPU_DCACHE_DISABLE) |
| if (cachepolicy > CPOLICY_BUFFERED) |
| cachepolicy = CPOLICY_BUFFERED; |
| #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) |
| if (cachepolicy > CPOLICY_WRITETHROUGH) |
| cachepolicy = CPOLICY_WRITETHROUGH; |
| #endif |
| if (cpu_arch < CPU_ARCH_ARMv5) { |
| if (cachepolicy >= CPOLICY_WRITEALLOC) |
| cachepolicy = CPOLICY_WRITEBACK; |
| ecc_mask = 0; |
| } |
| |
| if (cpu_arch <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) { |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| if (mem_types[i].prot_l1) |
| mem_types[i].prot_l1 |= PMD_BIT4; |
| if (mem_types[i].prot_sect) |
| mem_types[i].prot_sect |= PMD_BIT4; |
| } |
| } |
| |
| cp = &cache_policies[cachepolicy]; |
| kern_pgprot = user_pgprot = cp->pte; |
| |
| /* |
| * Enable CPU-specific coherency if supported. |
| * (Only available on XSC3 at the moment.) |
| */ |
| if (arch_is_coherent()) { |
| if (cpu_is_xsc3()) { |
| mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; |
| mem_types[MT_MEMORY].prot_pte |= L_PTE_COHERENT; |
| } |
| } |
| |
| /* |
| * ARMv6 and above have extended page tables. |
| */ |
| if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { |
| /* |
| * bit 4 becomes XN which we must clear for the |
| * kernel memory mapping. |
| */ |
| mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4; |
| mem_types[MT_ROM].prot_sect &= ~PMD_BIT4; |
| |
| /* |
| * Mark cache clean areas and XIP ROM read only |
| * from SVC mode and no access from userspace. |
| */ |
| mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| |
| /* |
| * Mark the device area as "shared device" |
| */ |
| mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE; |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; |
| |
| /* |
| * User pages need to be mapped with the ASID |
| * (iow, non-global) |
| */ |
| user_pgprot |= L_PTE_ASID; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Mark memory with the "shared" attribute for SMP systems |
| */ |
| user_pgprot |= L_PTE_SHARED; |
| kern_pgprot |= L_PTE_SHARED; |
| mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; |
| #endif |
| } |
| |
| for (i = 0; i < 16; i++) { |
| unsigned long v = pgprot_val(protection_map[i]); |
| v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot; |
| protection_map[i] = __pgprot(v); |
| } |
| |
| mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot; |
| mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot; |
| |
| if (cpu_arch >= CPU_ARCH_ARMv5) { |
| #ifndef CONFIG_SMP |
| /* |
| * Only use write-through for non-SMP systems |
| */ |
| mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE; |
| mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE; |
| #endif |
| } else { |
| mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1); |
| } |
| |
| pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | |
| L_PTE_DIRTY | L_PTE_WRITE | |
| L_PTE_EXEC | kern_pgprot); |
| |
| mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; |
| mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; |
| mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; |
| mem_types[MT_ROM].prot_sect |= cp->pmd; |
| |
| switch (cp->pmd) { |
| case PMD_SECT_WT: |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; |
| break; |
| case PMD_SECT_WB: |
| case PMD_SECT_WBWA: |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; |
| break; |
| } |
| printk("Memory policy: ECC %sabled, Data cache %s\n", |
| ecc_mask ? "en" : "dis", cp->policy); |
| } |
| |
| #define vectors_base() (vectors_high() ? 0xffff0000 : 0) |
| |
| /* |
| * Create the page directory entries and any necessary |
| * page tables for the mapping specified by `md'. We |
| * are able to cope here with varying sizes and address |
| * offsets, and we take full advantage of sections and |
| * supersections. |
| */ |
| void __init create_mapping(struct map_desc *md) |
| { |
| unsigned long virt, length; |
| int prot_sect, prot_l1, domain; |
| pgprot_t prot_pte; |
| unsigned long off = (u32)__pfn_to_phys(md->pfn); |
| |
| if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { |
| printk(KERN_WARNING "BUG: not creating mapping for " |
| "0x%08llx at 0x%08lx in user region\n", |
| __pfn_to_phys((u64)md->pfn), md->virtual); |
| return; |
| } |
| |
| if ((md->type == MT_DEVICE || md->type == MT_ROM) && |
| md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { |
| printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " |
| "overlaps vmalloc space\n", |
| __pfn_to_phys((u64)md->pfn), md->virtual); |
| } |
| |
| domain = mem_types[md->type].domain; |
| prot_pte = __pgprot(mem_types[md->type].prot_pte); |
| prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain); |
| prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain); |
| |
| /* |
| * Catch 36-bit addresses |
| */ |
| if(md->pfn >= 0x100000) { |
| if(domain) { |
| printk(KERN_ERR "MM: invalid domain in supersection " |
| "mapping for 0x%08llx at 0x%08lx\n", |
| __pfn_to_phys((u64)md->pfn), md->virtual); |
| return; |
| } |
| if((md->virtual | md->length | __pfn_to_phys(md->pfn)) |
| & ~SUPERSECTION_MASK) { |
| printk(KERN_ERR "MM: cannot create mapping for " |
| "0x%08llx at 0x%08lx invalid alignment\n", |
| __pfn_to_phys((u64)md->pfn), md->virtual); |
| return; |
| } |
| |
| /* |
| * Shift bits [35:32] of address into bits [23:20] of PMD |
| * (See ARMv6 spec). |
| */ |
| off |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); |
| } |
| |
| virt = md->virtual; |
| off -= virt; |
| length = md->length; |
| |
| if (mem_types[md->type].prot_l1 == 0 && |
| (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) { |
| printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " |
| "be mapped using pages, ignoring.\n", |
| __pfn_to_phys(md->pfn), md->virtual); |
| return; |
| } |
| |
| while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) { |
| alloc_init_page(virt, virt + off, prot_l1, prot_pte); |
| |
| virt += PAGE_SIZE; |
| length -= PAGE_SIZE; |
| } |
| |
| /* N.B. ARMv6 supersections are only defined to work with domain 0. |
| * Since domain assignments can in fact be arbitrary, the |
| * 'domain == 0' check below is required to insure that ARMv6 |
| * supersections are only allocated for domain 0 regardless |
| * of the actual domain assignments in use. |
| */ |
| if ((cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3()) |
| && domain == 0) { |
| /* |
| * Align to supersection boundary if !high pages. |
| * High pages have already been checked for proper |
| * alignment above and they will fail the SUPSERSECTION_MASK |
| * check because of the way the address is encoded into |
| * offset. |
| */ |
| if (md->pfn <= 0x100000) { |
| while ((virt & ~SUPERSECTION_MASK || |
| (virt + off) & ~SUPERSECTION_MASK) && |
| length >= (PGDIR_SIZE / 2)) { |
| alloc_init_section(virt, virt + off, prot_sect); |
| |
| virt += (PGDIR_SIZE / 2); |
| length -= (PGDIR_SIZE / 2); |
| } |
| } |
| |
| while (length >= SUPERSECTION_SIZE) { |
| alloc_init_supersection(virt, virt + off, prot_sect); |
| |
| virt += SUPERSECTION_SIZE; |
| length -= SUPERSECTION_SIZE; |
| } |
| } |
| |
| /* |
| * A section mapping covers half a "pgdir" entry. |
| */ |
| while (length >= (PGDIR_SIZE / 2)) { |
| alloc_init_section(virt, virt + off, prot_sect); |
| |
| virt += (PGDIR_SIZE / 2); |
| length -= (PGDIR_SIZE / 2); |
| } |
| |
| while (length >= PAGE_SIZE) { |
| alloc_init_page(virt, virt + off, prot_l1, prot_pte); |
| |
| virt += PAGE_SIZE; |
| length -= PAGE_SIZE; |
| } |
| } |
| |
| /* |
| * In order to soft-boot, we need to insert a 1:1 mapping in place of |
| * the user-mode pages. This will then ensure that we have predictable |
| * results when turning the mmu off |
| */ |
| void setup_mm_for_reboot(char mode) |
| { |
| unsigned long base_pmdval; |
| pgd_t *pgd; |
| int i; |
| |
| if (current->mm && current->mm->pgd) |
| pgd = current->mm->pgd; |
| else |
| pgd = init_mm.pgd; |
| |
| base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; |
| if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) |
| base_pmdval |= PMD_BIT4; |
| |
| for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { |
| unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; |
| pmd_t *pmd; |
| |
| pmd = pmd_off(pgd, i << PGDIR_SHIFT); |
| pmd[0] = __pmd(pmdval); |
| pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); |
| flush_pmd_entry(pmd); |
| } |
| } |
| |
| /* |
| * Create the architecture specific mappings |
| */ |
| void __init iotable_init(struct map_desc *io_desc, int nr) |
| { |
| int i; |
| |
| for (i = 0; i < nr; i++) |
| create_mapping(io_desc + i); |
| } |