| /* |
| * This code largely moved from arch/i386/kernel/time.c. |
| * See comments there for proper credits. |
| */ |
| |
| #include <linux/spinlock.h> |
| #include <linux/init.h> |
| #include <linux/timex.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/jiffies.h> |
| |
| #include <asm/timer.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| |
| #include "io_ports.h" |
| #include "mach_timer.h" |
| #include <asm/hpet.h> |
| |
| static unsigned long hpet_usec_quotient; /* convert hpet clks to usec */ |
| static unsigned long tsc_hpet_quotient; /* convert tsc to hpet clks */ |
| static unsigned long hpet_last; /* hpet counter value at last tick*/ |
| static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */ |
| static unsigned long last_tsc_high; /* msb 32 bits of Time Stamp Counter */ |
| static unsigned long long monotonic_base; |
| static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; |
| |
| /* convert from cycles(64bits) => nanoseconds (64bits) |
| * basic equation: |
| * ns = cycles / (freq / ns_per_sec) |
| * ns = cycles * (ns_per_sec / freq) |
| * ns = cycles * (10^9 / (cpu_mhz * 10^6)) |
| * ns = cycles * (10^3 / cpu_mhz) |
| * |
| * Then we use scaling math (suggested by george@mvista.com) to get: |
| * ns = cycles * (10^3 * SC / cpu_mhz) / SC |
| * ns = cycles * cyc2ns_scale / SC |
| * |
| * And since SC is a constant power of two, we can convert the div |
| * into a shift. |
| * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| */ |
| static unsigned long cyc2ns_scale; |
| #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ |
| |
| static inline void set_cyc2ns_scale(unsigned long cpu_mhz) |
| { |
| cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; |
| } |
| |
| static inline unsigned long long cycles_2_ns(unsigned long long cyc) |
| { |
| return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; |
| } |
| |
| static unsigned long long monotonic_clock_hpet(void) |
| { |
| unsigned long long last_offset, this_offset, base; |
| unsigned seq; |
| |
| /* atomically read monotonic base & last_offset */ |
| do { |
| seq = read_seqbegin(&monotonic_lock); |
| last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; |
| base = monotonic_base; |
| } while (read_seqretry(&monotonic_lock, seq)); |
| |
| /* Read the Time Stamp Counter */ |
| rdtscll(this_offset); |
| |
| /* return the value in ns */ |
| return base + cycles_2_ns(this_offset - last_offset); |
| } |
| |
| static unsigned long get_offset_hpet(void) |
| { |
| register unsigned long eax, edx; |
| |
| eax = hpet_readl(HPET_COUNTER); |
| eax -= hpet_last; /* hpet delta */ |
| eax = min(hpet_tick, eax); |
| /* |
| * Time offset = (hpet delta) * ( usecs per HPET clock ) |
| * = (hpet delta) * ( usecs per tick / HPET clocks per tick) |
| * = (hpet delta) * ( hpet_usec_quotient ) / (2^32) |
| * |
| * Where, |
| * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick |
| * |
| * Using a mull instead of a divl saves some cycles in critical path. |
| */ |
| ASM_MUL64_REG(eax, edx, hpet_usec_quotient, eax); |
| |
| /* our adjusted time offset in microseconds */ |
| return edx; |
| } |
| |
| static void mark_offset_hpet(void) |
| { |
| unsigned long long this_offset, last_offset; |
| unsigned long offset; |
| |
| write_seqlock(&monotonic_lock); |
| last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; |
| rdtsc(last_tsc_low, last_tsc_high); |
| |
| if (hpet_use_timer) |
| offset = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| else |
| offset = hpet_readl(HPET_COUNTER); |
| if (unlikely(((offset - hpet_last) >= (2*hpet_tick)) && (hpet_last != 0))) { |
| int lost_ticks = ((offset - hpet_last) / hpet_tick) - 1; |
| jiffies_64 += lost_ticks; |
| } |
| hpet_last = offset; |
| |
| /* update the monotonic base value */ |
| this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; |
| monotonic_base += cycles_2_ns(this_offset - last_offset); |
| write_sequnlock(&monotonic_lock); |
| } |
| |
| static void delay_hpet(unsigned long loops) |
| { |
| unsigned long hpet_start, hpet_end; |
| unsigned long eax; |
| |
| /* loops is the number of cpu cycles. Convert it to hpet clocks */ |
| ASM_MUL64_REG(eax, loops, tsc_hpet_quotient, loops); |
| |
| hpet_start = hpet_readl(HPET_COUNTER); |
| do { |
| rep_nop(); |
| hpet_end = hpet_readl(HPET_COUNTER); |
| } while ((hpet_end - hpet_start) < (loops)); |
| } |
| |
| static int __init init_hpet(char* override) |
| { |
| unsigned long result, remain; |
| |
| /* check clock override */ |
| if (override[0] && strncmp(override,"hpet",4)) |
| return -ENODEV; |
| |
| if (!is_hpet_enabled()) |
| return -ENODEV; |
| |
| printk("Using HPET for gettimeofday\n"); |
| if (cpu_has_tsc) { |
| unsigned long tsc_quotient = calibrate_tsc_hpet(&tsc_hpet_quotient); |
| if (tsc_quotient) { |
| /* report CPU clock rate in Hz. |
| * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = |
| * clock/second. Our precision is about 100 ppm. |
| */ |
| { unsigned long eax=0, edx=1000; |
| ASM_DIV64_REG(cpu_khz, edx, tsc_quotient, |
| eax, edx); |
| printk("Detected %lu.%03lu MHz processor.\n", |
| cpu_khz / 1000, cpu_khz % 1000); |
| } |
| set_cyc2ns_scale(cpu_khz/1000); |
| } |
| } |
| |
| /* |
| * Math to calculate hpet to usec multiplier |
| * Look for the comments at get_offset_hpet() |
| */ |
| ASM_DIV64_REG(result, remain, hpet_tick, 0, KERNEL_TICK_USEC); |
| if (remain > (hpet_tick >> 1)) |
| result++; /* rounding the result */ |
| hpet_usec_quotient = result; |
| |
| return 0; |
| } |
| |
| /************************************************************/ |
| |
| /* tsc timer_opts struct */ |
| static struct timer_opts timer_hpet = { |
| .name = "hpet", |
| .mark_offset = mark_offset_hpet, |
| .get_offset = get_offset_hpet, |
| .monotonic_clock = monotonic_clock_hpet, |
| .delay = delay_hpet, |
| }; |
| |
| struct init_timer_opts __initdata timer_hpet_init = { |
| .init = init_hpet, |
| .opts = &timer_hpet, |
| }; |