| /* |
| * machine_kexec.c - handle transition of Linux booting another kernel |
| * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> |
| * |
| * This source code is licensed under the GNU General Public License, |
| * Version 2. See the file COPYING for more details. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/kexec.h> |
| #include <linux/string.h> |
| #include <linux/reboot.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/io.h> |
| |
| #define PAGE_ALIGNED __attribute__ ((__aligned__(PAGE_SIZE))) |
| static u64 kexec_pgd[512] PAGE_ALIGNED; |
| static u64 kexec_pud0[512] PAGE_ALIGNED; |
| static u64 kexec_pmd0[512] PAGE_ALIGNED; |
| static u64 kexec_pte0[512] PAGE_ALIGNED; |
| static u64 kexec_pud1[512] PAGE_ALIGNED; |
| static u64 kexec_pmd1[512] PAGE_ALIGNED; |
| static u64 kexec_pte1[512] PAGE_ALIGNED; |
| |
| static void init_level2_page(pmd_t *level2p, unsigned long addr) |
| { |
| unsigned long end_addr; |
| |
| addr &= PAGE_MASK; |
| end_addr = addr + PUD_SIZE; |
| while (addr < end_addr) { |
| set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC)); |
| addr += PMD_SIZE; |
| } |
| } |
| |
| static int init_level3_page(struct kimage *image, pud_t *level3p, |
| unsigned long addr, unsigned long last_addr) |
| { |
| unsigned long end_addr; |
| int result; |
| |
| result = 0; |
| addr &= PAGE_MASK; |
| end_addr = addr + PGDIR_SIZE; |
| while ((addr < last_addr) && (addr < end_addr)) { |
| struct page *page; |
| pmd_t *level2p; |
| |
| page = kimage_alloc_control_pages(image, 0); |
| if (!page) { |
| result = -ENOMEM; |
| goto out; |
| } |
| level2p = (pmd_t *)page_address(page); |
| init_level2_page(level2p, addr); |
| set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE)); |
| addr += PUD_SIZE; |
| } |
| /* clear the unused entries */ |
| while (addr < end_addr) { |
| pud_clear(level3p++); |
| addr += PUD_SIZE; |
| } |
| out: |
| return result; |
| } |
| |
| |
| static int init_level4_page(struct kimage *image, pgd_t *level4p, |
| unsigned long addr, unsigned long last_addr) |
| { |
| unsigned long end_addr; |
| int result; |
| |
| result = 0; |
| addr &= PAGE_MASK; |
| end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE); |
| while ((addr < last_addr) && (addr < end_addr)) { |
| struct page *page; |
| pud_t *level3p; |
| |
| page = kimage_alloc_control_pages(image, 0); |
| if (!page) { |
| result = -ENOMEM; |
| goto out; |
| } |
| level3p = (pud_t *)page_address(page); |
| result = init_level3_page(image, level3p, addr, last_addr); |
| if (result) { |
| goto out; |
| } |
| set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE)); |
| addr += PGDIR_SIZE; |
| } |
| /* clear the unused entries */ |
| while (addr < end_addr) { |
| pgd_clear(level4p++); |
| addr += PGDIR_SIZE; |
| } |
| out: |
| return result; |
| } |
| |
| |
| static int init_pgtable(struct kimage *image, unsigned long start_pgtable) |
| { |
| pgd_t *level4p; |
| level4p = (pgd_t *)__va(start_pgtable); |
| return init_level4_page(image, level4p, 0, end_pfn << PAGE_SHIFT); |
| } |
| |
| static void set_idt(void *newidt, u16 limit) |
| { |
| struct desc_ptr curidt; |
| |
| /* x86-64 supports unaliged loads & stores */ |
| curidt.size = limit; |
| curidt.address = (unsigned long)newidt; |
| |
| __asm__ __volatile__ ( |
| "lidtq %0\n" |
| : : "m" (curidt) |
| ); |
| }; |
| |
| |
| static void set_gdt(void *newgdt, u16 limit) |
| { |
| struct desc_ptr curgdt; |
| |
| /* x86-64 supports unaligned loads & stores */ |
| curgdt.size = limit; |
| curgdt.address = (unsigned long)newgdt; |
| |
| __asm__ __volatile__ ( |
| "lgdtq %0\n" |
| : : "m" (curgdt) |
| ); |
| }; |
| |
| static void load_segments(void) |
| { |
| __asm__ __volatile__ ( |
| "\tmovl %0,%%ds\n" |
| "\tmovl %0,%%es\n" |
| "\tmovl %0,%%ss\n" |
| "\tmovl %0,%%fs\n" |
| "\tmovl %0,%%gs\n" |
| : : "a" (__KERNEL_DS) : "memory" |
| ); |
| } |
| |
| int machine_kexec_prepare(struct kimage *image) |
| { |
| unsigned long start_pgtable; |
| int result; |
| |
| /* Calculate the offsets */ |
| start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; |
| |
| /* Setup the identity mapped 64bit page table */ |
| result = init_pgtable(image, start_pgtable); |
| if (result) |
| return result; |
| |
| return 0; |
| } |
| |
| void machine_kexec_cleanup(struct kimage *image) |
| { |
| return; |
| } |
| |
| /* |
| * Do not allocate memory (or fail in any way) in machine_kexec(). |
| * We are past the point of no return, committed to rebooting now. |
| */ |
| NORET_TYPE void machine_kexec(struct kimage *image) |
| { |
| unsigned long page_list[PAGES_NR]; |
| void *control_page; |
| |
| /* Interrupts aren't acceptable while we reboot */ |
| local_irq_disable(); |
| |
| control_page = page_address(image->control_code_page) + PAGE_SIZE; |
| memcpy(control_page, relocate_kernel, PAGE_SIZE); |
| |
| page_list[PA_CONTROL_PAGE] = __pa(control_page); |
| page_list[VA_CONTROL_PAGE] = (unsigned long)relocate_kernel; |
| page_list[PA_PGD] = __pa_symbol(&kexec_pgd); |
| page_list[VA_PGD] = (unsigned long)kexec_pgd; |
| page_list[PA_PUD_0] = __pa_symbol(&kexec_pud0); |
| page_list[VA_PUD_0] = (unsigned long)kexec_pud0; |
| page_list[PA_PMD_0] = __pa_symbol(&kexec_pmd0); |
| page_list[VA_PMD_0] = (unsigned long)kexec_pmd0; |
| page_list[PA_PTE_0] = __pa_symbol(&kexec_pte0); |
| page_list[VA_PTE_0] = (unsigned long)kexec_pte0; |
| page_list[PA_PUD_1] = __pa_symbol(&kexec_pud1); |
| page_list[VA_PUD_1] = (unsigned long)kexec_pud1; |
| page_list[PA_PMD_1] = __pa_symbol(&kexec_pmd1); |
| page_list[VA_PMD_1] = (unsigned long)kexec_pmd1; |
| page_list[PA_PTE_1] = __pa_symbol(&kexec_pte1); |
| page_list[VA_PTE_1] = (unsigned long)kexec_pte1; |
| |
| page_list[PA_TABLE_PAGE] = |
| (unsigned long)__pa(page_address(image->control_code_page)); |
| |
| /* The segment registers are funny things, they have both a |
| * visible and an invisible part. Whenever the visible part is |
| * set to a specific selector, the invisible part is loaded |
| * with from a table in memory. At no other time is the |
| * descriptor table in memory accessed. |
| * |
| * I take advantage of this here by force loading the |
| * segments, before I zap the gdt with an invalid value. |
| */ |
| load_segments(); |
| /* The gdt & idt are now invalid. |
| * If you want to load them you must set up your own idt & gdt. |
| */ |
| set_gdt(phys_to_virt(0),0); |
| set_idt(phys_to_virt(0),0); |
| |
| /* now call it */ |
| relocate_kernel((unsigned long)image->head, (unsigned long)page_list, |
| image->start); |
| } |
| |
| /* crashkernel=size@addr specifies the location to reserve for |
| * a crash kernel. By reserving this memory we guarantee |
| * that linux never set's it up as a DMA target. |
| * Useful for holding code to do something appropriate |
| * after a kernel panic. |
| */ |
| static int __init setup_crashkernel(char *arg) |
| { |
| unsigned long size, base; |
| char *p; |
| if (!arg) |
| return -EINVAL; |
| size = memparse(arg, &p); |
| if (arg == p) |
| return -EINVAL; |
| if (*p == '@') { |
| base = memparse(p+1, &p); |
| /* FIXME: Do I want a sanity check to validate the |
| * memory range? Yes you do, but it's too early for |
| * e820 -AK */ |
| crashk_res.start = base; |
| crashk_res.end = base + size - 1; |
| } |
| return 0; |
| } |
| early_param("crashkernel", setup_crashkernel); |
| |