| /* |
| ** ccio-dma.c: |
| ** DMA management routines for first generation cache-coherent machines. |
| ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU. |
| ** |
| ** (c) Copyright 2000 Grant Grundler |
| ** (c) Copyright 2000 Ryan Bradetich |
| ** (c) Copyright 2000 Hewlett-Packard Company |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** |
| ** "Real Mode" operation refers to U2/Uturn chip operation. |
| ** U2/Uturn were designed to perform coherency checks w/o using |
| ** the I/O MMU - basically what x86 does. |
| ** |
| ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at: |
| ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc |
| ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c |
| ** |
| ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c. |
| ** |
| ** Drawbacks of using Real Mode are: |
| ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal). |
| ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute. |
| ** o Ability to do scatter/gather in HW is lost. |
| ** o Doesn't work under PCX-U/U+ machines since they didn't follow |
| ** the coherency design originally worked out. Only PCX-W does. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/pci.h> |
| #include <linux/reboot.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/scatterlist.h> |
| #include <linux/iommu-helper.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/cache.h> /* for L1_CACHE_BYTES */ |
| #include <asm/uaccess.h> |
| #include <asm/page.h> |
| #include <asm/dma.h> |
| #include <asm/io.h> |
| #include <asm/hardware.h> /* for register_module() */ |
| #include <asm/parisc-device.h> |
| |
| /* |
| ** Choose "ccio" since that's what HP-UX calls it. |
| ** Make it easier for folks to migrate from one to the other :^) |
| */ |
| #define MODULE_NAME "ccio" |
| |
| #undef DEBUG_CCIO_RES |
| #undef DEBUG_CCIO_RUN |
| #undef DEBUG_CCIO_INIT |
| #undef DEBUG_CCIO_RUN_SG |
| |
| #ifdef CONFIG_PROC_FS |
| /* depends on proc fs support. But costs CPU performance. */ |
| #undef CCIO_COLLECT_STATS |
| #endif |
| |
| #include <linux/proc_fs.h> |
| #include <asm/runway.h> /* for proc_runway_root */ |
| |
| #ifdef DEBUG_CCIO_INIT |
| #define DBG_INIT(x...) printk(x) |
| #else |
| #define DBG_INIT(x...) |
| #endif |
| |
| #ifdef DEBUG_CCIO_RUN |
| #define DBG_RUN(x...) printk(x) |
| #else |
| #define DBG_RUN(x...) |
| #endif |
| |
| #ifdef DEBUG_CCIO_RES |
| #define DBG_RES(x...) printk(x) |
| #else |
| #define DBG_RES(x...) |
| #endif |
| |
| #ifdef DEBUG_CCIO_RUN_SG |
| #define DBG_RUN_SG(x...) printk(x) |
| #else |
| #define DBG_RUN_SG(x...) |
| #endif |
| |
| #define CCIO_INLINE inline |
| #define WRITE_U32(value, addr) __raw_writel(value, addr) |
| #define READ_U32(addr) __raw_readl(addr) |
| |
| #define U2_IOA_RUNWAY 0x580 |
| #define U2_BC_GSC 0x501 |
| #define UTURN_IOA_RUNWAY 0x581 |
| #define UTURN_BC_GSC 0x502 |
| |
| #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */ |
| #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */ |
| #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */ |
| |
| struct ioa_registers { |
| /* Runway Supervisory Set */ |
| int32_t unused1[12]; |
| uint32_t io_command; /* Offset 12 */ |
| uint32_t io_status; /* Offset 13 */ |
| uint32_t io_control; /* Offset 14 */ |
| int32_t unused2[1]; |
| |
| /* Runway Auxiliary Register Set */ |
| uint32_t io_err_resp; /* Offset 0 */ |
| uint32_t io_err_info; /* Offset 1 */ |
| uint32_t io_err_req; /* Offset 2 */ |
| uint32_t io_err_resp_hi; /* Offset 3 */ |
| uint32_t io_tlb_entry_m; /* Offset 4 */ |
| uint32_t io_tlb_entry_l; /* Offset 5 */ |
| uint32_t unused3[1]; |
| uint32_t io_pdir_base; /* Offset 7 */ |
| uint32_t io_io_low_hv; /* Offset 8 */ |
| uint32_t io_io_high_hv; /* Offset 9 */ |
| uint32_t unused4[1]; |
| uint32_t io_chain_id_mask; /* Offset 11 */ |
| uint32_t unused5[2]; |
| uint32_t io_io_low; /* Offset 14 */ |
| uint32_t io_io_high; /* Offset 15 */ |
| }; |
| |
| /* |
| ** IOA Registers |
| ** ------------- |
| ** |
| ** Runway IO_CONTROL Register (+0x38) |
| ** |
| ** The Runway IO_CONTROL register controls the forwarding of transactions. |
| ** |
| ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 | |
| ** | HV | TLB | reserved | HV | mode | reserved | |
| ** |
| ** o mode field indicates the address translation of transactions |
| ** forwarded from Runway to GSC+: |
| ** Mode Name Value Definition |
| ** Off (default) 0 Opaque to matching addresses. |
| ** Include 1 Transparent for matching addresses. |
| ** Peek 3 Map matching addresses. |
| ** |
| ** + "Off" mode: Runway transactions which match the I/O range |
| ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored. |
| ** + "Include" mode: all addresses within the I/O range specified |
| ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently |
| ** forwarded. This is the I/O Adapter's normal operating mode. |
| ** + "Peek" mode: used during system configuration to initialize the |
| ** GSC+ bus. Runway Write_Shorts in the address range specified by |
| ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter |
| ** *AND* the GSC+ address is remapped to the Broadcast Physical |
| ** Address space by setting the 14 high order address bits of the |
| ** 32 bit GSC+ address to ones. |
| ** |
| ** o TLB field affects transactions which are forwarded from GSC+ to Runway. |
| ** "Real" mode is the poweron default. |
| ** |
| ** TLB Mode Value Description |
| ** Real 0 No TLB translation. Address is directly mapped and the |
| ** virtual address is composed of selected physical bits. |
| ** Error 1 Software fills the TLB manually. |
| ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory). |
| ** |
| ** |
| ** IO_IO_LOW_HV +0x60 (HV dependent) |
| ** IO_IO_HIGH_HV +0x64 (HV dependent) |
| ** IO_IO_LOW +0x78 (Architected register) |
| ** IO_IO_HIGH +0x7c (Architected register) |
| ** |
| ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the |
| ** I/O Adapter address space, respectively. |
| ** |
| ** 0 ... 7 | 8 ... 15 | 16 ... 31 | |
| ** 11111111 | 11111111 | address | |
| ** |
| ** Each LOW/HIGH pair describes a disjoint address space region. |
| ** (2 per GSC+ port). Each incoming Runway transaction address is compared |
| ** with both sets of LOW/HIGH registers. If the address is in the range |
| ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction |
| ** for forwarded to the respective GSC+ bus. |
| ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying |
| ** an address space region. |
| ** |
| ** In order for a Runway address to reside within GSC+ extended address space: |
| ** Runway Address [0:7] must identically compare to 8'b11111111 |
| ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19] |
| ** Runway Address [12:23] must be greater than or equal to |
| ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31]. |
| ** Runway Address [24:39] is not used in the comparison. |
| ** |
| ** When the Runway transaction is forwarded to GSC+, the GSC+ address is |
| ** as follows: |
| ** GSC+ Address[0:3] 4'b1111 |
| ** GSC+ Address[4:29] Runway Address[12:37] |
| ** GSC+ Address[30:31] 2'b00 |
| ** |
| ** All 4 Low/High registers must be initialized (by PDC) once the lower bus |
| ** is interrogated and address space is defined. The operating system will |
| ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following |
| ** the PDC initialization. However, the hardware version dependent IO_IO_LOW |
| ** and IO_IO_HIGH registers should not be subsequently altered by the OS. |
| ** |
| ** Writes to both sets of registers will take effect immediately, bypassing |
| ** the queues, which ensures that subsequent Runway transactions are checked |
| ** against the updated bounds values. However reads are queued, introducing |
| ** the possibility of a read being bypassed by a subsequent write to the same |
| ** register. This sequence can be avoided by having software wait for read |
| ** returns before issuing subsequent writes. |
| */ |
| |
| struct ioc { |
| struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */ |
| u8 *res_map; /* resource map, bit == pdir entry */ |
| u64 *pdir_base; /* physical base address */ |
| u32 pdir_size; /* bytes, function of IOV Space size */ |
| u32 res_hint; /* next available IOVP - |
| circular search */ |
| u32 res_size; /* size of resource map in bytes */ |
| spinlock_t res_lock; |
| |
| #ifdef CCIO_COLLECT_STATS |
| #define CCIO_SEARCH_SAMPLE 0x100 |
| unsigned long avg_search[CCIO_SEARCH_SAMPLE]; |
| unsigned long avg_idx; /* current index into avg_search */ |
| unsigned long used_pages; |
| unsigned long msingle_calls; |
| unsigned long msingle_pages; |
| unsigned long msg_calls; |
| unsigned long msg_pages; |
| unsigned long usingle_calls; |
| unsigned long usingle_pages; |
| unsigned long usg_calls; |
| unsigned long usg_pages; |
| #endif |
| unsigned short cujo20_bug; |
| |
| /* STUFF We don't need in performance path */ |
| u32 chainid_shift; /* specify bit location of chain_id */ |
| struct ioc *next; /* Linked list of discovered iocs */ |
| const char *name; /* device name from firmware */ |
| unsigned int hw_path; /* the hardware path this ioc is associatd with */ |
| struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */ |
| struct resource mmio_region[2]; /* The "routed" MMIO regions */ |
| }; |
| |
| static struct ioc *ioc_list; |
| static int ioc_count; |
| |
| /************************************************************** |
| * |
| * I/O Pdir Resource Management |
| * |
| * Bits set in the resource map are in use. |
| * Each bit can represent a number of pages. |
| * LSbs represent lower addresses (IOVA's). |
| * |
| * This was was copied from sba_iommu.c. Don't try to unify |
| * the two resource managers unless a way to have different |
| * allocation policies is also adjusted. We'd like to avoid |
| * I/O TLB thrashing by having resource allocation policy |
| * match the I/O TLB replacement policy. |
| * |
| ***************************************************************/ |
| #define IOVP_SIZE PAGE_SIZE |
| #define IOVP_SHIFT PAGE_SHIFT |
| #define IOVP_MASK PAGE_MASK |
| |
| /* Convert from IOVP to IOVA and vice versa. */ |
| #define CCIO_IOVA(iovp,offset) ((iovp) | (offset)) |
| #define CCIO_IOVP(iova) ((iova) & IOVP_MASK) |
| |
| #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) |
| #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT) |
| #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset) |
| |
| /* |
| ** Don't worry about the 150% average search length on a miss. |
| ** If the search wraps around, and passes the res_hint, it will |
| ** cause the kernel to panic anyhow. |
| */ |
| #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \ |
| for(; res_ptr < res_end; ++res_ptr) { \ |
| int ret;\ |
| unsigned int idx;\ |
| idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \ |
| ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\ |
| if ((0 == (*res_ptr & mask)) && !ret) { \ |
| *res_ptr |= mask; \ |
| res_idx = idx;\ |
| ioc->res_hint = res_idx + (size >> 3); \ |
| goto resource_found; \ |
| } \ |
| } |
| |
| #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \ |
| u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \ |
| u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \ |
| CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \ |
| res_ptr = (u##size *)&(ioc)->res_map[0]; \ |
| CCIO_SEARCH_LOOP(ioa, res_idx, mask, size); |
| |
| /* |
| ** Find available bit in this ioa's resource map. |
| ** Use a "circular" search: |
| ** o Most IOVA's are "temporary" - avg search time should be small. |
| ** o keep a history of what happened for debugging |
| ** o KISS. |
| ** |
| ** Perf optimizations: |
| ** o search for log2(size) bits at a time. |
| ** o search for available resource bits using byte/word/whatever. |
| ** o use different search for "large" (eg > 4 pages) or "very large" |
| ** (eg > 16 pages) mappings. |
| */ |
| |
| /** |
| * ccio_alloc_range - Allocate pages in the ioc's resource map. |
| * @ioc: The I/O Controller. |
| * @pages_needed: The requested number of pages to be mapped into the |
| * I/O Pdir... |
| * |
| * This function searches the resource map of the ioc to locate a range |
| * of available pages for the requested size. |
| */ |
| static int |
| ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size) |
| { |
| unsigned int pages_needed = size >> IOVP_SHIFT; |
| unsigned int res_idx; |
| unsigned long boundary_size; |
| #ifdef CCIO_COLLECT_STATS |
| unsigned long cr_start = mfctl(16); |
| #endif |
| |
| BUG_ON(pages_needed == 0); |
| BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE); |
| |
| DBG_RES("%s() size: %d pages_needed %d\n", |
| __func__, size, pages_needed); |
| |
| /* |
| ** "seek and ye shall find"...praying never hurts either... |
| ** ggg sacrifices another 710 to the computer gods. |
| */ |
| |
| boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1, |
| 1ULL << IOVP_SHIFT) >> IOVP_SHIFT; |
| |
| if (pages_needed <= 8) { |
| /* |
| * LAN traffic will not thrash the TLB IFF the same NIC |
| * uses 8 adjacent pages to map separate payload data. |
| * ie the same byte in the resource bit map. |
| */ |
| #if 0 |
| /* FIXME: bit search should shift it's way through |
| * an unsigned long - not byte at a time. As it is now, |
| * we effectively allocate this byte to this mapping. |
| */ |
| unsigned long mask = ~(~0UL >> pages_needed); |
| CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8); |
| #else |
| CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8); |
| #endif |
| } else if (pages_needed <= 16) { |
| CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16); |
| } else if (pages_needed <= 32) { |
| CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32); |
| #ifdef __LP64__ |
| } else if (pages_needed <= 64) { |
| CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64); |
| #endif |
| } else { |
| panic("%s: %s() Too many pages to map. pages_needed: %u\n", |
| __FILE__, __func__, pages_needed); |
| } |
| |
| panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__, |
| __func__); |
| |
| resource_found: |
| |
| DBG_RES("%s() res_idx %d res_hint: %d\n", |
| __func__, res_idx, ioc->res_hint); |
| |
| #ifdef CCIO_COLLECT_STATS |
| { |
| unsigned long cr_end = mfctl(16); |
| unsigned long tmp = cr_end - cr_start; |
| /* check for roll over */ |
| cr_start = (cr_end < cr_start) ? -(tmp) : (tmp); |
| } |
| ioc->avg_search[ioc->avg_idx++] = cr_start; |
| ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1; |
| #endif |
| #ifdef CCIO_COLLECT_STATS |
| ioc->used_pages += pages_needed; |
| #endif |
| /* |
| ** return the bit address. |
| */ |
| return res_idx << 3; |
| } |
| |
| #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \ |
| u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \ |
| BUG_ON((*res_ptr & mask) != mask); \ |
| *res_ptr &= ~(mask); |
| |
| /** |
| * ccio_free_range - Free pages from the ioc's resource map. |
| * @ioc: The I/O Controller. |
| * @iova: The I/O Virtual Address. |
| * @pages_mapped: The requested number of pages to be freed from the |
| * I/O Pdir. |
| * |
| * This function frees the resouces allocated for the iova. |
| */ |
| static void |
| ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped) |
| { |
| unsigned long iovp = CCIO_IOVP(iova); |
| unsigned int res_idx = PDIR_INDEX(iovp) >> 3; |
| |
| BUG_ON(pages_mapped == 0); |
| BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE); |
| BUG_ON(pages_mapped > BITS_PER_LONG); |
| |
| DBG_RES("%s(): res_idx: %d pages_mapped %d\n", |
| __func__, res_idx, pages_mapped); |
| |
| #ifdef CCIO_COLLECT_STATS |
| ioc->used_pages -= pages_mapped; |
| #endif |
| |
| if(pages_mapped <= 8) { |
| #if 0 |
| /* see matching comments in alloc_range */ |
| unsigned long mask = ~(~0UL >> pages_mapped); |
| CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8); |
| #else |
| CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8); |
| #endif |
| } else if(pages_mapped <= 16) { |
| CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16); |
| } else if(pages_mapped <= 32) { |
| CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32); |
| #ifdef __LP64__ |
| } else if(pages_mapped <= 64) { |
| CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64); |
| #endif |
| } else { |
| panic("%s:%s() Too many pages to unmap.\n", __FILE__, |
| __func__); |
| } |
| } |
| |
| /**************************************************************** |
| ** |
| ** CCIO dma_ops support routines |
| ** |
| *****************************************************************/ |
| |
| typedef unsigned long space_t; |
| #define KERNEL_SPACE 0 |
| |
| /* |
| ** DMA "Page Type" and Hints |
| ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be |
| ** set for subcacheline DMA transfers since we don't want to damage the |
| ** other part of a cacheline. |
| ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent(). |
| ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming" |
| ** data can avoid this if the mapping covers full cache lines. |
| ** o STOP_MOST is needed for atomicity across cachelines. |
| ** Apparently only "some EISA devices" need this. |
| ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs |
| ** to use this hint iff the EISA devices needs this feature. |
| ** According to the U2 ERS, STOP_MOST enabled pages hurt performance. |
| ** o PREFETCH should *not* be set for cases like Multiple PCI devices |
| ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC |
| ** device can be fetched and multiply DMA streams will thrash the |
| ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules |
| ** and Invalidation of Prefetch Entries". |
| ** |
| ** FIXME: the default hints need to be per GSC device - not global. |
| ** |
| ** HP-UX dorks: linux device driver programming model is totally different |
| ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers |
| ** do special things to work on non-coherent platforms...linux has to |
| ** be much more careful with this. |
| */ |
| #define IOPDIR_VALID 0x01UL |
| #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */ |
| #ifdef CONFIG_EISA |
| #define HINT_STOP_MOST 0x04UL /* LSL support */ |
| #else |
| #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */ |
| #endif |
| #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */ |
| #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */ |
| |
| |
| /* |
| ** Use direction (ie PCI_DMA_TODEVICE) to pick hint. |
| ** ccio_alloc_consistent() depends on this to get SAFE_DMA |
| ** when it passes in BIDIRECTIONAL flag. |
| */ |
| static u32 hint_lookup[] = { |
| [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID, |
| [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID, |
| [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID, |
| }; |
| |
| /** |
| * ccio_io_pdir_entry - Initialize an I/O Pdir. |
| * @pdir_ptr: A pointer into I/O Pdir. |
| * @sid: The Space Identifier. |
| * @vba: The virtual address. |
| * @hints: The DMA Hint. |
| * |
| * Given a virtual address (vba, arg2) and space id, (sid, arg1), |
| * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir |
| * entry consists of 8 bytes as shown below (MSB == bit 0): |
| * |
| * |
| * WORD 0: |
| * +------+----------------+-----------------------------------------------+ |
| * | Phys | Virtual Index | Phys | |
| * | 0:3 | 0:11 | 4:19 | |
| * |4 bits| 12 bits | 16 bits | |
| * +------+----------------+-----------------------------------------------+ |
| * WORD 1: |
| * +-----------------------+-----------------------------------------------+ |
| * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid | |
| * | 20:39 | | Enable |Enable | |Enable|DMA | | |
| * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit | |
| * +-----------------------+-----------------------------------------------+ |
| * |
| * The virtual index field is filled with the results of the LCI |
| * (Load Coherence Index) instruction. The 8 bits used for the virtual |
| * index are bits 12:19 of the value returned by LCI. |
| */ |
| static void CCIO_INLINE |
| ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba, |
| unsigned long hints) |
| { |
| register unsigned long pa; |
| register unsigned long ci; /* coherent index */ |
| |
| /* We currently only support kernel addresses */ |
| BUG_ON(sid != KERNEL_SPACE); |
| |
| mtsp(sid,1); |
| |
| /* |
| ** WORD 1 - low order word |
| ** "hints" parm includes the VALID bit! |
| ** "dep" clobbers the physical address offset bits as well. |
| */ |
| pa = virt_to_phys(vba); |
| asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints)); |
| ((u32 *)pdir_ptr)[1] = (u32) pa; |
| |
| /* |
| ** WORD 0 - high order word |
| */ |
| |
| #ifdef __LP64__ |
| /* |
| ** get bits 12:15 of physical address |
| ** shift bits 16:31 of physical address |
| ** and deposit them |
| */ |
| asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa)); |
| asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa)); |
| asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci)); |
| #else |
| pa = 0; |
| #endif |
| /* |
| ** get CPU coherency index bits |
| ** Grab virtual index [0:11] |
| ** Deposit virt_idx bits into I/O PDIR word |
| */ |
| asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); |
| asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci)); |
| asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci)); |
| |
| ((u32 *)pdir_ptr)[0] = (u32) pa; |
| |
| |
| /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) |
| ** PCX-U/U+ do. (eg C200/C240) |
| ** PCX-T'? Don't know. (eg C110 or similar K-class) |
| ** |
| ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit". |
| ** Hopefully we can patch (NOP) these out at boot time somehow. |
| ** |
| ** "Since PCX-U employs an offset hash that is incompatible with |
| ** the real mode coherence index generation of U2, the PDIR entry |
| ** must be flushed to memory to retain coherence." |
| */ |
| asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); |
| asm volatile("sync"); |
| } |
| |
| /** |
| * ccio_clear_io_tlb - Remove stale entries from the I/O TLB. |
| * @ioc: The I/O Controller. |
| * @iovp: The I/O Virtual Page. |
| * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. |
| * |
| * Purge invalid I/O PDIR entries from the I/O TLB. |
| * |
| * FIXME: Can we change the byte_cnt to pages_mapped? |
| */ |
| static CCIO_INLINE void |
| ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt) |
| { |
| u32 chain_size = 1 << ioc->chainid_shift; |
| |
| iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */ |
| byte_cnt += chain_size; |
| |
| while(byte_cnt > chain_size) { |
| WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command); |
| iovp += chain_size; |
| byte_cnt -= chain_size; |
| } |
| } |
| |
| /** |
| * ccio_mark_invalid - Mark the I/O Pdir entries invalid. |
| * @ioc: The I/O Controller. |
| * @iova: The I/O Virtual Address. |
| * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. |
| * |
| * Mark the I/O Pdir entries invalid and blow away the corresponding I/O |
| * TLB entries. |
| * |
| * FIXME: at some threshhold it might be "cheaper" to just blow |
| * away the entire I/O TLB instead of individual entries. |
| * |
| * FIXME: Uturn has 256 TLB entries. We don't need to purge every |
| * PDIR entry - just once for each possible TLB entry. |
| * (We do need to maker I/O PDIR entries invalid regardless). |
| * |
| * FIXME: Can we change byte_cnt to pages_mapped? |
| */ |
| static CCIO_INLINE void |
| ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) |
| { |
| u32 iovp = (u32)CCIO_IOVP(iova); |
| size_t saved_byte_cnt; |
| |
| /* round up to nearest page size */ |
| saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE); |
| |
| while(byte_cnt > 0) { |
| /* invalidate one page at a time */ |
| unsigned int idx = PDIR_INDEX(iovp); |
| char *pdir_ptr = (char *) &(ioc->pdir_base[idx]); |
| |
| BUG_ON(idx >= (ioc->pdir_size / sizeof(u64))); |
| pdir_ptr[7] = 0; /* clear only VALID bit */ |
| /* |
| ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) |
| ** PCX-U/U+ do. (eg C200/C240) |
| ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit". |
| ** |
| ** Hopefully someone figures out how to patch (NOP) the |
| ** FDC/SYNC out at boot time. |
| */ |
| asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7])); |
| |
| iovp += IOVP_SIZE; |
| byte_cnt -= IOVP_SIZE; |
| } |
| |
| asm volatile("sync"); |
| ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt); |
| } |
| |
| /**************************************************************** |
| ** |
| ** CCIO dma_ops |
| ** |
| *****************************************************************/ |
| |
| /** |
| * ccio_dma_supported - Verify the IOMMU supports the DMA address range. |
| * @dev: The PCI device. |
| * @mask: A bit mask describing the DMA address range of the device. |
| * |
| * This function implements the pci_dma_supported function. |
| */ |
| static int |
| ccio_dma_supported(struct device *dev, u64 mask) |
| { |
| if(dev == NULL) { |
| printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n"); |
| BUG(); |
| return 0; |
| } |
| |
| /* only support 32-bit devices (ie PCI/GSC) */ |
| return (int)(mask == 0xffffffffUL); |
| } |
| |
| /** |
| * ccio_map_single - Map an address range into the IOMMU. |
| * @dev: The PCI device. |
| * @addr: The start address of the DMA region. |
| * @size: The length of the DMA region. |
| * @direction: The direction of the DMA transaction (to/from device). |
| * |
| * This function implements the pci_map_single function. |
| */ |
| static dma_addr_t |
| ccio_map_single(struct device *dev, void *addr, size_t size, |
| enum dma_data_direction direction) |
| { |
| int idx; |
| struct ioc *ioc; |
| unsigned long flags; |
| dma_addr_t iovp; |
| dma_addr_t offset; |
| u64 *pdir_start; |
| unsigned long hint = hint_lookup[(int)direction]; |
| |
| BUG_ON(!dev); |
| ioc = GET_IOC(dev); |
| |
| BUG_ON(size <= 0); |
| |
| /* save offset bits */ |
| offset = ((unsigned long) addr) & ~IOVP_MASK; |
| |
| /* round up to nearest IOVP_SIZE */ |
| size = ALIGN(size + offset, IOVP_SIZE); |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| |
| #ifdef CCIO_COLLECT_STATS |
| ioc->msingle_calls++; |
| ioc->msingle_pages += size >> IOVP_SHIFT; |
| #endif |
| |
| idx = ccio_alloc_range(ioc, dev, size); |
| iovp = (dma_addr_t)MKIOVP(idx); |
| |
| pdir_start = &(ioc->pdir_base[idx]); |
| |
| DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n", |
| __func__, addr, (long)iovp | offset, size); |
| |
| /* If not cacheline aligned, force SAFE_DMA on the whole mess */ |
| if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES)) |
| hint |= HINT_SAFE_DMA; |
| |
| while(size > 0) { |
| ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint); |
| |
| DBG_RUN(" pdir %p %08x%08x\n", |
| pdir_start, |
| (u32) (((u32 *) pdir_start)[0]), |
| (u32) (((u32 *) pdir_start)[1])); |
| ++pdir_start; |
| addr += IOVP_SIZE; |
| size -= IOVP_SIZE; |
| } |
| |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| |
| /* form complete address */ |
| return CCIO_IOVA(iovp, offset); |
| } |
| |
| /** |
| * ccio_unmap_single - Unmap an address range from the IOMMU. |
| * @dev: The PCI device. |
| * @addr: The start address of the DMA region. |
| * @size: The length of the DMA region. |
| * @direction: The direction of the DMA transaction (to/from device). |
| * |
| * This function implements the pci_unmap_single function. |
| */ |
| static void |
| ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size, |
| enum dma_data_direction direction) |
| { |
| struct ioc *ioc; |
| unsigned long flags; |
| dma_addr_t offset = iova & ~IOVP_MASK; |
| |
| BUG_ON(!dev); |
| ioc = GET_IOC(dev); |
| |
| DBG_RUN("%s() iovp 0x%lx/%x\n", |
| __func__, (long)iova, size); |
| |
| iova ^= offset; /* clear offset bits */ |
| size += offset; |
| size = ALIGN(size, IOVP_SIZE); |
| |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| |
| #ifdef CCIO_COLLECT_STATS |
| ioc->usingle_calls++; |
| ioc->usingle_pages += size >> IOVP_SHIFT; |
| #endif |
| |
| ccio_mark_invalid(ioc, iova, size); |
| ccio_free_range(ioc, iova, (size >> IOVP_SHIFT)); |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| } |
| |
| /** |
| * ccio_alloc_consistent - Allocate a consistent DMA mapping. |
| * @dev: The PCI device. |
| * @size: The length of the DMA region. |
| * @dma_handle: The DMA address handed back to the device (not the cpu). |
| * |
| * This function implements the pci_alloc_consistent function. |
| */ |
| static void * |
| ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) |
| { |
| void *ret; |
| #if 0 |
| /* GRANT Need to establish hierarchy for non-PCI devs as well |
| ** and then provide matching gsc_map_xxx() functions for them as well. |
| */ |
| if(!hwdev) { |
| /* only support PCI */ |
| *dma_handle = 0; |
| return 0; |
| } |
| #endif |
| ret = (void *) __get_free_pages(flag, get_order(size)); |
| |
| if (ret) { |
| memset(ret, 0, size); |
| *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ccio_free_consistent - Free a consistent DMA mapping. |
| * @dev: The PCI device. |
| * @size: The length of the DMA region. |
| * @cpu_addr: The cpu address returned from the ccio_alloc_consistent. |
| * @dma_handle: The device address returned from the ccio_alloc_consistent. |
| * |
| * This function implements the pci_free_consistent function. |
| */ |
| static void |
| ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle) |
| { |
| ccio_unmap_single(dev, dma_handle, size, 0); |
| free_pages((unsigned long)cpu_addr, get_order(size)); |
| } |
| |
| /* |
| ** Since 0 is a valid pdir_base index value, can't use that |
| ** to determine if a value is valid or not. Use a flag to indicate |
| ** the SG list entry contains a valid pdir index. |
| */ |
| #define PIDE_FLAG 0x80000000UL |
| |
| #ifdef CCIO_COLLECT_STATS |
| #define IOMMU_MAP_STATS |
| #endif |
| #include "iommu-helpers.h" |
| |
| /** |
| * ccio_map_sg - Map the scatter/gather list into the IOMMU. |
| * @dev: The PCI device. |
| * @sglist: The scatter/gather list to be mapped in the IOMMU. |
| * @nents: The number of entries in the scatter/gather list. |
| * @direction: The direction of the DMA transaction (to/from device). |
| * |
| * This function implements the pci_map_sg function. |
| */ |
| static int |
| ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, |
| enum dma_data_direction direction) |
| { |
| struct ioc *ioc; |
| int coalesced, filled = 0; |
| unsigned long flags; |
| unsigned long hint = hint_lookup[(int)direction]; |
| unsigned long prev_len = 0, current_len = 0; |
| int i; |
| |
| BUG_ON(!dev); |
| ioc = GET_IOC(dev); |
| |
| DBG_RUN_SG("%s() START %d entries\n", __func__, nents); |
| |
| /* Fast path single entry scatterlists. */ |
| if (nents == 1) { |
| sg_dma_address(sglist) = ccio_map_single(dev, |
| (void *)sg_virt_addr(sglist), sglist->length, |
| direction); |
| sg_dma_len(sglist) = sglist->length; |
| return 1; |
| } |
| |
| for(i = 0; i < nents; i++) |
| prev_len += sglist[i].length; |
| |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| |
| #ifdef CCIO_COLLECT_STATS |
| ioc->msg_calls++; |
| #endif |
| |
| /* |
| ** First coalesce the chunks and allocate I/O pdir space |
| ** |
| ** If this is one DMA stream, we can properly map using the |
| ** correct virtual address associated with each DMA page. |
| ** w/o this association, we wouldn't have coherent DMA! |
| ** Access to the virtual address is what forces a two pass algorithm. |
| */ |
| coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range); |
| |
| /* |
| ** Program the I/O Pdir |
| ** |
| ** map the virtual addresses to the I/O Pdir |
| ** o dma_address will contain the pdir index |
| ** o dma_len will contain the number of bytes to map |
| ** o page/offset contain the virtual address. |
| */ |
| filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry); |
| |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| |
| BUG_ON(coalesced != filled); |
| |
| DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); |
| |
| for (i = 0; i < filled; i++) |
| current_len += sg_dma_len(sglist + i); |
| |
| BUG_ON(current_len != prev_len); |
| |
| return filled; |
| } |
| |
| /** |
| * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU. |
| * @dev: The PCI device. |
| * @sglist: The scatter/gather list to be unmapped from the IOMMU. |
| * @nents: The number of entries in the scatter/gather list. |
| * @direction: The direction of the DMA transaction (to/from device). |
| * |
| * This function implements the pci_unmap_sg function. |
| */ |
| static void |
| ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, |
| enum dma_data_direction direction) |
| { |
| struct ioc *ioc; |
| |
| BUG_ON(!dev); |
| ioc = GET_IOC(dev); |
| |
| DBG_RUN_SG("%s() START %d entries, %08lx,%x\n", |
| __func__, nents, sg_virt_addr(sglist), sglist->length); |
| |
| #ifdef CCIO_COLLECT_STATS |
| ioc->usg_calls++; |
| #endif |
| |
| while(sg_dma_len(sglist) && nents--) { |
| |
| #ifdef CCIO_COLLECT_STATS |
| ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT; |
| #endif |
| ccio_unmap_single(dev, sg_dma_address(sglist), |
| sg_dma_len(sglist), direction); |
| ++sglist; |
| } |
| |
| DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); |
| } |
| |
| static struct hppa_dma_ops ccio_ops = { |
| .dma_supported = ccio_dma_supported, |
| .alloc_consistent = ccio_alloc_consistent, |
| .alloc_noncoherent = ccio_alloc_consistent, |
| .free_consistent = ccio_free_consistent, |
| .map_single = ccio_map_single, |
| .unmap_single = ccio_unmap_single, |
| .map_sg = ccio_map_sg, |
| .unmap_sg = ccio_unmap_sg, |
| .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */ |
| .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */ |
| .dma_sync_sg_for_cpu = NULL, /* ditto */ |
| .dma_sync_sg_for_device = NULL, /* ditto */ |
| }; |
| |
| #ifdef CONFIG_PROC_FS |
| static int ccio_proc_info(struct seq_file *m, void *p) |
| { |
| int len = 0; |
| struct ioc *ioc = ioc_list; |
| |
| while (ioc != NULL) { |
| unsigned int total_pages = ioc->res_size << 3; |
| unsigned long avg = 0, min, max; |
| int j; |
| |
| len += seq_printf(m, "%s\n", ioc->name); |
| |
| len += seq_printf(m, "Cujo 2.0 bug : %s\n", |
| (ioc->cujo20_bug ? "yes" : "no")); |
| |
| len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n", |
| total_pages * 8, total_pages); |
| |
| #ifdef CCIO_COLLECT_STATS |
| len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n", |
| total_pages - ioc->used_pages, ioc->used_pages, |
| (int)(ioc->used_pages * 100 / total_pages)); |
| #endif |
| |
| len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", |
| ioc->res_size, total_pages); |
| |
| #ifdef CCIO_COLLECT_STATS |
| min = max = ioc->avg_search[0]; |
| for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) { |
| avg += ioc->avg_search[j]; |
| if(ioc->avg_search[j] > max) |
| max = ioc->avg_search[j]; |
| if(ioc->avg_search[j] < min) |
| min = ioc->avg_search[j]; |
| } |
| avg /= CCIO_SEARCH_SAMPLE; |
| len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n", |
| min, avg, max); |
| #endif |
| #ifdef CCIO_COLLECT_STATS |
| len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n", |
| ioc->msingle_calls, ioc->msingle_pages, |
| (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls)); |
| |
| /* KLUGE - unmap_sg calls unmap_single for each mapped page */ |
| min = ioc->usingle_calls - ioc->usg_calls; |
| max = ioc->usingle_pages - ioc->usg_pages; |
| len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n", |
| min, max, (int)((max * 1000)/min)); |
| |
| len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n", |
| ioc->msg_calls, ioc->msg_pages, |
| (int)((ioc->msg_pages * 1000)/ioc->msg_calls)); |
| |
| len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n", |
| ioc->usg_calls, ioc->usg_pages, |
| (int)((ioc->usg_pages * 1000)/ioc->usg_calls)); |
| #endif /* CCIO_COLLECT_STATS */ |
| |
| ioc = ioc->next; |
| } |
| |
| return 0; |
| } |
| |
| static int ccio_proc_info_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, &ccio_proc_info, NULL); |
| } |
| |
| static const struct file_operations ccio_proc_info_fops = { |
| .owner = THIS_MODULE, |
| .open = ccio_proc_info_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int ccio_proc_bitmap_info(struct seq_file *m, void *p) |
| { |
| int len = 0; |
| struct ioc *ioc = ioc_list; |
| |
| while (ioc != NULL) { |
| u32 *res_ptr = (u32 *)ioc->res_map; |
| int j; |
| |
| for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) { |
| if ((j & 7) == 0) |
| len += seq_puts(m, "\n "); |
| len += seq_printf(m, "%08x", *res_ptr); |
| res_ptr++; |
| } |
| len += seq_puts(m, "\n\n"); |
| ioc = ioc->next; |
| break; /* XXX - remove me */ |
| } |
| |
| return 0; |
| } |
| |
| static int ccio_proc_bitmap_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, &ccio_proc_bitmap_info, NULL); |
| } |
| |
| static const struct file_operations ccio_proc_bitmap_fops = { |
| .owner = THIS_MODULE, |
| .open = ccio_proc_bitmap_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| #endif |
| |
| /** |
| * ccio_find_ioc - Find the ioc in the ioc_list |
| * @hw_path: The hardware path of the ioc. |
| * |
| * This function searches the ioc_list for an ioc that matches |
| * the provide hardware path. |
| */ |
| static struct ioc * ccio_find_ioc(int hw_path) |
| { |
| int i; |
| struct ioc *ioc; |
| |
| ioc = ioc_list; |
| for (i = 0; i < ioc_count; i++) { |
| if (ioc->hw_path == hw_path) |
| return ioc; |
| |
| ioc = ioc->next; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ccio_get_iommu - Find the iommu which controls this device |
| * @dev: The parisc device. |
| * |
| * This function searches through the registered IOMMU's and returns |
| * the appropriate IOMMU for the device based on its hardware path. |
| */ |
| void * ccio_get_iommu(const struct parisc_device *dev) |
| { |
| dev = find_pa_parent_type(dev, HPHW_IOA); |
| if (!dev) |
| return NULL; |
| |
| return ccio_find_ioc(dev->hw_path); |
| } |
| |
| #define CUJO_20_STEP 0x10000000 /* inc upper nibble */ |
| |
| /* Cujo 2.0 has a bug which will silently corrupt data being transferred |
| * to/from certain pages. To avoid this happening, we mark these pages |
| * as `used', and ensure that nothing will try to allocate from them. |
| */ |
| void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp) |
| { |
| unsigned int idx; |
| struct parisc_device *dev = parisc_parent(cujo); |
| struct ioc *ioc = ccio_get_iommu(dev); |
| u8 *res_ptr; |
| |
| ioc->cujo20_bug = 1; |
| res_ptr = ioc->res_map; |
| idx = PDIR_INDEX(iovp) >> 3; |
| |
| while (idx < ioc->res_size) { |
| res_ptr[idx] |= 0xff; |
| idx += PDIR_INDEX(CUJO_20_STEP) >> 3; |
| } |
| } |
| |
| #if 0 |
| /* GRANT - is this needed for U2 or not? */ |
| |
| /* |
| ** Get the size of the I/O TLB for this I/O MMU. |
| ** |
| ** If spa_shift is non-zero (ie probably U2), |
| ** then calculate the I/O TLB size using spa_shift. |
| ** |
| ** Otherwise we are supposed to get the IODC entry point ENTRY TLB |
| ** and execute it. However, both U2 and Uturn firmware supplies spa_shift. |
| ** I think only Java (K/D/R-class too?) systems don't do this. |
| */ |
| static int |
| ccio_get_iotlb_size(struct parisc_device *dev) |
| { |
| if (dev->spa_shift == 0) { |
| panic("%s() : Can't determine I/O TLB size.\n", __func__); |
| } |
| return (1 << dev->spa_shift); |
| } |
| #else |
| |
| /* Uturn supports 256 TLB entries */ |
| #define CCIO_CHAINID_SHIFT 8 |
| #define CCIO_CHAINID_MASK 0xff |
| #endif /* 0 */ |
| |
| /* We *can't* support JAVA (T600). Venture there at your own risk. */ |
| static const struct parisc_device_id ccio_tbl[] = { |
| { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */ |
| { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */ |
| { 0, } |
| }; |
| |
| static int ccio_probe(struct parisc_device *dev); |
| |
| static struct parisc_driver ccio_driver = { |
| .name = "ccio", |
| .id_table = ccio_tbl, |
| .probe = ccio_probe, |
| }; |
| |
| /** |
| * ccio_ioc_init - Initalize the I/O Controller |
| * @ioc: The I/O Controller. |
| * |
| * Initalize the I/O Controller which includes setting up the |
| * I/O Page Directory, the resource map, and initalizing the |
| * U2/Uturn chip into virtual mode. |
| */ |
| static void |
| ccio_ioc_init(struct ioc *ioc) |
| { |
| int i; |
| unsigned int iov_order; |
| u32 iova_space_size; |
| |
| /* |
| ** Determine IOVA Space size from memory size. |
| ** |
| ** Ideally, PCI drivers would register the maximum number |
| ** of DMA they can have outstanding for each device they |
| ** own. Next best thing would be to guess how much DMA |
| ** can be outstanding based on PCI Class/sub-class. Both |
| ** methods still require some "extra" to support PCI |
| ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). |
| */ |
| |
| iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver)); |
| |
| /* limit IOVA space size to 1MB-1GB */ |
| |
| if (iova_space_size < (1 << (20 - PAGE_SHIFT))) { |
| iova_space_size = 1 << (20 - PAGE_SHIFT); |
| #ifdef __LP64__ |
| } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) { |
| iova_space_size = 1 << (30 - PAGE_SHIFT); |
| #endif |
| } |
| |
| /* |
| ** iova space must be log2() in size. |
| ** thus, pdir/res_map will also be log2(). |
| */ |
| |
| /* We could use larger page sizes in order to *decrease* the number |
| ** of mappings needed. (ie 8k pages means 1/2 the mappings). |
| ** |
| ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either |
| ** since the pages must also be physically contiguous - typically |
| ** this is the case under linux." |
| */ |
| |
| iov_order = get_order(iova_space_size << PAGE_SHIFT); |
| |
| /* iova_space_size is now bytes, not pages */ |
| iova_space_size = 1 << (iov_order + PAGE_SHIFT); |
| |
| ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64); |
| |
| BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */ |
| |
| /* Verify it's a power of two */ |
| BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT)); |
| |
| DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n", |
| __func__, ioc->ioc_regs, |
| (unsigned long) num_physpages >> (20 - PAGE_SHIFT), |
| iova_space_size>>20, |
| iov_order + PAGE_SHIFT); |
| |
| ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, |
| get_order(ioc->pdir_size)); |
| if(NULL == ioc->pdir_base) { |
| panic("%s() could not allocate I/O Page Table\n", __func__); |
| } |
| memset(ioc->pdir_base, 0, ioc->pdir_size); |
| |
| BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base); |
| DBG_INIT(" base %p\n", ioc->pdir_base); |
| |
| /* resource map size dictated by pdir_size */ |
| ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3; |
| DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); |
| |
| ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, |
| get_order(ioc->res_size)); |
| if(NULL == ioc->res_map) { |
| panic("%s() could not allocate resource map\n", __func__); |
| } |
| memset(ioc->res_map, 0, ioc->res_size); |
| |
| /* Initialize the res_hint to 16 */ |
| ioc->res_hint = 16; |
| |
| /* Initialize the spinlock */ |
| spin_lock_init(&ioc->res_lock); |
| |
| /* |
| ** Chainid is the upper most bits of an IOVP used to determine |
| ** which TLB entry an IOVP will use. |
| */ |
| ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT; |
| DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift); |
| |
| /* |
| ** Initialize IOA hardware |
| */ |
| WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, |
| &ioc->ioc_regs->io_chain_id_mask); |
| |
| WRITE_U32(virt_to_phys(ioc->pdir_base), |
| &ioc->ioc_regs->io_pdir_base); |
| |
| /* |
| ** Go to "Virtual Mode" |
| */ |
| WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control); |
| |
| /* |
| ** Initialize all I/O TLB entries to 0 (Valid bit off). |
| */ |
| WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m); |
| WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l); |
| |
| for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) { |
| WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)), |
| &ioc->ioc_regs->io_command); |
| } |
| } |
| |
| static void __init |
| ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr) |
| { |
| int result; |
| |
| res->parent = NULL; |
| res->flags = IORESOURCE_MEM; |
| /* |
| * bracing ((signed) ...) are required for 64bit kernel because |
| * we only want to sign extend the lower 16 bits of the register. |
| * The upper 16-bits of range registers are hardcoded to 0xffff. |
| */ |
| res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16); |
| res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1); |
| res->name = name; |
| /* |
| * Check if this MMIO range is disable |
| */ |
| if (res->end + 1 == res->start) |
| return; |
| |
| /* On some platforms (e.g. K-Class), we have already registered |
| * resources for devices reported by firmware. Some are children |
| * of ccio. |
| * "insert" ccio ranges in the mmio hierarchy (/proc/iomem). |
| */ |
| result = insert_resource(&iomem_resource, res); |
| if (result < 0) { |
| printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", |
| __func__, res->start, res->end); |
| } |
| } |
| |
| static void __init ccio_init_resources(struct ioc *ioc) |
| { |
| struct resource *res = ioc->mmio_region; |
| char *name = kmalloc(14, GFP_KERNEL); |
| |
| snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path); |
| |
| ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low); |
| ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv); |
| } |
| |
| static int new_ioc_area(struct resource *res, unsigned long size, |
| unsigned long min, unsigned long max, unsigned long align) |
| { |
| if (max <= min) |
| return -EBUSY; |
| |
| res->start = (max - size + 1) &~ (align - 1); |
| res->end = res->start + size; |
| |
| /* We might be trying to expand the MMIO range to include |
| * a child device that has already registered it's MMIO space. |
| * Use "insert" instead of request_resource(). |
| */ |
| if (!insert_resource(&iomem_resource, res)) |
| return 0; |
| |
| return new_ioc_area(res, size, min, max - size, align); |
| } |
| |
| static int expand_ioc_area(struct resource *res, unsigned long size, |
| unsigned long min, unsigned long max, unsigned long align) |
| { |
| unsigned long start, len; |
| |
| if (!res->parent) |
| return new_ioc_area(res, size, min, max, align); |
| |
| start = (res->start - size) &~ (align - 1); |
| len = res->end - start + 1; |
| if (start >= min) { |
| if (!adjust_resource(res, start, len)) |
| return 0; |
| } |
| |
| start = res->start; |
| len = ((size + res->end + align) &~ (align - 1)) - start; |
| if (start + len <= max) { |
| if (!adjust_resource(res, start, len)) |
| return 0; |
| } |
| |
| return -EBUSY; |
| } |
| |
| /* |
| * Dino calls this function. Beware that we may get called on systems |
| * which have no IOC (725, B180, C160L, etc) but do have a Dino. |
| * So it's legal to find no parent IOC. |
| * |
| * Some other issues: one of the resources in the ioc may be unassigned. |
| */ |
| int ccio_allocate_resource(const struct parisc_device *dev, |
| struct resource *res, unsigned long size, |
| unsigned long min, unsigned long max, unsigned long align) |
| { |
| struct resource *parent = &iomem_resource; |
| struct ioc *ioc = ccio_get_iommu(dev); |
| if (!ioc) |
| goto out; |
| |
| parent = ioc->mmio_region; |
| if (parent->parent && |
| !allocate_resource(parent, res, size, min, max, align, NULL, NULL)) |
| return 0; |
| |
| if ((parent + 1)->parent && |
| !allocate_resource(parent + 1, res, size, min, max, align, |
| NULL, NULL)) |
| return 0; |
| |
| if (!expand_ioc_area(parent, size, min, max, align)) { |
| __raw_writel(((parent->start)>>16) | 0xffff0000, |
| &ioc->ioc_regs->io_io_low); |
| __raw_writel(((parent->end)>>16) | 0xffff0000, |
| &ioc->ioc_regs->io_io_high); |
| } else if (!expand_ioc_area(parent + 1, size, min, max, align)) { |
| parent++; |
| __raw_writel(((parent->start)>>16) | 0xffff0000, |
| &ioc->ioc_regs->io_io_low_hv); |
| __raw_writel(((parent->end)>>16) | 0xffff0000, |
| &ioc->ioc_regs->io_io_high_hv); |
| } else { |
| return -EBUSY; |
| } |
| |
| out: |
| return allocate_resource(parent, res, size, min, max, align, NULL,NULL); |
| } |
| |
| int ccio_request_resource(const struct parisc_device *dev, |
| struct resource *res) |
| { |
| struct resource *parent; |
| struct ioc *ioc = ccio_get_iommu(dev); |
| |
| if (!ioc) { |
| parent = &iomem_resource; |
| } else if ((ioc->mmio_region->start <= res->start) && |
| (res->end <= ioc->mmio_region->end)) { |
| parent = ioc->mmio_region; |
| } else if (((ioc->mmio_region + 1)->start <= res->start) && |
| (res->end <= (ioc->mmio_region + 1)->end)) { |
| parent = ioc->mmio_region + 1; |
| } else { |
| return -EBUSY; |
| } |
| |
| /* "transparent" bus bridges need to register MMIO resources |
| * firmware assigned them. e.g. children of hppb.c (e.g. K-class) |
| * registered their resources in the PDC "bus walk" (See |
| * arch/parisc/kernel/inventory.c). |
| */ |
| return insert_resource(parent, res); |
| } |
| |
| /** |
| * ccio_probe - Determine if ccio should claim this device. |
| * @dev: The device which has been found |
| * |
| * Determine if ccio should claim this chip (return 0) or not (return 1). |
| * If so, initialize the chip and tell other partners in crime they |
| * have work to do. |
| */ |
| static int __init ccio_probe(struct parisc_device *dev) |
| { |
| int i; |
| struct ioc *ioc, **ioc_p = &ioc_list; |
| |
| ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL); |
| if (ioc == NULL) { |
| printk(KERN_ERR MODULE_NAME ": memory allocation failure\n"); |
| return 1; |
| } |
| |
| ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn"; |
| |
| printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start); |
| |
| for (i = 0; i < ioc_count; i++) { |
| ioc_p = &(*ioc_p)->next; |
| } |
| *ioc_p = ioc; |
| |
| ioc->hw_path = dev->hw_path; |
| ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096); |
| ccio_ioc_init(ioc); |
| ccio_init_resources(ioc); |
| hppa_dma_ops = &ccio_ops; |
| dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL); |
| |
| /* if this fails, no I/O cards will work, so may as well bug */ |
| BUG_ON(dev->dev.platform_data == NULL); |
| HBA_DATA(dev->dev.platform_data)->iommu = ioc; |
| |
| if (ioc_count == 0) { |
| proc_create(MODULE_NAME, 0, proc_runway_root, |
| &ccio_proc_info_fops); |
| proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root, |
| &ccio_proc_bitmap_fops); |
| } |
| |
| ioc_count++; |
| |
| parisc_vmerge_boundary = IOVP_SIZE; |
| parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE; |
| parisc_has_iommu(); |
| return 0; |
| } |
| |
| /** |
| * ccio_init - ccio initialization procedure. |
| * |
| * Register this driver. |
| */ |
| void __init ccio_init(void) |
| { |
| register_parisc_driver(&ccio_driver); |
| } |
| |