| /* |
| * linux/arch/arm/mach-omap1/time.c |
| * |
| * OMAP Timers |
| * |
| * Copyright (C) 2004 Nokia Corporation |
| * Partial timer rewrite and additional dynamic tick timer support by |
| * Tony Lindgen <tony@atomide.com> and |
| * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> |
| * |
| * MPU timer code based on the older MPU timer code for OMAP |
| * Copyright (C) 2000 RidgeRun, Inc. |
| * Author: Greg Lonnon <glonnon@ridgerun.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN |
| * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/system.h> |
| #include <asm/hardware.h> |
| #include <asm/io.h> |
| #include <asm/leds.h> |
| #include <asm/irq.h> |
| #include <asm/mach/irq.h> |
| #include <asm/mach/time.h> |
| |
| struct sys_timer omap_timer; |
| |
| #ifdef CONFIG_OMAP_MPU_TIMER |
| |
| /* |
| * --------------------------------------------------------------------------- |
| * MPU timer |
| * --------------------------------------------------------------------------- |
| */ |
| #define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE |
| #define OMAP_MPU_TIMER_OFFSET 0x100 |
| |
| /* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c, |
| * converted to use kHz by Kevin Hilman */ |
| /* convert from cycles(64bits) => nanoseconds (64bits) |
| * basic equation: |
| * ns = cycles / (freq / ns_per_sec) |
| * ns = cycles * (ns_per_sec / freq) |
| * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| * ns = cycles * (10^6 / cpu_khz) |
| * |
| * Then we use scaling math (suggested by george at mvista.com) to get: |
| * ns = cycles * (10^6 * SC / cpu_khz / SC |
| * ns = cycles * cyc2ns_scale / SC |
| * |
| * And since SC is a constant power of two, we can convert the div |
| * into a shift. |
| * -johnstul at us.ibm.com "math is hard, lets go shopping!" |
| */ |
| static unsigned long cyc2ns_scale; |
| #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ |
| |
| static inline void set_cyc2ns_scale(unsigned long cpu_khz) |
| { |
| cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz; |
| } |
| |
| static inline unsigned long long cycles_2_ns(unsigned long long cyc) |
| { |
| return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; |
| } |
| |
| /* |
| * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs |
| * will break. On P2, the timer count rate is 6.5 MHz after programming PTV |
| * with 0. This divides the 13MHz input by 2, and is undocumented. |
| */ |
| #ifdef CONFIG_MACH_OMAP_PERSEUS2 |
| /* REVISIT: This ifdef construct should be replaced by a query to clock |
| * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz. |
| */ |
| #define MPU_TICKS_PER_SEC (13000000 / 2) |
| #else |
| #define MPU_TICKS_PER_SEC (12000000 / 2) |
| #endif |
| |
| #define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1) |
| |
| typedef struct { |
| u32 cntl; /* CNTL_TIMER, R/W */ |
| u32 load_tim; /* LOAD_TIM, W */ |
| u32 read_tim; /* READ_TIM, R */ |
| } omap_mpu_timer_regs_t; |
| |
| #define omap_mpu_timer_base(n) \ |
| ((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \ |
| (n)*OMAP_MPU_TIMER_OFFSET)) |
| |
| static inline unsigned long omap_mpu_timer_read(int nr) |
| { |
| volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); |
| return timer->read_tim; |
| } |
| |
| static inline void omap_mpu_timer_start(int nr, unsigned long load_val) |
| { |
| volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); |
| |
| timer->cntl = MPU_TIMER_CLOCK_ENABLE; |
| udelay(1); |
| timer->load_tim = load_val; |
| udelay(1); |
| timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST); |
| } |
| |
| unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks) |
| { |
| unsigned long long nsec; |
| |
| nsec = cycles_2_ns((unsigned long long)nr_ticks); |
| return (unsigned long)nsec / 1000; |
| } |
| |
| /* |
| * Last processed system timer interrupt |
| */ |
| static unsigned long omap_mpu_timer_last = 0; |
| |
| /* |
| * Returns elapsed usecs since last system timer interrupt |
| */ |
| static unsigned long omap_mpu_timer_gettimeoffset(void) |
| { |
| unsigned long now = 0 - omap_mpu_timer_read(0); |
| unsigned long elapsed = now - omap_mpu_timer_last; |
| |
| return omap_mpu_timer_ticks_to_usecs(elapsed); |
| } |
| |
| /* |
| * Elapsed time between interrupts is calculated using timer0. |
| * Latency during the interrupt is calculated using timer1. |
| * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz). |
| */ |
| static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id, |
| struct pt_regs *regs) |
| { |
| unsigned long now, latency; |
| |
| write_seqlock(&xtime_lock); |
| now = 0 - omap_mpu_timer_read(0); |
| latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1); |
| omap_mpu_timer_last = now - latency; |
| timer_tick(regs); |
| write_sequnlock(&xtime_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction omap_mpu_timer_irq = { |
| .name = "mpu timer", |
| .flags = SA_INTERRUPT | SA_TIMER, |
| .handler = omap_mpu_timer_interrupt, |
| }; |
| |
| static unsigned long omap_mpu_timer1_overflows; |
| static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id, |
| struct pt_regs *regs) |
| { |
| omap_mpu_timer1_overflows++; |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction omap_mpu_timer1_irq = { |
| .name = "mpu timer1 overflow", |
| .flags = SA_INTERRUPT, |
| .handler = omap_mpu_timer1_interrupt, |
| }; |
| |
| static __init void omap_init_mpu_timer(void) |
| { |
| set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000); |
| omap_timer.offset = omap_mpu_timer_gettimeoffset; |
| setup_irq(INT_TIMER1, &omap_mpu_timer1_irq); |
| setup_irq(INT_TIMER2, &omap_mpu_timer_irq); |
| omap_mpu_timer_start(0, 0xffffffff); |
| omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD); |
| } |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| unsigned long ticks = 0 - omap_mpu_timer_read(0); |
| unsigned long long ticks64; |
| |
| ticks64 = omap_mpu_timer1_overflows; |
| ticks64 <<= 32; |
| ticks64 |= ticks; |
| |
| return cycles_2_ns(ticks64); |
| } |
| #endif /* CONFIG_OMAP_MPU_TIMER */ |
| |
| #ifdef CONFIG_OMAP_32K_TIMER |
| |
| #ifdef CONFIG_ARCH_OMAP15XX |
| #error OMAP 32KHz timer does not currently work on 15XX! |
| #endif |
| |
| /* |
| * --------------------------------------------------------------------------- |
| * 32KHz OS timer |
| * |
| * This currently works only on 16xx, as 1510 does not have the continuous |
| * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track |
| * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer |
| * on 1510 would be possible, but the timer would not be as accurate as |
| * with the 32KHz synchronized timer. |
| * --------------------------------------------------------------------------- |
| */ |
| #define OMAP_32K_TIMER_BASE 0xfffb9000 |
| #define OMAP_32K_TIMER_CR 0x08 |
| #define OMAP_32K_TIMER_TVR 0x00 |
| #define OMAP_32K_TIMER_TCR 0x04 |
| |
| #define OMAP_32K_TICKS_PER_HZ (32768 / HZ) |
| |
| /* |
| * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1 |
| * so with HZ = 100, TVR = 327.68. |
| */ |
| #define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1) |
| #define TIMER_32K_SYNCHRONIZED 0xfffbc410 |
| |
| #define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \ |
| (((nr_jiffies) * (clock_rate)) / HZ) |
| |
| static inline void omap_32k_timer_write(int val, int reg) |
| { |
| omap_writew(val, reg + OMAP_32K_TIMER_BASE); |
| } |
| |
| static inline unsigned long omap_32k_timer_read(int reg) |
| { |
| return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff; |
| } |
| |
| /* |
| * The 32KHz synchronized timer is an additional timer on 16xx. |
| * It is always running. |
| */ |
| static inline unsigned long omap_32k_sync_timer_read(void) |
| { |
| return omap_readl(TIMER_32K_SYNCHRONIZED); |
| } |
| |
| static inline void omap_32k_timer_start(unsigned long load_val) |
| { |
| omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR); |
| omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR); |
| } |
| |
| static inline void omap_32k_timer_stop(void) |
| { |
| omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR); |
| } |
| |
| /* |
| * Rounds down to nearest usec. Note that this will overflow for larger values. |
| */ |
| static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k) |
| { |
| return (ticks_32k * 5*5*5*5*5*5) >> 9; |
| } |
| |
| /* |
| * Rounds down to nearest nsec. |
| */ |
| static inline unsigned long long |
| omap_32k_ticks_to_nsecs(unsigned long ticks_32k) |
| { |
| return (unsigned long long) ticks_32k * 1000 * 5*5*5*5*5*5 >> 9; |
| } |
| |
| static unsigned long omap_32k_last_tick = 0; |
| |
| /* |
| * Returns elapsed usecs since last 32k timer interrupt |
| */ |
| static unsigned long omap_32k_timer_gettimeoffset(void) |
| { |
| unsigned long now = omap_32k_sync_timer_read(); |
| return omap_32k_ticks_to_usecs(now - omap_32k_last_tick); |
| } |
| |
| /* |
| * Returns current time from boot in nsecs. It's OK for this to wrap |
| * around for now, as it's just a relative time stamp. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| return omap_32k_ticks_to_nsecs(omap_32k_sync_timer_read()); |
| } |
| |
| /* |
| * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this |
| * function is also called from other interrupts to remove latency |
| * issues with dynamic tick. In the dynamic tick case, we need to lock |
| * with irqsave. |
| */ |
| static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id, |
| struct pt_regs *regs) |
| { |
| unsigned long flags; |
| unsigned long now; |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| now = omap_32k_sync_timer_read(); |
| |
| while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) { |
| omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ; |
| timer_tick(regs); |
| } |
| |
| /* Restart timer so we don't drift off due to modulo or dynamic tick. |
| * By default we program the next timer to be continuous to avoid |
| * latencies during high system load. During dynamic tick operation the |
| * continuous timer can be overridden from pm_idle to be longer. |
| */ |
| omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now); |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_NO_IDLE_HZ |
| /* |
| * Programs the next timer interrupt needed. Called when dynamic tick is |
| * enabled, and to reprogram the ticks to skip from pm_idle. Note that |
| * we can keep the timer continuous, and don't need to set it to run in |
| * one-shot mode. This is because the timer will get reprogrammed again |
| * after next interrupt. |
| */ |
| void omap_32k_timer_reprogram(unsigned long next_tick) |
| { |
| omap_32k_timer_start(JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1); |
| } |
| |
| static struct irqaction omap_32k_timer_irq; |
| extern struct timer_update_handler timer_update; |
| |
| static int omap_32k_timer_enable_dyn_tick(void) |
| { |
| /* No need to reprogram timer, just use the next interrupt */ |
| return 0; |
| } |
| |
| static int omap_32k_timer_disable_dyn_tick(void) |
| { |
| omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); |
| return 0; |
| } |
| |
| static struct dyn_tick_timer omap_dyn_tick_timer = { |
| .enable = omap_32k_timer_enable_dyn_tick, |
| .disable = omap_32k_timer_disable_dyn_tick, |
| .reprogram = omap_32k_timer_reprogram, |
| .handler = omap_32k_timer_interrupt, |
| }; |
| #endif /* CONFIG_NO_IDLE_HZ */ |
| |
| static struct irqaction omap_32k_timer_irq = { |
| .name = "32KHz timer", |
| .flags = SA_INTERRUPT | SA_TIMER, |
| .handler = omap_32k_timer_interrupt, |
| }; |
| |
| static __init void omap_init_32k_timer(void) |
| { |
| |
| #ifdef CONFIG_NO_IDLE_HZ |
| omap_timer.dyn_tick = &omap_dyn_tick_timer; |
| #endif |
| |
| setup_irq(INT_OS_TIMER, &omap_32k_timer_irq); |
| omap_timer.offset = omap_32k_timer_gettimeoffset; |
| omap_32k_last_tick = omap_32k_sync_timer_read(); |
| omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); |
| } |
| #endif /* CONFIG_OMAP_32K_TIMER */ |
| |
| /* |
| * --------------------------------------------------------------------------- |
| * Timer initialization |
| * --------------------------------------------------------------------------- |
| */ |
| static void __init omap_timer_init(void) |
| { |
| #if defined(CONFIG_OMAP_MPU_TIMER) |
| omap_init_mpu_timer(); |
| #elif defined(CONFIG_OMAP_32K_TIMER) |
| omap_init_32k_timer(); |
| #else |
| #error No system timer selected in Kconfig! |
| #endif |
| } |
| |
| struct sys_timer omap_timer = { |
| .init = omap_timer_init, |
| .offset = NULL, /* Initialized later */ |
| }; |