| /* |
| * Block driver for media (i.e., flash cards) |
| * |
| * Copyright 2002 Hewlett-Packard Company |
| * Copyright 2005-2008 Pierre Ossman |
| * |
| * Use consistent with the GNU GPL is permitted, |
| * provided that this copyright notice is |
| * preserved in its entirety in all copies and derived works. |
| * |
| * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, |
| * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS |
| * FITNESS FOR ANY PARTICULAR PURPOSE. |
| * |
| * Many thanks to Alessandro Rubini and Jonathan Corbet! |
| * |
| * Author: Andrew Christian |
| * 28 May 2002 |
| */ |
| #include <linux/moduleparam.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/fs.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/hdreg.h> |
| #include <linux/kdev_t.h> |
| #include <linux/blkdev.h> |
| #include <linux/mutex.h> |
| #include <linux/scatterlist.h> |
| #include <linux/string_helpers.h> |
| #include <linux/delay.h> |
| #include <linux/capability.h> |
| #include <linux/compat.h> |
| |
| #include <linux/mmc/ioctl.h> |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/sd.h> |
| |
| #include <asm/uaccess.h> |
| |
| #include "queue.h" |
| |
| MODULE_ALIAS("mmc:block"); |
| #ifdef MODULE_PARAM_PREFIX |
| #undef MODULE_PARAM_PREFIX |
| #endif |
| #define MODULE_PARAM_PREFIX "mmcblk." |
| |
| #define INAND_CMD38_ARG_EXT_CSD 113 |
| #define INAND_CMD38_ARG_ERASE 0x00 |
| #define INAND_CMD38_ARG_TRIM 0x01 |
| #define INAND_CMD38_ARG_SECERASE 0x80 |
| #define INAND_CMD38_ARG_SECTRIM1 0x81 |
| #define INAND_CMD38_ARG_SECTRIM2 0x88 |
| |
| static DEFINE_MUTEX(block_mutex); |
| |
| /* |
| * The defaults come from config options but can be overriden by module |
| * or bootarg options. |
| */ |
| static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; |
| |
| /* |
| * We've only got one major, so number of mmcblk devices is |
| * limited to 256 / number of minors per device. |
| */ |
| static int max_devices; |
| |
| /* 256 minors, so at most 256 separate devices */ |
| static DECLARE_BITMAP(dev_use, 256); |
| static DECLARE_BITMAP(name_use, 256); |
| |
| /* |
| * There is one mmc_blk_data per slot. |
| */ |
| struct mmc_blk_data { |
| spinlock_t lock; |
| struct gendisk *disk; |
| struct mmc_queue queue; |
| struct list_head part; |
| |
| unsigned int flags; |
| #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ |
| #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ |
| |
| unsigned int usage; |
| unsigned int read_only; |
| unsigned int part_type; |
| unsigned int name_idx; |
| unsigned int reset_done; |
| #define MMC_BLK_READ BIT(0) |
| #define MMC_BLK_WRITE BIT(1) |
| #define MMC_BLK_DISCARD BIT(2) |
| #define MMC_BLK_SECDISCARD BIT(3) |
| |
| /* |
| * Only set in main mmc_blk_data associated |
| * with mmc_card with mmc_set_drvdata, and keeps |
| * track of the current selected device partition. |
| */ |
| unsigned int part_curr; |
| struct device_attribute force_ro; |
| struct device_attribute power_ro_lock; |
| int area_type; |
| }; |
| |
| static DEFINE_MUTEX(open_lock); |
| |
| enum mmc_blk_status { |
| MMC_BLK_SUCCESS = 0, |
| MMC_BLK_PARTIAL, |
| MMC_BLK_CMD_ERR, |
| MMC_BLK_RETRY, |
| MMC_BLK_ABORT, |
| MMC_BLK_DATA_ERR, |
| MMC_BLK_ECC_ERR, |
| MMC_BLK_NOMEDIUM, |
| }; |
| |
| module_param(perdev_minors, int, 0444); |
| MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); |
| |
| static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) |
| { |
| struct mmc_blk_data *md; |
| |
| mutex_lock(&open_lock); |
| md = disk->private_data; |
| if (md && md->usage == 0) |
| md = NULL; |
| if (md) |
| md->usage++; |
| mutex_unlock(&open_lock); |
| |
| return md; |
| } |
| |
| static inline int mmc_get_devidx(struct gendisk *disk) |
| { |
| int devmaj = MAJOR(disk_devt(disk)); |
| int devidx = MINOR(disk_devt(disk)) / perdev_minors; |
| |
| if (!devmaj) |
| devidx = disk->first_minor / perdev_minors; |
| return devidx; |
| } |
| |
| static void mmc_blk_put(struct mmc_blk_data *md) |
| { |
| mutex_lock(&open_lock); |
| md->usage--; |
| if (md->usage == 0) { |
| int devidx = mmc_get_devidx(md->disk); |
| blk_cleanup_queue(md->queue.queue); |
| |
| __clear_bit(devidx, dev_use); |
| |
| put_disk(md->disk); |
| kfree(md); |
| } |
| mutex_unlock(&open_lock); |
| } |
| |
| static ssize_t power_ro_lock_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int ret; |
| struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); |
| struct mmc_card *card = md->queue.card; |
| int locked = 0; |
| |
| if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) |
| locked = 2; |
| else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) |
| locked = 1; |
| |
| ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); |
| |
| return ret; |
| } |
| |
| static ssize_t power_ro_lock_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| int ret; |
| struct mmc_blk_data *md, *part_md; |
| struct mmc_card *card; |
| unsigned long set; |
| |
| if (kstrtoul(buf, 0, &set)) |
| return -EINVAL; |
| |
| if (set != 1) |
| return count; |
| |
| md = mmc_blk_get(dev_to_disk(dev)); |
| card = md->queue.card; |
| |
| mmc_claim_host(card->host); |
| |
| ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, |
| card->ext_csd.boot_ro_lock | |
| EXT_CSD_BOOT_WP_B_PWR_WP_EN, |
| card->ext_csd.part_time); |
| if (ret) |
| pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret); |
| else |
| card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN; |
| |
| mmc_release_host(card->host); |
| |
| if (!ret) { |
| pr_info("%s: Locking boot partition ro until next power on\n", |
| md->disk->disk_name); |
| set_disk_ro(md->disk, 1); |
| |
| list_for_each_entry(part_md, &md->part, part) |
| if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { |
| pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); |
| set_disk_ro(part_md->disk, 1); |
| } |
| } |
| |
| mmc_blk_put(md); |
| return count; |
| } |
| |
| static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int ret; |
| struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); |
| |
| ret = snprintf(buf, PAGE_SIZE, "%d", |
| get_disk_ro(dev_to_disk(dev)) ^ |
| md->read_only); |
| mmc_blk_put(md); |
| return ret; |
| } |
| |
| static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret; |
| char *end; |
| struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); |
| unsigned long set = simple_strtoul(buf, &end, 0); |
| if (end == buf) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| set_disk_ro(dev_to_disk(dev), set || md->read_only); |
| ret = count; |
| out: |
| mmc_blk_put(md); |
| return ret; |
| } |
| |
| static int mmc_blk_open(struct block_device *bdev, fmode_t mode) |
| { |
| struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); |
| int ret = -ENXIO; |
| |
| mutex_lock(&block_mutex); |
| if (md) { |
| if (md->usage == 2) |
| check_disk_change(bdev); |
| ret = 0; |
| |
| if ((mode & FMODE_WRITE) && md->read_only) { |
| mmc_blk_put(md); |
| ret = -EROFS; |
| } |
| } |
| mutex_unlock(&block_mutex); |
| |
| return ret; |
| } |
| |
| static int mmc_blk_release(struct gendisk *disk, fmode_t mode) |
| { |
| struct mmc_blk_data *md = disk->private_data; |
| |
| mutex_lock(&block_mutex); |
| mmc_blk_put(md); |
| mutex_unlock(&block_mutex); |
| return 0; |
| } |
| |
| static int |
| mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); |
| geo->heads = 4; |
| geo->sectors = 16; |
| return 0; |
| } |
| |
| struct mmc_blk_ioc_data { |
| struct mmc_ioc_cmd ic; |
| unsigned char *buf; |
| u64 buf_bytes; |
| }; |
| |
| static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( |
| struct mmc_ioc_cmd __user *user) |
| { |
| struct mmc_blk_ioc_data *idata; |
| int err; |
| |
| idata = kzalloc(sizeof(*idata), GFP_KERNEL); |
| if (!idata) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { |
| err = -EFAULT; |
| goto idata_err; |
| } |
| |
| idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; |
| if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { |
| err = -EOVERFLOW; |
| goto idata_err; |
| } |
| |
| if (!idata->buf_bytes) |
| return idata; |
| |
| idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL); |
| if (!idata->buf) { |
| err = -ENOMEM; |
| goto idata_err; |
| } |
| |
| if (copy_from_user(idata->buf, (void __user *)(unsigned long) |
| idata->ic.data_ptr, idata->buf_bytes)) { |
| err = -EFAULT; |
| goto copy_err; |
| } |
| |
| return idata; |
| |
| copy_err: |
| kfree(idata->buf); |
| idata_err: |
| kfree(idata); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| static int mmc_blk_ioctl_cmd(struct block_device *bdev, |
| struct mmc_ioc_cmd __user *ic_ptr) |
| { |
| struct mmc_blk_ioc_data *idata; |
| struct mmc_blk_data *md; |
| struct mmc_card *card; |
| struct mmc_command cmd = {0}; |
| struct mmc_data data = {0}; |
| struct mmc_request mrq = {NULL}; |
| struct scatterlist sg; |
| int err; |
| |
| /* |
| * The caller must have CAP_SYS_RAWIO, and must be calling this on the |
| * whole block device, not on a partition. This prevents overspray |
| * between sibling partitions. |
| */ |
| if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) |
| return -EPERM; |
| |
| idata = mmc_blk_ioctl_copy_from_user(ic_ptr); |
| if (IS_ERR(idata)) |
| return PTR_ERR(idata); |
| |
| md = mmc_blk_get(bdev->bd_disk); |
| if (!md) { |
| err = -EINVAL; |
| goto cmd_err; |
| } |
| |
| card = md->queue.card; |
| if (IS_ERR(card)) { |
| err = PTR_ERR(card); |
| goto cmd_done; |
| } |
| |
| cmd.opcode = idata->ic.opcode; |
| cmd.arg = idata->ic.arg; |
| cmd.flags = idata->ic.flags; |
| |
| if (idata->buf_bytes) { |
| data.sg = &sg; |
| data.sg_len = 1; |
| data.blksz = idata->ic.blksz; |
| data.blocks = idata->ic.blocks; |
| |
| sg_init_one(data.sg, idata->buf, idata->buf_bytes); |
| |
| if (idata->ic.write_flag) |
| data.flags = MMC_DATA_WRITE; |
| else |
| data.flags = MMC_DATA_READ; |
| |
| /* data.flags must already be set before doing this. */ |
| mmc_set_data_timeout(&data, card); |
| |
| /* Allow overriding the timeout_ns for empirical tuning. */ |
| if (idata->ic.data_timeout_ns) |
| data.timeout_ns = idata->ic.data_timeout_ns; |
| |
| if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { |
| /* |
| * Pretend this is a data transfer and rely on the |
| * host driver to compute timeout. When all host |
| * drivers support cmd.cmd_timeout for R1B, this |
| * can be changed to: |
| * |
| * mrq.data = NULL; |
| * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; |
| */ |
| data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; |
| } |
| |
| mrq.data = &data; |
| } |
| |
| mrq.cmd = &cmd; |
| |
| mmc_claim_host(card->host); |
| |
| if (idata->ic.is_acmd) { |
| err = mmc_app_cmd(card->host, card); |
| if (err) |
| goto cmd_rel_host; |
| } |
| |
| mmc_wait_for_req(card->host, &mrq); |
| |
| if (cmd.error) { |
| dev_err(mmc_dev(card->host), "%s: cmd error %d\n", |
| __func__, cmd.error); |
| err = cmd.error; |
| goto cmd_rel_host; |
| } |
| if (data.error) { |
| dev_err(mmc_dev(card->host), "%s: data error %d\n", |
| __func__, data.error); |
| err = data.error; |
| goto cmd_rel_host; |
| } |
| |
| /* |
| * According to the SD specs, some commands require a delay after |
| * issuing the command. |
| */ |
| if (idata->ic.postsleep_min_us) |
| usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); |
| |
| if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) { |
| err = -EFAULT; |
| goto cmd_rel_host; |
| } |
| |
| if (!idata->ic.write_flag) { |
| if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr, |
| idata->buf, idata->buf_bytes)) { |
| err = -EFAULT; |
| goto cmd_rel_host; |
| } |
| } |
| |
| cmd_rel_host: |
| mmc_release_host(card->host); |
| |
| cmd_done: |
| mmc_blk_put(md); |
| cmd_err: |
| kfree(idata->buf); |
| kfree(idata); |
| return err; |
| } |
| |
| static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| int ret = -EINVAL; |
| if (cmd == MMC_IOC_CMD) |
| ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg); |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); |
| } |
| #endif |
| |
| static const struct block_device_operations mmc_bdops = { |
| .open = mmc_blk_open, |
| .release = mmc_blk_release, |
| .getgeo = mmc_blk_getgeo, |
| .owner = THIS_MODULE, |
| .ioctl = mmc_blk_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = mmc_blk_compat_ioctl, |
| #endif |
| }; |
| |
| static inline int mmc_blk_part_switch(struct mmc_card *card, |
| struct mmc_blk_data *md) |
| { |
| int ret; |
| struct mmc_blk_data *main_md = mmc_get_drvdata(card); |
| |
| if (main_md->part_curr == md->part_type) |
| return 0; |
| |
| if (mmc_card_mmc(card)) { |
| u8 part_config = card->ext_csd.part_config; |
| |
| part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; |
| part_config |= md->part_type; |
| |
| ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| EXT_CSD_PART_CONFIG, part_config, |
| card->ext_csd.part_time); |
| if (ret) |
| return ret; |
| |
| card->ext_csd.part_config = part_config; |
| } |
| |
| main_md->part_curr = md->part_type; |
| return 0; |
| } |
| |
| static u32 mmc_sd_num_wr_blocks(struct mmc_card *card) |
| { |
| int err; |
| u32 result; |
| __be32 *blocks; |
| |
| struct mmc_request mrq = {NULL}; |
| struct mmc_command cmd = {0}; |
| struct mmc_data data = {0}; |
| unsigned int timeout_us; |
| |
| struct scatterlist sg; |
| |
| cmd.opcode = MMC_APP_CMD; |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) |
| return (u32)-1; |
| if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) |
| return (u32)-1; |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| |
| cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; |
| |
| data.timeout_ns = card->csd.tacc_ns * 100; |
| data.timeout_clks = card->csd.tacc_clks * 100; |
| |
| timeout_us = data.timeout_ns / 1000; |
| timeout_us += data.timeout_clks * 1000 / |
| (card->host->ios.clock / 1000); |
| |
| if (timeout_us > 100000) { |
| data.timeout_ns = 100000000; |
| data.timeout_clks = 0; |
| } |
| |
| data.blksz = 4; |
| data.blocks = 1; |
| data.flags = MMC_DATA_READ; |
| data.sg = &sg; |
| data.sg_len = 1; |
| |
| mrq.cmd = &cmd; |
| mrq.data = &data; |
| |
| blocks = kmalloc(4, GFP_KERNEL); |
| if (!blocks) |
| return (u32)-1; |
| |
| sg_init_one(&sg, blocks, 4); |
| |
| mmc_wait_for_req(card->host, &mrq); |
| |
| result = ntohl(*blocks); |
| kfree(blocks); |
| |
| if (cmd.error || data.error) |
| result = (u32)-1; |
| |
| return result; |
| } |
| |
| static int send_stop(struct mmc_card *card, u32 *status) |
| { |
| struct mmc_command cmd = {0}; |
| int err; |
| |
| cmd.opcode = MMC_STOP_TRANSMISSION; |
| cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 5); |
| if (err == 0) |
| *status = cmd.resp[0]; |
| return err; |
| } |
| |
| static int get_card_status(struct mmc_card *card, u32 *status, int retries) |
| { |
| struct mmc_command cmd = {0}; |
| int err; |
| |
| cmd.opcode = MMC_SEND_STATUS; |
| if (!mmc_host_is_spi(card->host)) |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, retries); |
| if (err == 0) |
| *status = cmd.resp[0]; |
| return err; |
| } |
| |
| #define ERR_NOMEDIUM 3 |
| #define ERR_RETRY 2 |
| #define ERR_ABORT 1 |
| #define ERR_CONTINUE 0 |
| |
| static int mmc_blk_cmd_error(struct request *req, const char *name, int error, |
| bool status_valid, u32 status) |
| { |
| switch (error) { |
| case -EILSEQ: |
| /* response crc error, retry the r/w cmd */ |
| pr_err("%s: %s sending %s command, card status %#x\n", |
| req->rq_disk->disk_name, "response CRC error", |
| name, status); |
| return ERR_RETRY; |
| |
| case -ETIMEDOUT: |
| pr_err("%s: %s sending %s command, card status %#x\n", |
| req->rq_disk->disk_name, "timed out", name, status); |
| |
| /* If the status cmd initially failed, retry the r/w cmd */ |
| if (!status_valid) |
| return ERR_RETRY; |
| |
| /* |
| * If it was a r/w cmd crc error, or illegal command |
| * (eg, issued in wrong state) then retry - we should |
| * have corrected the state problem above. |
| */ |
| if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) |
| return ERR_RETRY; |
| |
| /* Otherwise abort the command */ |
| return ERR_ABORT; |
| |
| default: |
| /* We don't understand the error code the driver gave us */ |
| pr_err("%s: unknown error %d sending read/write command, card status %#x\n", |
| req->rq_disk->disk_name, error, status); |
| return ERR_ABORT; |
| } |
| } |
| |
| /* |
| * Initial r/w and stop cmd error recovery. |
| * We don't know whether the card received the r/w cmd or not, so try to |
| * restore things back to a sane state. Essentially, we do this as follows: |
| * - Obtain card status. If the first attempt to obtain card status fails, |
| * the status word will reflect the failed status cmd, not the failed |
| * r/w cmd. If we fail to obtain card status, it suggests we can no |
| * longer communicate with the card. |
| * - Check the card state. If the card received the cmd but there was a |
| * transient problem with the response, it might still be in a data transfer |
| * mode. Try to send it a stop command. If this fails, we can't recover. |
| * - If the r/w cmd failed due to a response CRC error, it was probably |
| * transient, so retry the cmd. |
| * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. |
| * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or |
| * illegal cmd, retry. |
| * Otherwise we don't understand what happened, so abort. |
| */ |
| static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, |
| struct mmc_blk_request *brq, int *ecc_err) |
| { |
| bool prev_cmd_status_valid = true; |
| u32 status, stop_status = 0; |
| int err, retry; |
| |
| if (mmc_card_removed(card)) |
| return ERR_NOMEDIUM; |
| |
| /* |
| * Try to get card status which indicates both the card state |
| * and why there was no response. If the first attempt fails, |
| * we can't be sure the returned status is for the r/w command. |
| */ |
| for (retry = 2; retry >= 0; retry--) { |
| err = get_card_status(card, &status, 0); |
| if (!err) |
| break; |
| |
| prev_cmd_status_valid = false; |
| pr_err("%s: error %d sending status command, %sing\n", |
| req->rq_disk->disk_name, err, retry ? "retry" : "abort"); |
| } |
| |
| /* We couldn't get a response from the card. Give up. */ |
| if (err) { |
| /* Check if the card is removed */ |
| if (mmc_detect_card_removed(card->host)) |
| return ERR_NOMEDIUM; |
| return ERR_ABORT; |
| } |
| |
| /* Flag ECC errors */ |
| if ((status & R1_CARD_ECC_FAILED) || |
| (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || |
| (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) |
| *ecc_err = 1; |
| |
| /* |
| * Check the current card state. If it is in some data transfer |
| * mode, tell it to stop (and hopefully transition back to TRAN.) |
| */ |
| if (R1_CURRENT_STATE(status) == R1_STATE_DATA || |
| R1_CURRENT_STATE(status) == R1_STATE_RCV) { |
| err = send_stop(card, &stop_status); |
| if (err) |
| pr_err("%s: error %d sending stop command\n", |
| req->rq_disk->disk_name, err); |
| |
| /* |
| * If the stop cmd also timed out, the card is probably |
| * not present, so abort. Other errors are bad news too. |
| */ |
| if (err) |
| return ERR_ABORT; |
| if (stop_status & R1_CARD_ECC_FAILED) |
| *ecc_err = 1; |
| } |
| |
| /* Check for set block count errors */ |
| if (brq->sbc.error) |
| return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, |
| prev_cmd_status_valid, status); |
| |
| /* Check for r/w command errors */ |
| if (brq->cmd.error) |
| return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, |
| prev_cmd_status_valid, status); |
| |
| /* Data errors */ |
| if (!brq->stop.error) |
| return ERR_CONTINUE; |
| |
| /* Now for stop errors. These aren't fatal to the transfer. */ |
| pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", |
| req->rq_disk->disk_name, brq->stop.error, |
| brq->cmd.resp[0], status); |
| |
| /* |
| * Subsitute in our own stop status as this will give the error |
| * state which happened during the execution of the r/w command. |
| */ |
| if (stop_status) { |
| brq->stop.resp[0] = stop_status; |
| brq->stop.error = 0; |
| } |
| return ERR_CONTINUE; |
| } |
| |
| static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, |
| int type) |
| { |
| int err; |
| |
| if (md->reset_done & type) |
| return -EEXIST; |
| |
| md->reset_done |= type; |
| err = mmc_hw_reset(host); |
| /* Ensure we switch back to the correct partition */ |
| if (err != -EOPNOTSUPP) { |
| struct mmc_blk_data *main_md = mmc_get_drvdata(host->card); |
| int part_err; |
| |
| main_md->part_curr = main_md->part_type; |
| part_err = mmc_blk_part_switch(host->card, md); |
| if (part_err) { |
| /* |
| * We have failed to get back into the correct |
| * partition, so we need to abort the whole request. |
| */ |
| return -ENODEV; |
| } |
| } |
| return err; |
| } |
| |
| static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) |
| { |
| md->reset_done &= ~type; |
| } |
| |
| static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_blk_data *md = mq->data; |
| struct mmc_card *card = md->queue.card; |
| unsigned int from, nr, arg; |
| int err = 0, type = MMC_BLK_DISCARD; |
| |
| if (!mmc_can_erase(card)) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| from = blk_rq_pos(req); |
| nr = blk_rq_sectors(req); |
| |
| if (mmc_can_discard(card)) |
| arg = MMC_DISCARD_ARG; |
| else if (mmc_can_trim(card)) |
| arg = MMC_TRIM_ARG; |
| else |
| arg = MMC_ERASE_ARG; |
| retry: |
| if (card->quirks & MMC_QUIRK_INAND_CMD38) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| INAND_CMD38_ARG_EXT_CSD, |
| arg == MMC_TRIM_ARG ? |
| INAND_CMD38_ARG_TRIM : |
| INAND_CMD38_ARG_ERASE, |
| 0); |
| if (err) |
| goto out; |
| } |
| err = mmc_erase(card, from, nr, arg); |
| out: |
| if (err == -EIO && !mmc_blk_reset(md, card->host, type)) |
| goto retry; |
| if (!err) |
| mmc_blk_reset_success(md, type); |
| spin_lock_irq(&md->lock); |
| __blk_end_request(req, err, blk_rq_bytes(req)); |
| spin_unlock_irq(&md->lock); |
| |
| return err ? 0 : 1; |
| } |
| |
| static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, |
| struct request *req) |
| { |
| struct mmc_blk_data *md = mq->data; |
| struct mmc_card *card = md->queue.card; |
| unsigned int from, nr, arg, trim_arg, erase_arg; |
| int err = 0, type = MMC_BLK_SECDISCARD; |
| |
| if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| from = blk_rq_pos(req); |
| nr = blk_rq_sectors(req); |
| |
| /* The sanitize operation is supported at v4.5 only */ |
| if (mmc_can_sanitize(card)) { |
| erase_arg = MMC_ERASE_ARG; |
| trim_arg = MMC_TRIM_ARG; |
| } else { |
| erase_arg = MMC_SECURE_ERASE_ARG; |
| trim_arg = MMC_SECURE_TRIM1_ARG; |
| } |
| |
| if (mmc_erase_group_aligned(card, from, nr)) |
| arg = erase_arg; |
| else if (mmc_can_trim(card)) |
| arg = trim_arg; |
| else { |
| err = -EINVAL; |
| goto out; |
| } |
| retry: |
| if (card->quirks & MMC_QUIRK_INAND_CMD38) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| INAND_CMD38_ARG_EXT_CSD, |
| arg == MMC_SECURE_TRIM1_ARG ? |
| INAND_CMD38_ARG_SECTRIM1 : |
| INAND_CMD38_ARG_SECERASE, |
| 0); |
| if (err) |
| goto out_retry; |
| } |
| |
| err = mmc_erase(card, from, nr, arg); |
| if (err == -EIO) |
| goto out_retry; |
| if (err) |
| goto out; |
| |
| if (arg == MMC_SECURE_TRIM1_ARG) { |
| if (card->quirks & MMC_QUIRK_INAND_CMD38) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| INAND_CMD38_ARG_EXT_CSD, |
| INAND_CMD38_ARG_SECTRIM2, |
| 0); |
| if (err) |
| goto out_retry; |
| } |
| |
| err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); |
| if (err == -EIO) |
| goto out_retry; |
| if (err) |
| goto out; |
| } |
| |
| if (mmc_can_sanitize(card)) |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| EXT_CSD_SANITIZE_START, 1, 0); |
| out_retry: |
| if (err && !mmc_blk_reset(md, card->host, type)) |
| goto retry; |
| if (!err) |
| mmc_blk_reset_success(md, type); |
| out: |
| spin_lock_irq(&md->lock); |
| __blk_end_request(req, err, blk_rq_bytes(req)); |
| spin_unlock_irq(&md->lock); |
| |
| return err ? 0 : 1; |
| } |
| |
| static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) |
| { |
| struct mmc_blk_data *md = mq->data; |
| struct mmc_card *card = md->queue.card; |
| int ret = 0; |
| |
| ret = mmc_flush_cache(card); |
| if (ret) |
| ret = -EIO; |
| |
| spin_lock_irq(&md->lock); |
| __blk_end_request_all(req, ret); |
| spin_unlock_irq(&md->lock); |
| |
| return ret ? 0 : 1; |
| } |
| |
| /* |
| * Reformat current write as a reliable write, supporting |
| * both legacy and the enhanced reliable write MMC cards. |
| * In each transfer we'll handle only as much as a single |
| * reliable write can handle, thus finish the request in |
| * partial completions. |
| */ |
| static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, |
| struct mmc_card *card, |
| struct request *req) |
| { |
| if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { |
| /* Legacy mode imposes restrictions on transfers. */ |
| if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors)) |
| brq->data.blocks = 1; |
| |
| if (brq->data.blocks > card->ext_csd.rel_sectors) |
| brq->data.blocks = card->ext_csd.rel_sectors; |
| else if (brq->data.blocks < card->ext_csd.rel_sectors) |
| brq->data.blocks = 1; |
| } |
| } |
| |
| #define CMD_ERRORS \ |
| (R1_OUT_OF_RANGE | /* Command argument out of range */ \ |
| R1_ADDRESS_ERROR | /* Misaligned address */ \ |
| R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ |
| R1_WP_VIOLATION | /* Tried to write to protected block */ \ |
| R1_CC_ERROR | /* Card controller error */ \ |
| R1_ERROR) /* General/unknown error */ |
| |
| static int mmc_blk_err_check(struct mmc_card *card, |
| struct mmc_async_req *areq) |
| { |
| struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, |
| mmc_active); |
| struct mmc_blk_request *brq = &mq_mrq->brq; |
| struct request *req = mq_mrq->req; |
| int ecc_err = 0; |
| |
| /* |
| * sbc.error indicates a problem with the set block count |
| * command. No data will have been transferred. |
| * |
| * cmd.error indicates a problem with the r/w command. No |
| * data will have been transferred. |
| * |
| * stop.error indicates a problem with the stop command. Data |
| * may have been transferred, or may still be transferring. |
| */ |
| if (brq->sbc.error || brq->cmd.error || brq->stop.error || |
| brq->data.error) { |
| switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) { |
| case ERR_RETRY: |
| return MMC_BLK_RETRY; |
| case ERR_ABORT: |
| return MMC_BLK_ABORT; |
| case ERR_NOMEDIUM: |
| return MMC_BLK_NOMEDIUM; |
| case ERR_CONTINUE: |
| break; |
| } |
| } |
| |
| /* |
| * Check for errors relating to the execution of the |
| * initial command - such as address errors. No data |
| * has been transferred. |
| */ |
| if (brq->cmd.resp[0] & CMD_ERRORS) { |
| pr_err("%s: r/w command failed, status = %#x\n", |
| req->rq_disk->disk_name, brq->cmd.resp[0]); |
| return MMC_BLK_ABORT; |
| } |
| |
| /* |
| * Everything else is either success, or a data error of some |
| * kind. If it was a write, we may have transitioned to |
| * program mode, which we have to wait for it to complete. |
| */ |
| if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { |
| u32 status; |
| do { |
| int err = get_card_status(card, &status, 5); |
| if (err) { |
| pr_err("%s: error %d requesting status\n", |
| req->rq_disk->disk_name, err); |
| return MMC_BLK_CMD_ERR; |
| } |
| /* |
| * Some cards mishandle the status bits, |
| * so make sure to check both the busy |
| * indication and the card state. |
| */ |
| } while (!(status & R1_READY_FOR_DATA) || |
| (R1_CURRENT_STATE(status) == R1_STATE_PRG)); |
| } |
| |
| if (brq->data.error) { |
| pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", |
| req->rq_disk->disk_name, brq->data.error, |
| (unsigned)blk_rq_pos(req), |
| (unsigned)blk_rq_sectors(req), |
| brq->cmd.resp[0], brq->stop.resp[0]); |
| |
| if (rq_data_dir(req) == READ) { |
| if (ecc_err) |
| return MMC_BLK_ECC_ERR; |
| return MMC_BLK_DATA_ERR; |
| } else { |
| return MMC_BLK_CMD_ERR; |
| } |
| } |
| |
| if (!brq->data.bytes_xfered) |
| return MMC_BLK_RETRY; |
| |
| if (blk_rq_bytes(req) != brq->data.bytes_xfered) |
| return MMC_BLK_PARTIAL; |
| |
| return MMC_BLK_SUCCESS; |
| } |
| |
| static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, |
| struct mmc_card *card, |
| int disable_multi, |
| struct mmc_queue *mq) |
| { |
| u32 readcmd, writecmd; |
| struct mmc_blk_request *brq = &mqrq->brq; |
| struct request *req = mqrq->req; |
| struct mmc_blk_data *md = mq->data; |
| bool do_data_tag; |
| |
| /* |
| * Reliable writes are used to implement Forced Unit Access and |
| * REQ_META accesses, and are supported only on MMCs. |
| * |
| * XXX: this really needs a good explanation of why REQ_META |
| * is treated special. |
| */ |
| bool do_rel_wr = ((req->cmd_flags & REQ_FUA) || |
| (req->cmd_flags & REQ_META)) && |
| (rq_data_dir(req) == WRITE) && |
| (md->flags & MMC_BLK_REL_WR); |
| |
| memset(brq, 0, sizeof(struct mmc_blk_request)); |
| brq->mrq.cmd = &brq->cmd; |
| brq->mrq.data = &brq->data; |
| |
| brq->cmd.arg = blk_rq_pos(req); |
| if (!mmc_card_blockaddr(card)) |
| brq->cmd.arg <<= 9; |
| brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; |
| brq->data.blksz = 512; |
| brq->stop.opcode = MMC_STOP_TRANSMISSION; |
| brq->stop.arg = 0; |
| brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; |
| brq->data.blocks = blk_rq_sectors(req); |
| |
| /* |
| * The block layer doesn't support all sector count |
| * restrictions, so we need to be prepared for too big |
| * requests. |
| */ |
| if (brq->data.blocks > card->host->max_blk_count) |
| brq->data.blocks = card->host->max_blk_count; |
| |
| if (brq->data.blocks > 1) { |
| /* |
| * After a read error, we redo the request one sector |
| * at a time in order to accurately determine which |
| * sectors can be read successfully. |
| */ |
| if (disable_multi) |
| brq->data.blocks = 1; |
| |
| /* Some controllers can't do multiblock reads due to hw bugs */ |
| if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ && |
| rq_data_dir(req) == READ) |
| brq->data.blocks = 1; |
| } |
| |
| if (brq->data.blocks > 1 || do_rel_wr) { |
| /* SPI multiblock writes terminate using a special |
| * token, not a STOP_TRANSMISSION request. |
| */ |
| if (!mmc_host_is_spi(card->host) || |
| rq_data_dir(req) == READ) |
| brq->mrq.stop = &brq->stop; |
| readcmd = MMC_READ_MULTIPLE_BLOCK; |
| writecmd = MMC_WRITE_MULTIPLE_BLOCK; |
| } else { |
| brq->mrq.stop = NULL; |
| readcmd = MMC_READ_SINGLE_BLOCK; |
| writecmd = MMC_WRITE_BLOCK; |
| } |
| if (rq_data_dir(req) == READ) { |
| brq->cmd.opcode = readcmd; |
| brq->data.flags |= MMC_DATA_READ; |
| } else { |
| brq->cmd.opcode = writecmd; |
| brq->data.flags |= MMC_DATA_WRITE; |
| } |
| |
| if (do_rel_wr) |
| mmc_apply_rel_rw(brq, card, req); |
| |
| /* |
| * Data tag is used only during writing meta data to speed |
| * up write and any subsequent read of this meta data |
| */ |
| do_data_tag = (card->ext_csd.data_tag_unit_size) && |
| (req->cmd_flags & REQ_META) && |
| (rq_data_dir(req) == WRITE) && |
| ((brq->data.blocks * brq->data.blksz) >= |
| card->ext_csd.data_tag_unit_size); |
| |
| /* |
| * Pre-defined multi-block transfers are preferable to |
| * open ended-ones (and necessary for reliable writes). |
| * However, it is not sufficient to just send CMD23, |
| * and avoid the final CMD12, as on an error condition |
| * CMD12 (stop) needs to be sent anyway. This, coupled |
| * with Auto-CMD23 enhancements provided by some |
| * hosts, means that the complexity of dealing |
| * with this is best left to the host. If CMD23 is |
| * supported by card and host, we'll fill sbc in and let |
| * the host deal with handling it correctly. This means |
| * that for hosts that don't expose MMC_CAP_CMD23, no |
| * change of behavior will be observed. |
| * |
| * N.B: Some MMC cards experience perf degradation. |
| * We'll avoid using CMD23-bounded multiblock writes for |
| * these, while retaining features like reliable writes. |
| */ |
| if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && |
| (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || |
| do_data_tag)) { |
| brq->sbc.opcode = MMC_SET_BLOCK_COUNT; |
| brq->sbc.arg = brq->data.blocks | |
| (do_rel_wr ? (1 << 31) : 0) | |
| (do_data_tag ? (1 << 29) : 0); |
| brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| brq->mrq.sbc = &brq->sbc; |
| } |
| |
| mmc_set_data_timeout(&brq->data, card); |
| |
| brq->data.sg = mqrq->sg; |
| brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); |
| |
| /* |
| * Adjust the sg list so it is the same size as the |
| * request. |
| */ |
| if (brq->data.blocks != blk_rq_sectors(req)) { |
| int i, data_size = brq->data.blocks << 9; |
| struct scatterlist *sg; |
| |
| for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { |
| data_size -= sg->length; |
| if (data_size <= 0) { |
| sg->length += data_size; |
| i++; |
| break; |
| } |
| } |
| brq->data.sg_len = i; |
| } |
| |
| mqrq->mmc_active.mrq = &brq->mrq; |
| mqrq->mmc_active.err_check = mmc_blk_err_check; |
| |
| mmc_queue_bounce_pre(mqrq); |
| } |
| |
| static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, |
| struct mmc_blk_request *brq, struct request *req, |
| int ret) |
| { |
| /* |
| * If this is an SD card and we're writing, we can first |
| * mark the known good sectors as ok. |
| * |
| * If the card is not SD, we can still ok written sectors |
| * as reported by the controller (which might be less than |
| * the real number of written sectors, but never more). |
| */ |
| if (mmc_card_sd(card)) { |
| u32 blocks; |
| |
| blocks = mmc_sd_num_wr_blocks(card); |
| if (blocks != (u32)-1) { |
| spin_lock_irq(&md->lock); |
| ret = __blk_end_request(req, 0, blocks << 9); |
| spin_unlock_irq(&md->lock); |
| } |
| } else { |
| spin_lock_irq(&md->lock); |
| ret = __blk_end_request(req, 0, brq->data.bytes_xfered); |
| spin_unlock_irq(&md->lock); |
| } |
| return ret; |
| } |
| |
| static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc) |
| { |
| struct mmc_blk_data *md = mq->data; |
| struct mmc_card *card = md->queue.card; |
| struct mmc_blk_request *brq = &mq->mqrq_cur->brq; |
| int ret = 1, disable_multi = 0, retry = 0, type; |
| enum mmc_blk_status status; |
| struct mmc_queue_req *mq_rq; |
| struct request *req = rqc; |
| struct mmc_async_req *areq; |
| |
| if (!rqc && !mq->mqrq_prev->req) |
| return 0; |
| |
| do { |
| if (rqc) { |
| /* |
| * When 4KB native sector is enabled, only 8 blocks |
| * multiple read or write is allowed |
| */ |
| if ((brq->data.blocks & 0x07) && |
| (card->ext_csd.data_sector_size == 4096)) { |
| pr_err("%s: Transfer size is not 4KB sector size aligned\n", |
| req->rq_disk->disk_name); |
| goto cmd_abort; |
| } |
| mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); |
| areq = &mq->mqrq_cur->mmc_active; |
| } else |
| areq = NULL; |
| areq = mmc_start_req(card->host, areq, (int *) &status); |
| if (!areq) |
| return 0; |
| |
| mq_rq = container_of(areq, struct mmc_queue_req, mmc_active); |
| brq = &mq_rq->brq; |
| req = mq_rq->req; |
| type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; |
| mmc_queue_bounce_post(mq_rq); |
| |
| switch (status) { |
| case MMC_BLK_SUCCESS: |
| case MMC_BLK_PARTIAL: |
| /* |
| * A block was successfully transferred. |
| */ |
| mmc_blk_reset_success(md, type); |
| spin_lock_irq(&md->lock); |
| ret = __blk_end_request(req, 0, |
| brq->data.bytes_xfered); |
| spin_unlock_irq(&md->lock); |
| /* |
| * If the blk_end_request function returns non-zero even |
| * though all data has been transferred and no errors |
| * were returned by the host controller, it's a bug. |
| */ |
| if (status == MMC_BLK_SUCCESS && ret) { |
| pr_err("%s BUG rq_tot %d d_xfer %d\n", |
| __func__, blk_rq_bytes(req), |
| brq->data.bytes_xfered); |
| rqc = NULL; |
| goto cmd_abort; |
| } |
| break; |
| case MMC_BLK_CMD_ERR: |
| ret = mmc_blk_cmd_err(md, card, brq, req, ret); |
| if (!mmc_blk_reset(md, card->host, type)) |
| break; |
| goto cmd_abort; |
| case MMC_BLK_RETRY: |
| if (retry++ < 5) |
| break; |
| /* Fall through */ |
| case MMC_BLK_ABORT: |
| if (!mmc_blk_reset(md, card->host, type)) |
| break; |
| goto cmd_abort; |
| case MMC_BLK_DATA_ERR: { |
| int err; |
| |
| err = mmc_blk_reset(md, card->host, type); |
| if (!err) |
| break; |
| if (err == -ENODEV) |
| goto cmd_abort; |
| /* Fall through */ |
| } |
| case MMC_BLK_ECC_ERR: |
| if (brq->data.blocks > 1) { |
| /* Redo read one sector at a time */ |
| pr_warning("%s: retrying using single block read\n", |
| req->rq_disk->disk_name); |
| disable_multi = 1; |
| break; |
| } |
| /* |
| * After an error, we redo I/O one sector at a |
| * time, so we only reach here after trying to |
| * read a single sector. |
| */ |
| spin_lock_irq(&md->lock); |
| ret = __blk_end_request(req, -EIO, |
| brq->data.blksz); |
| spin_unlock_irq(&md->lock); |
| if (!ret) |
| goto start_new_req; |
| break; |
| case MMC_BLK_NOMEDIUM: |
| goto cmd_abort; |
| } |
| |
| if (ret) { |
| /* |
| * In case of a incomplete request |
| * prepare it again and resend. |
| */ |
| mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq); |
| mmc_start_req(card->host, &mq_rq->mmc_active, NULL); |
| } |
| } while (ret); |
| |
| return 1; |
| |
| cmd_abort: |
| spin_lock_irq(&md->lock); |
| if (mmc_card_removed(card)) |
| req->cmd_flags |= REQ_QUIET; |
| while (ret) |
| ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req)); |
| spin_unlock_irq(&md->lock); |
| |
| start_new_req: |
| if (rqc) { |
| mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); |
| mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) |
| { |
| int ret; |
| struct mmc_blk_data *md = mq->data; |
| struct mmc_card *card = md->queue.card; |
| |
| if (req && !mq->mqrq_prev->req) |
| /* claim host only for the first request */ |
| mmc_claim_host(card->host); |
| |
| ret = mmc_blk_part_switch(card, md); |
| if (ret) { |
| if (req) { |
| spin_lock_irq(&md->lock); |
| __blk_end_request_all(req, -EIO); |
| spin_unlock_irq(&md->lock); |
| } |
| ret = 0; |
| goto out; |
| } |
| |
| if (req && req->cmd_flags & REQ_DISCARD) { |
| /* complete ongoing async transfer before issuing discard */ |
| if (card->host->areq) |
| mmc_blk_issue_rw_rq(mq, NULL); |
| if (req->cmd_flags & REQ_SECURE) |
| ret = mmc_blk_issue_secdiscard_rq(mq, req); |
| else |
| ret = mmc_blk_issue_discard_rq(mq, req); |
| } else if (req && req->cmd_flags & REQ_FLUSH) { |
| /* complete ongoing async transfer before issuing flush */ |
| if (card->host->areq) |
| mmc_blk_issue_rw_rq(mq, NULL); |
| ret = mmc_blk_issue_flush(mq, req); |
| } else { |
| ret = mmc_blk_issue_rw_rq(mq, req); |
| } |
| |
| out: |
| if (!req) |
| /* release host only when there are no more requests */ |
| mmc_release_host(card->host); |
| return ret; |
| } |
| |
| static inline int mmc_blk_readonly(struct mmc_card *card) |
| { |
| return mmc_card_readonly(card) || |
| !(card->csd.cmdclass & CCC_BLOCK_WRITE); |
| } |
| |
| static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, |
| struct device *parent, |
| sector_t size, |
| bool default_ro, |
| const char *subname, |
| int area_type) |
| { |
| struct mmc_blk_data *md; |
| int devidx, ret; |
| |
| devidx = find_first_zero_bit(dev_use, max_devices); |
| if (devidx >= max_devices) |
| return ERR_PTR(-ENOSPC); |
| __set_bit(devidx, dev_use); |
| |
| md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); |
| if (!md) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * !subname implies we are creating main mmc_blk_data that will be |
| * associated with mmc_card with mmc_set_drvdata. Due to device |
| * partitions, devidx will not coincide with a per-physical card |
| * index anymore so we keep track of a name index. |
| */ |
| if (!subname) { |
| md->name_idx = find_first_zero_bit(name_use, max_devices); |
| __set_bit(md->name_idx, name_use); |
| } else |
| md->name_idx = ((struct mmc_blk_data *) |
| dev_to_disk(parent)->private_data)->name_idx; |
| |
| md->area_type = area_type; |
| |
| /* |
| * Set the read-only status based on the supported commands |
| * and the write protect switch. |
| */ |
| md->read_only = mmc_blk_readonly(card); |
| |
| md->disk = alloc_disk(perdev_minors); |
| if (md->disk == NULL) { |
| ret = -ENOMEM; |
| goto err_kfree; |
| } |
| |
| spin_lock_init(&md->lock); |
| INIT_LIST_HEAD(&md->part); |
| md->usage = 1; |
| |
| ret = mmc_init_queue(&md->queue, card, &md->lock, subname); |
| if (ret) |
| goto err_putdisk; |
| |
| md->queue.issue_fn = mmc_blk_issue_rq; |
| md->queue.data = md; |
| |
| md->disk->major = MMC_BLOCK_MAJOR; |
| md->disk->first_minor = devidx * perdev_minors; |
| md->disk->fops = &mmc_bdops; |
| md->disk->private_data = md; |
| md->disk->queue = md->queue.queue; |
| md->disk->driverfs_dev = parent; |
| set_disk_ro(md->disk, md->read_only || default_ro); |
| |
| /* |
| * As discussed on lkml, GENHD_FL_REMOVABLE should: |
| * |
| * - be set for removable media with permanent block devices |
| * - be unset for removable block devices with permanent media |
| * |
| * Since MMC block devices clearly fall under the second |
| * case, we do not set GENHD_FL_REMOVABLE. Userspace |
| * should use the block device creation/destruction hotplug |
| * messages to tell when the card is present. |
| */ |
| |
| snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), |
| "mmcblk%d%s", md->name_idx, subname ? subname : ""); |
| |
| if (mmc_card_mmc(card)) |
| blk_queue_logical_block_size(md->queue.queue, |
| card->ext_csd.data_sector_size); |
| else |
| blk_queue_logical_block_size(md->queue.queue, 512); |
| |
| set_capacity(md->disk, size); |
| |
| if (mmc_host_cmd23(card->host)) { |
| if (mmc_card_mmc(card) || |
| (mmc_card_sd(card) && |
| card->scr.cmds & SD_SCR_CMD23_SUPPORT)) |
| md->flags |= MMC_BLK_CMD23; |
| } |
| |
| if (mmc_card_mmc(card) && |
| md->flags & MMC_BLK_CMD23 && |
| ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || |
| card->ext_csd.rel_sectors)) { |
| md->flags |= MMC_BLK_REL_WR; |
| blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA); |
| } |
| |
| return md; |
| |
| err_putdisk: |
| put_disk(md->disk); |
| err_kfree: |
| kfree(md); |
| out: |
| return ERR_PTR(ret); |
| } |
| |
| static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) |
| { |
| sector_t size; |
| struct mmc_blk_data *md; |
| |
| if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { |
| /* |
| * The EXT_CSD sector count is in number or 512 byte |
| * sectors. |
| */ |
| size = card->ext_csd.sectors; |
| } else { |
| /* |
| * The CSD capacity field is in units of read_blkbits. |
| * set_capacity takes units of 512 bytes. |
| */ |
| size = card->csd.capacity << (card->csd.read_blkbits - 9); |
| } |
| |
| md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL, |
| MMC_BLK_DATA_AREA_MAIN); |
| return md; |
| } |
| |
| static int mmc_blk_alloc_part(struct mmc_card *card, |
| struct mmc_blk_data *md, |
| unsigned int part_type, |
| sector_t size, |
| bool default_ro, |
| const char *subname, |
| int area_type) |
| { |
| char cap_str[10]; |
| struct mmc_blk_data *part_md; |
| |
| part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, |
| subname, area_type); |
| if (IS_ERR(part_md)) |
| return PTR_ERR(part_md); |
| part_md->part_type = part_type; |
| list_add(&part_md->part, &md->part); |
| |
| string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2, |
| cap_str, sizeof(cap_str)); |
| pr_info("%s: %s %s partition %u %s\n", |
| part_md->disk->disk_name, mmc_card_id(card), |
| mmc_card_name(card), part_md->part_type, cap_str); |
| return 0; |
| } |
| |
| /* MMC Physical partitions consist of two boot partitions and |
| * up to four general purpose partitions. |
| * For each partition enabled in EXT_CSD a block device will be allocatedi |
| * to provide access to the partition. |
| */ |
| |
| static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) |
| { |
| int idx, ret = 0; |
| |
| if (!mmc_card_mmc(card)) |
| return 0; |
| |
| for (idx = 0; idx < card->nr_parts; idx++) { |
| if (card->part[idx].size) { |
| ret = mmc_blk_alloc_part(card, md, |
| card->part[idx].part_cfg, |
| card->part[idx].size >> 9, |
| card->part[idx].force_ro, |
| card->part[idx].name, |
| card->part[idx].area_type); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void mmc_blk_remove_req(struct mmc_blk_data *md) |
| { |
| struct mmc_card *card; |
| |
| if (md) { |
| card = md->queue.card; |
| if (md->disk->flags & GENHD_FL_UP) { |
| device_remove_file(disk_to_dev(md->disk), &md->force_ro); |
| if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && |
| card->ext_csd.boot_ro_lockable) |
| device_remove_file(disk_to_dev(md->disk), |
| &md->power_ro_lock); |
| |
| /* Stop new requests from getting into the queue */ |
| del_gendisk(md->disk); |
| } |
| |
| /* Then flush out any already in there */ |
| mmc_cleanup_queue(&md->queue); |
| mmc_blk_put(md); |
| } |
| } |
| |
| static void mmc_blk_remove_parts(struct mmc_card *card, |
| struct mmc_blk_data *md) |
| { |
| struct list_head *pos, *q; |
| struct mmc_blk_data *part_md; |
| |
| __clear_bit(md->name_idx, name_use); |
| list_for_each_safe(pos, q, &md->part) { |
| part_md = list_entry(pos, struct mmc_blk_data, part); |
| list_del(pos); |
| mmc_blk_remove_req(part_md); |
| } |
| } |
| |
| static int mmc_add_disk(struct mmc_blk_data *md) |
| { |
| int ret; |
| struct mmc_card *card = md->queue.card; |
| |
| add_disk(md->disk); |
| md->force_ro.show = force_ro_show; |
| md->force_ro.store = force_ro_store; |
| sysfs_attr_init(&md->force_ro.attr); |
| md->force_ro.attr.name = "force_ro"; |
| md->force_ro.attr.mode = S_IRUGO | S_IWUSR; |
| ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); |
| if (ret) |
| goto force_ro_fail; |
| |
| if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && |
| card->ext_csd.boot_ro_lockable) { |
| umode_t mode; |
| |
| if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) |
| mode = S_IRUGO; |
| else |
| mode = S_IRUGO | S_IWUSR; |
| |
| md->power_ro_lock.show = power_ro_lock_show; |
| md->power_ro_lock.store = power_ro_lock_store; |
| sysfs_attr_init(&md->power_ro_lock.attr); |
| md->power_ro_lock.attr.mode = mode; |
| md->power_ro_lock.attr.name = |
| "ro_lock_until_next_power_on"; |
| ret = device_create_file(disk_to_dev(md->disk), |
| &md->power_ro_lock); |
| if (ret) |
| goto power_ro_lock_fail; |
| } |
| return ret; |
| |
| power_ro_lock_fail: |
| device_remove_file(disk_to_dev(md->disk), &md->force_ro); |
| force_ro_fail: |
| del_gendisk(md->disk); |
| |
| return ret; |
| } |
| |
| #define CID_MANFID_SANDISK 0x2 |
| #define CID_MANFID_TOSHIBA 0x11 |
| #define CID_MANFID_MICRON 0x13 |
| |
| static const struct mmc_fixup blk_fixups[] = |
| { |
| MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk, |
| MMC_QUIRK_INAND_CMD38), |
| MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk, |
| MMC_QUIRK_INAND_CMD38), |
| MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk, |
| MMC_QUIRK_INAND_CMD38), |
| MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk, |
| MMC_QUIRK_INAND_CMD38), |
| MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk, |
| MMC_QUIRK_INAND_CMD38), |
| |
| /* |
| * Some MMC cards experience performance degradation with CMD23 |
| * instead of CMD12-bounded multiblock transfers. For now we'll |
| * black list what's bad... |
| * - Certain Toshiba cards. |
| * |
| * N.B. This doesn't affect SD cards. |
| */ |
| MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, |
| MMC_QUIRK_BLK_NO_CMD23), |
| MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, |
| MMC_QUIRK_BLK_NO_CMD23), |
| MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, |
| MMC_QUIRK_BLK_NO_CMD23), |
| |
| /* |
| * Some Micron MMC cards needs longer data read timeout than |
| * indicated in CSD. |
| */ |
| MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc, |
| MMC_QUIRK_LONG_READ_TIME), |
| |
| END_FIXUP |
| }; |
| |
| static int mmc_blk_probe(struct mmc_card *card) |
| { |
| struct mmc_blk_data *md, *part_md; |
| char cap_str[10]; |
| |
| /* |
| * Check that the card supports the command class(es) we need. |
| */ |
| if (!(card->csd.cmdclass & CCC_BLOCK_READ)) |
| return -ENODEV; |
| |
| md = mmc_blk_alloc(card); |
| if (IS_ERR(md)) |
| return PTR_ERR(md); |
| |
| string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2, |
| cap_str, sizeof(cap_str)); |
| pr_info("%s: %s %s %s %s\n", |
| md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), |
| cap_str, md->read_only ? "(ro)" : ""); |
| |
| if (mmc_blk_alloc_parts(card, md)) |
| goto out; |
| |
| mmc_set_drvdata(card, md); |
| mmc_fixup_device(card, blk_fixups); |
| |
| if (mmc_add_disk(md)) |
| goto out; |
| |
| list_for_each_entry(part_md, &md->part, part) { |
| if (mmc_add_disk(part_md)) |
| goto out; |
| } |
| return 0; |
| |
| out: |
| mmc_blk_remove_parts(card, md); |
| mmc_blk_remove_req(md); |
| return 0; |
| } |
| |
| static void mmc_blk_remove(struct mmc_card *card) |
| { |
| struct mmc_blk_data *md = mmc_get_drvdata(card); |
| |
| mmc_blk_remove_parts(card, md); |
| mmc_claim_host(card->host); |
| mmc_blk_part_switch(card, md); |
| mmc_release_host(card->host); |
| mmc_blk_remove_req(md); |
| mmc_set_drvdata(card, NULL); |
| } |
| |
| #ifdef CONFIG_PM |
| static int mmc_blk_suspend(struct mmc_card *card) |
| { |
| struct mmc_blk_data *part_md; |
| struct mmc_blk_data *md = mmc_get_drvdata(card); |
| |
| if (md) { |
| mmc_queue_suspend(&md->queue); |
| list_for_each_entry(part_md, &md->part, part) { |
| mmc_queue_suspend(&part_md->queue); |
| } |
| } |
| return 0; |
| } |
| |
| static int mmc_blk_resume(struct mmc_card *card) |
| { |
| struct mmc_blk_data *part_md; |
| struct mmc_blk_data *md = mmc_get_drvdata(card); |
| |
| if (md) { |
| /* |
| * Resume involves the card going into idle state, |
| * so current partition is always the main one. |
| */ |
| md->part_curr = md->part_type; |
| mmc_queue_resume(&md->queue); |
| list_for_each_entry(part_md, &md->part, part) { |
| mmc_queue_resume(&part_md->queue); |
| } |
| } |
| return 0; |
| } |
| #else |
| #define mmc_blk_suspend NULL |
| #define mmc_blk_resume NULL |
| #endif |
| |
| static struct mmc_driver mmc_driver = { |
| .drv = { |
| .name = "mmcblk", |
| }, |
| .probe = mmc_blk_probe, |
| .remove = mmc_blk_remove, |
| .suspend = mmc_blk_suspend, |
| .resume = mmc_blk_resume, |
| }; |
| |
| static int __init mmc_blk_init(void) |
| { |
| int res; |
| |
| if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) |
| pr_info("mmcblk: using %d minors per device\n", perdev_minors); |
| |
| max_devices = 256 / perdev_minors; |
| |
| res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); |
| if (res) |
| goto out; |
| |
| res = mmc_register_driver(&mmc_driver); |
| if (res) |
| goto out2; |
| |
| return 0; |
| out2: |
| unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); |
| out: |
| return res; |
| } |
| |
| static void __exit mmc_blk_exit(void) |
| { |
| mmc_unregister_driver(&mmc_driver); |
| unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); |
| } |
| |
| module_init(mmc_blk_init); |
| module_exit(mmc_blk_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); |
| |