| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/kdev_t.h> |
| #include <linux/string.h> |
| #include <linux/screen_info.h> |
| #include <linux/console.h> |
| #include <linux/timex.h> |
| #include <linux/sched.h> |
| #include <linux/ioport.h> |
| #include <linux/mm.h> |
| #include <linux/serial.h> |
| #include <linux/irq.h> |
| #include <linux/bootmem.h> |
| #include <linux/mmzone.h> |
| #include <linux/interrupt.h> |
| #include <linux/acpi.h> |
| #include <linux/compiler.h> |
| #include <linux/root_dev.h> |
| #include <linux/nodemask.h> |
| #include <linux/pm.h> |
| #include <linux/efi.h> |
| |
| #include <asm/io.h> |
| #include <asm/sal.h> |
| #include <asm/machvec.h> |
| #include <asm/processor.h> |
| #include <asm/vga.h> |
| #include <asm/setup.h> |
| #include <asm/sn/arch.h> |
| #include <asm/sn/addrs.h> |
| #include <asm/sn/pda.h> |
| #include <asm/sn/nodepda.h> |
| #include <asm/sn/sn_cpuid.h> |
| #include <asm/sn/simulator.h> |
| #include <asm/sn/leds.h> |
| #include <asm/sn/bte.h> |
| #include <asm/sn/shub_mmr.h> |
| #include <asm/sn/clksupport.h> |
| #include <asm/sn/sn_sal.h> |
| #include <asm/sn/geo.h> |
| #include <asm/sn/sn_feature_sets.h> |
| #include "xtalk/xwidgetdev.h" |
| #include "xtalk/hubdev.h" |
| #include <asm/sn/klconfig.h> |
| |
| |
| DEFINE_PER_CPU(struct pda_s, pda_percpu); |
| |
| #define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */ |
| |
| extern void bte_init_node(nodepda_t *, cnodeid_t); |
| |
| extern void sn_timer_init(void); |
| extern unsigned long last_time_offset; |
| extern void (*ia64_mark_idle) (int); |
| extern void snidle(int); |
| |
| unsigned long sn_rtc_cycles_per_second; |
| EXPORT_SYMBOL(sn_rtc_cycles_per_second); |
| |
| DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info); |
| EXPORT_PER_CPU_SYMBOL(__sn_hub_info); |
| |
| DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]); |
| EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid); |
| |
| DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda); |
| EXPORT_PER_CPU_SYMBOL(__sn_nodepda); |
| |
| char sn_system_serial_number_string[128]; |
| EXPORT_SYMBOL(sn_system_serial_number_string); |
| u64 sn_partition_serial_number; |
| EXPORT_SYMBOL(sn_partition_serial_number); |
| u8 sn_partition_id; |
| EXPORT_SYMBOL(sn_partition_id); |
| u8 sn_system_size; |
| EXPORT_SYMBOL(sn_system_size); |
| u8 sn_sharing_domain_size; |
| EXPORT_SYMBOL(sn_sharing_domain_size); |
| u8 sn_coherency_id; |
| EXPORT_SYMBOL(sn_coherency_id); |
| u8 sn_region_size; |
| EXPORT_SYMBOL(sn_region_size); |
| int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */ |
| |
| short physical_node_map[MAX_NUMALINK_NODES]; |
| static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS]; |
| |
| EXPORT_SYMBOL(physical_node_map); |
| |
| int num_cnodes; |
| |
| static void sn_init_pdas(char **); |
| static void build_cnode_tables(void); |
| |
| static nodepda_t *nodepdaindr[MAX_COMPACT_NODES]; |
| |
| /* |
| * The format of "screen_info" is strange, and due to early i386-setup |
| * code. This is just enough to make the console code think we're on a |
| * VGA color display. |
| */ |
| struct screen_info sn_screen_info = { |
| .orig_x = 0, |
| .orig_y = 0, |
| .orig_video_mode = 3, |
| .orig_video_cols = 80, |
| .orig_video_ega_bx = 3, |
| .orig_video_lines = 25, |
| .orig_video_isVGA = 1, |
| .orig_video_points = 16 |
| }; |
| |
| /* |
| * This routine can only be used during init, since |
| * smp_boot_data is an init data structure. |
| * We have to use smp_boot_data.cpu_phys_id to find |
| * the physical id of the processor because the normal |
| * cpu_physical_id() relies on data structures that |
| * may not be initialized yet. |
| */ |
| |
| static int __init pxm_to_nasid(int pxm) |
| { |
| int i; |
| int nid; |
| |
| nid = pxm_to_node(pxm); |
| for (i = 0; i < num_node_memblks; i++) { |
| if (node_memblk[i].nid == nid) { |
| return NASID_GET(node_memblk[i].start_paddr); |
| } |
| } |
| return -1; |
| } |
| |
| /** |
| * early_sn_setup - early setup routine for SN platforms |
| * |
| * Sets up an initial console to aid debugging. Intended primarily |
| * for bringup. See start_kernel() in init/main.c. |
| */ |
| |
| void __init early_sn_setup(void) |
| { |
| efi_system_table_t *efi_systab; |
| efi_config_table_t *config_tables; |
| struct ia64_sal_systab *sal_systab; |
| struct ia64_sal_desc_entry_point *ep; |
| char *p; |
| int i, j; |
| |
| /* |
| * Parse enough of the SAL tables to locate the SAL entry point. Since, console |
| * IO on SN2 is done via SAL calls, early_printk won't work without this. |
| * |
| * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c. |
| * Any changes to those file may have to be made here as well. |
| */ |
| efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab); |
| config_tables = __va(efi_systab->tables); |
| for (i = 0; i < efi_systab->nr_tables; i++) { |
| if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == |
| 0) { |
| sal_systab = __va(config_tables[i].table); |
| p = (char *)(sal_systab + 1); |
| for (j = 0; j < sal_systab->entry_count; j++) { |
| if (*p == SAL_DESC_ENTRY_POINT) { |
| ep = (struct ia64_sal_desc_entry_point |
| *)p; |
| ia64_sal_handler_init(__va |
| (ep->sal_proc), |
| __va(ep->gp)); |
| return; |
| } |
| p += SAL_DESC_SIZE(*p); |
| } |
| } |
| } |
| /* Uh-oh, SAL not available?? */ |
| printk(KERN_ERR "failed to find SAL entry point\n"); |
| } |
| |
| extern int platform_intr_list[]; |
| static int __cpuinitdata shub_1_1_found; |
| |
| /* |
| * sn_check_for_wars |
| * |
| * Set flag for enabling shub specific wars |
| */ |
| |
| static inline int __cpuinit is_shub_1_1(int nasid) |
| { |
| unsigned long id; |
| int rev; |
| |
| if (is_shub2()) |
| return 0; |
| id = REMOTE_HUB_L(nasid, SH1_SHUB_ID); |
| rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT; |
| return rev <= 2; |
| } |
| |
| static void __cpuinit sn_check_for_wars(void) |
| { |
| int cnode; |
| |
| if (is_shub2()) { |
| /* none yet */ |
| } else { |
| for_each_online_node(cnode) { |
| if (is_shub_1_1(cnodeid_to_nasid(cnode))) |
| shub_1_1_found = 1; |
| } |
| } |
| } |
| |
| /* |
| * Scan the EFI PCDP table (if it exists) for an acceptable VGA console |
| * output device. If one exists, pick it and set sn_legacy_{io,mem} to |
| * reflect the bus offsets needed to address it. |
| * |
| * Since pcdp support in SN is not supported in the 2.4 kernel (or at least |
| * the one lbs is based on) just declare the needed structs here. |
| * |
| * Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf |
| * |
| * Returns 0 if no acceptable vga is found, !0 otherwise. |
| * |
| * Note: This stuff is duped here because Altix requires the PCDP to |
| * locate a usable VGA device due to lack of proper ACPI support. Structures |
| * could be used from drivers/firmware/pcdp.h, but it was decided that moving |
| * this file to a more public location just for Altix use was undesirable. |
| */ |
| |
| struct hcdp_uart_desc { |
| u8 pad[45]; |
| }; |
| |
| struct pcdp { |
| u8 signature[4]; /* should be 'HCDP' */ |
| u32 length; |
| u8 rev; /* should be >=3 for pcdp, <3 for hcdp */ |
| u8 sum; |
| u8 oem_id[6]; |
| u64 oem_tableid; |
| u32 oem_rev; |
| u32 creator_id; |
| u32 creator_rev; |
| u32 num_type0; |
| struct hcdp_uart_desc uart[0]; /* num_type0 of these */ |
| /* pcdp descriptors follow */ |
| } __attribute__((packed)); |
| |
| struct pcdp_device_desc { |
| u8 type; |
| u8 primary; |
| u16 length; |
| u16 index; |
| /* interconnect specific structure follows */ |
| /* device specific structure follows that */ |
| } __attribute__((packed)); |
| |
| struct pcdp_interface_pci { |
| u8 type; /* 1 == pci */ |
| u8 reserved; |
| u16 length; |
| u8 segment; |
| u8 bus; |
| u8 dev; |
| u8 fun; |
| u16 devid; |
| u16 vendid; |
| u32 acpi_interrupt; |
| u64 mmio_tra; |
| u64 ioport_tra; |
| u8 flags; |
| u8 translation; |
| } __attribute__((packed)); |
| |
| struct pcdp_vga_device { |
| u8 num_eas_desc; |
| /* ACPI Extended Address Space Desc follows */ |
| } __attribute__((packed)); |
| |
| /* from pcdp_device_desc.primary */ |
| #define PCDP_PRIMARY_CONSOLE 0x01 |
| |
| /* from pcdp_device_desc.type */ |
| #define PCDP_CONSOLE_INOUT 0x0 |
| #define PCDP_CONSOLE_DEBUG 0x1 |
| #define PCDP_CONSOLE_OUT 0x2 |
| #define PCDP_CONSOLE_IN 0x3 |
| #define PCDP_CONSOLE_TYPE_VGA 0x8 |
| |
| #define PCDP_CONSOLE_VGA (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT) |
| |
| /* from pcdp_interface_pci.type */ |
| #define PCDP_IF_PCI 1 |
| |
| /* from pcdp_interface_pci.translation */ |
| #define PCDP_PCI_TRANS_IOPORT 0x02 |
| #define PCDP_PCI_TRANS_MMIO 0x01 |
| |
| #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE) |
| static void |
| sn_scan_pcdp(void) |
| { |
| u8 *bp; |
| struct pcdp *pcdp; |
| struct pcdp_device_desc device; |
| struct pcdp_interface_pci if_pci; |
| extern struct efi efi; |
| |
| if (efi.hcdp == EFI_INVALID_TABLE_ADDR) |
| return; /* no hcdp/pcdp table */ |
| |
| pcdp = __va(efi.hcdp); |
| |
| if (pcdp->rev < 3) |
| return; /* only support PCDP (rev >= 3) */ |
| |
| for (bp = (u8 *)&pcdp->uart[pcdp->num_type0]; |
| bp < (u8 *)pcdp + pcdp->length; |
| bp += device.length) { |
| memcpy(&device, bp, sizeof(device)); |
| if (! (device.primary & PCDP_PRIMARY_CONSOLE)) |
| continue; /* not primary console */ |
| |
| if (device.type != PCDP_CONSOLE_VGA) |
| continue; /* not VGA descriptor */ |
| |
| memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci)); |
| if (if_pci.type != PCDP_IF_PCI) |
| continue; /* not PCI interconnect */ |
| |
| if (if_pci.translation & PCDP_PCI_TRANS_IOPORT) |
| vga_console_iobase = if_pci.ioport_tra; |
| |
| if (if_pci.translation & PCDP_PCI_TRANS_MMIO) |
| vga_console_membase = |
| if_pci.mmio_tra | __IA64_UNCACHED_OFFSET; |
| |
| break; /* once we find the primary, we're done */ |
| } |
| } |
| #endif |
| |
| static unsigned long sn2_rtc_initial; |
| |
| /** |
| * sn_setup - SN platform setup routine |
| * @cmdline_p: kernel command line |
| * |
| * Handles platform setup for SN machines. This includes determining |
| * the RTC frequency (via a SAL call), initializing secondary CPUs, and |
| * setting up per-node data areas. The console is also initialized here. |
| */ |
| void __init sn_setup(char **cmdline_p) |
| { |
| long status, ticks_per_sec, drift; |
| u32 version = sn_sal_rev(); |
| extern void sn_cpu_init(void); |
| |
| sn2_rtc_initial = rtc_time(); |
| ia64_sn_plat_set_error_handling_features(); // obsolete |
| ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV); |
| ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES); |
| /* |
| * Note: The calls to notify the PROM of ACPI and PCI Segment |
| * support must be done prior to acpi_load_tables(), as |
| * an ACPI capable PROM will rebuild the DSDT as result |
| * of the call. |
| */ |
| ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE); |
| ia64_sn_set_os_feature(OSF_ACPI_ENABLE); |
| |
| /* Load the new DSDT and SSDT tables into the global table list. */ |
| acpi_table_init(); |
| |
| #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE) |
| /* |
| * Handle SN vga console. |
| * |
| * SN systems do not have enough ACPI table information |
| * being passed from prom to identify VGA adapters and the legacy |
| * addresses to access them. Until that is done, SN systems rely |
| * on the PCDP table to identify the primary VGA console if one |
| * exists. |
| * |
| * However, kernel PCDP support is optional, and even if it is built |
| * into the kernel, it will not be used if the boot cmdline contains |
| * console= directives. |
| * |
| * So, to work around this mess, we duplicate some of the PCDP code |
| * here so that the primary VGA console (as defined by PCDP) will |
| * work on SN systems even if a different console (e.g. serial) is |
| * selected on the boot line (or CONFIG_EFI_PCDP is off). |
| */ |
| |
| if (! vga_console_membase) |
| sn_scan_pcdp(); |
| |
| /* |
| * Setup legacy IO space. |
| * vga_console_iobase maps to PCI IO Space address 0 on the |
| * bus containing the VGA console. |
| */ |
| if (vga_console_iobase) { |
| io_space[0].mmio_base = |
| (unsigned long) ioremap(vga_console_iobase, 0); |
| io_space[0].sparse = 0; |
| } |
| |
| if (vga_console_membase) { |
| /* usable vga ... make tty0 the preferred default console */ |
| if (!strstr(*cmdline_p, "console=")) |
| add_preferred_console("tty", 0, NULL); |
| } else { |
| printk(KERN_DEBUG "SGI: Disabling VGA console\n"); |
| if (!strstr(*cmdline_p, "console=")) |
| add_preferred_console("ttySG", 0, NULL); |
| #ifdef CONFIG_DUMMY_CONSOLE |
| conswitchp = &dummy_con; |
| #else |
| conswitchp = NULL; |
| #endif /* CONFIG_DUMMY_CONSOLE */ |
| } |
| #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */ |
| |
| MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY; |
| |
| /* |
| * Build the tables for managing cnodes. |
| */ |
| build_cnode_tables(); |
| |
| status = |
| ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec, |
| &drift); |
| if (status != 0 || ticks_per_sec < 100000) { |
| printk(KERN_WARNING |
| "unable to determine platform RTC clock frequency, guessing.\n"); |
| /* PROM gives wrong value for clock freq. so guess */ |
| sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; |
| } else |
| sn_rtc_cycles_per_second = ticks_per_sec; |
| |
| platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR; |
| |
| printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF); |
| |
| /* |
| * we set the default root device to /dev/hda |
| * to make simulation easy |
| */ |
| ROOT_DEV = Root_HDA1; |
| |
| /* |
| * Create the PDAs and NODEPDAs for all the cpus. |
| */ |
| sn_init_pdas(cmdline_p); |
| |
| ia64_mark_idle = &snidle; |
| |
| /* |
| * For the bootcpu, we do this here. All other cpus will make the |
| * call as part of cpu_init in slave cpu initialization. |
| */ |
| sn_cpu_init(); |
| |
| #ifdef CONFIG_SMP |
| init_smp_config(); |
| #endif |
| screen_info = sn_screen_info; |
| |
| sn_timer_init(); |
| |
| /* |
| * set pm_power_off to a SAL call to allow |
| * sn machines to power off. The SAL call can be replaced |
| * by an ACPI interface call when ACPI is fully implemented |
| * for sn. |
| */ |
| pm_power_off = ia64_sn_power_down; |
| current->thread.flags |= IA64_THREAD_MIGRATION; |
| } |
| |
| /** |
| * sn_init_pdas - setup node data areas |
| * |
| * One time setup for Node Data Area. Called by sn_setup(). |
| */ |
| static void __init sn_init_pdas(char **cmdline_p) |
| { |
| cnodeid_t cnode; |
| |
| /* |
| * Allocate & initialize the nodepda for each node. |
| */ |
| for_each_online_node(cnode) { |
| nodepdaindr[cnode] = |
| alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t)); |
| memset(nodepdaindr[cnode]->phys_cpuid, -1, |
| sizeof(nodepdaindr[cnode]->phys_cpuid)); |
| spin_lock_init(&nodepdaindr[cnode]->ptc_lock); |
| } |
| |
| /* |
| * Allocate & initialize nodepda for TIOs. For now, put them on node 0. |
| */ |
| for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) |
| nodepdaindr[cnode] = |
| alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t)); |
| |
| /* |
| * Now copy the array of nodepda pointers to each nodepda. |
| */ |
| for (cnode = 0; cnode < num_cnodes; cnode++) |
| memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr, |
| sizeof(nodepdaindr)); |
| |
| /* |
| * Set up IO related platform-dependent nodepda fields. |
| * The following routine actually sets up the hubinfo struct |
| * in nodepda. |
| */ |
| for_each_online_node(cnode) { |
| bte_init_node(nodepdaindr[cnode], cnode); |
| } |
| |
| /* |
| * Initialize the per node hubdev. This includes IO Nodes and |
| * headless/memless nodes. |
| */ |
| for (cnode = 0; cnode < num_cnodes; cnode++) { |
| hubdev_init_node(nodepdaindr[cnode], cnode); |
| } |
| } |
| |
| /** |
| * sn_cpu_init - initialize per-cpu data areas |
| * @cpuid: cpuid of the caller |
| * |
| * Called during cpu initialization on each cpu as it starts. |
| * Currently, initializes the per-cpu data area for SNIA. |
| * Also sets up a few fields in the nodepda. Also known as |
| * platform_cpu_init() by the ia64 machvec code. |
| */ |
| void __cpuinit sn_cpu_init(void) |
| { |
| int cpuid; |
| int cpuphyid; |
| int nasid; |
| int subnode; |
| int slice; |
| int cnode; |
| int i; |
| static int wars_have_been_checked, set_cpu0_number; |
| |
| cpuid = smp_processor_id(); |
| if (cpuid == 0 && IS_MEDUSA()) { |
| if (ia64_sn_is_fake_prom()) |
| sn_prom_type = 2; |
| else |
| sn_prom_type = 1; |
| printk(KERN_INFO "Running on medusa with %s PROM\n", |
| (sn_prom_type == 1) ? "real" : "fake"); |
| } |
| |
| memset(pda, 0, sizeof(pda)); |
| if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2, |
| &sn_hub_info->nasid_bitmask, |
| &sn_hub_info->nasid_shift, |
| &sn_system_size, &sn_sharing_domain_size, |
| &sn_partition_id, &sn_coherency_id, |
| &sn_region_size)) |
| BUG(); |
| sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2; |
| |
| /* |
| * Don't check status. The SAL call is not supported on all PROMs |
| * but a failure is harmless. |
| * Architecturally, cpu_init is always called twice on cpu 0. We |
| * should set cpu_number on cpu 0 once. |
| */ |
| if (cpuid == 0) { |
| if (!set_cpu0_number) { |
| (void) ia64_sn_set_cpu_number(cpuid); |
| set_cpu0_number = 1; |
| } |
| } else |
| (void) ia64_sn_set_cpu_number(cpuid); |
| |
| /* |
| * The boot cpu makes this call again after platform initialization is |
| * complete. |
| */ |
| if (nodepdaindr[0] == NULL) |
| return; |
| |
| for (i = 0; i < MAX_PROM_FEATURE_SETS; i++) |
| if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0) |
| break; |
| |
| cpuphyid = get_sapicid(); |
| |
| if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice)) |
| BUG(); |
| |
| for (i=0; i < MAX_NUMNODES; i++) { |
| if (nodepdaindr[i]) { |
| nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid; |
| nodepdaindr[i]->phys_cpuid[cpuid].slice = slice; |
| nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode; |
| } |
| } |
| |
| cnode = nasid_to_cnodeid(nasid); |
| |
| sn_nodepda = nodepdaindr[cnode]; |
| |
| pda->led_address = |
| (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT)); |
| pda->led_state = LED_ALWAYS_SET; |
| pda->hb_count = HZ / 2; |
| pda->hb_state = 0; |
| pda->idle_flag = 0; |
| |
| if (cpuid != 0) { |
| /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */ |
| memcpy(sn_cnodeid_to_nasid, |
| (&per_cpu(__sn_cnodeid_to_nasid, 0)), |
| sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); |
| } |
| |
| /* |
| * Check for WARs. |
| * Only needs to be done once, on BSP. |
| * Has to be done after loop above, because it uses this cpu's |
| * sn_cnodeid_to_nasid table which was just initialized if this |
| * isn't cpu 0. |
| * Has to be done before assignment below. |
| */ |
| if (!wars_have_been_checked) { |
| sn_check_for_wars(); |
| wars_have_been_checked = 1; |
| } |
| sn_hub_info->shub_1_1_found = shub_1_1_found; |
| |
| /* |
| * Set up addresses of PIO/MEM write status registers. |
| */ |
| { |
| u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0}; |
| u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2, |
| SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3}; |
| u64 *pio; |
| pio = is_shub1() ? pio1 : pio2; |
| pda->pio_write_status_addr = |
| (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]); |
| pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0; |
| } |
| |
| /* |
| * WAR addresses for SHUB 1.x. |
| */ |
| if (local_node_data->active_cpu_count++ == 0 && is_shub1()) { |
| int buddy_nasid; |
| buddy_nasid = |
| cnodeid_to_nasid(numa_node_id() == |
| num_online_nodes() - 1 ? 0 : numa_node_id() + 1); |
| pda->pio_shub_war_cam_addr = |
| (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, |
| SH1_PI_CAM_CONTROL); |
| } |
| } |
| |
| /* |
| * Build tables for converting between NASIDs and cnodes. |
| */ |
| static inline int __init board_needs_cnode(int type) |
| { |
| return (type == KLTYPE_SNIA || type == KLTYPE_TIO); |
| } |
| |
| void __init build_cnode_tables(void) |
| { |
| int nasid; |
| int node; |
| lboard_t *brd; |
| |
| memset(physical_node_map, -1, sizeof(physical_node_map)); |
| memset(sn_cnodeid_to_nasid, -1, |
| sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); |
| |
| /* |
| * First populate the tables with C/M bricks. This ensures that |
| * cnode == node for all C & M bricks. |
| */ |
| for_each_online_node(node) { |
| nasid = pxm_to_nasid(node_to_pxm(node)); |
| sn_cnodeid_to_nasid[node] = nasid; |
| physical_node_map[nasid] = node; |
| } |
| |
| /* |
| * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node |
| * limit on the number of nodes, we can't use the generic node numbers |
| * for this. Note that num_cnodes is incremented below as TIOs or |
| * headless/memoryless nodes are discovered. |
| */ |
| num_cnodes = num_online_nodes(); |
| |
| /* fakeprom does not support klgraph */ |
| if (IS_RUNNING_ON_FAKE_PROM()) |
| return; |
| |
| /* Find TIOs & headless/memoryless nodes and add them to the tables */ |
| for_each_online_node(node) { |
| kl_config_hdr_t *klgraph_header; |
| nasid = cnodeid_to_nasid(node); |
| klgraph_header = ia64_sn_get_klconfig_addr(nasid); |
| BUG_ON(klgraph_header == NULL); |
| brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info); |
| while (brd) { |
| if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) { |
| sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid; |
| physical_node_map[brd->brd_nasid] = num_cnodes++; |
| } |
| brd = find_lboard_next(brd); |
| } |
| } |
| } |
| |
| int |
| nasid_slice_to_cpuid(int nasid, int slice) |
| { |
| long cpu; |
| |
| for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
| if (cpuid_to_nasid(cpu) == nasid && |
| cpuid_to_slice(cpu) == slice) |
| return cpu; |
| |
| return -1; |
| } |
| |
| int sn_prom_feature_available(int id) |
| { |
| if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS) |
| return 0; |
| return test_bit(id, sn_prom_features); |
| } |
| |
| void |
| sn_kernel_launch_event(void) |
| { |
| /* ignore status until we understand possible failure, if any*/ |
| if (ia64_sn_kernel_launch_event()) |
| printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n"); |
| } |
| EXPORT_SYMBOL(sn_prom_feature_available); |
| |