| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_mount.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_alloc.h" |
| #include "xfs_btree.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_bmap.h" |
| #include "xfs_attr.h" |
| #include "xfs_attr_leaf.h" |
| #include "xfs_error.h" |
| #include "xfs_trace.h" |
| |
| /* |
| * xfs_attr_leaf.c |
| * |
| * Routines to implement leaf blocks of attributes as Btrees of hashed names. |
| */ |
| |
| /*======================================================================== |
| * Function prototypes for the kernel. |
| *========================================================================*/ |
| |
| /* |
| * Routines used for growing the Btree. |
| */ |
| STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block, |
| struct xfs_buf **bpp); |
| STATIC int xfs_attr_leaf_add_work(struct xfs_buf *leaf_buffer, |
| xfs_da_args_t *args, int freemap_index); |
| STATIC void xfs_attr_leaf_compact(xfs_trans_t *tp, struct xfs_buf *leaf_buffer); |
| STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2); |
| STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *leaf_blk_1, |
| xfs_da_state_blk_t *leaf_blk_2, |
| int *number_entries_in_blk1, |
| int *number_usedbytes_in_blk1); |
| |
| /* |
| * Routines used for shrinking the Btree. |
| */ |
| STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, |
| struct xfs_buf *bp, int level); |
| STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, |
| struct xfs_buf *bp); |
| STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp, |
| xfs_dablk_t blkno, int blkcnt); |
| |
| /* |
| * Utility routines. |
| */ |
| STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf, |
| int src_start, |
| xfs_attr_leafblock_t *dst_leaf, |
| int dst_start, int move_count, |
| xfs_mount_t *mp); |
| STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); |
| |
| /*======================================================================== |
| * Namespace helper routines |
| *========================================================================*/ |
| |
| /* |
| * If namespace bits don't match return 0. |
| * If all match then return 1. |
| */ |
| STATIC int |
| xfs_attr_namesp_match(int arg_flags, int ondisk_flags) |
| { |
| return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags); |
| } |
| |
| |
| /*======================================================================== |
| * External routines when attribute fork size < XFS_LITINO(mp). |
| *========================================================================*/ |
| |
| /* |
| * Query whether the requested number of additional bytes of extended |
| * attribute space will be able to fit inline. |
| * |
| * Returns zero if not, else the di_forkoff fork offset to be used in the |
| * literal area for attribute data once the new bytes have been added. |
| * |
| * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; |
| * special case for dev/uuid inodes, they have fixed size data forks. |
| */ |
| int |
| xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes) |
| { |
| int offset; |
| int minforkoff; /* lower limit on valid forkoff locations */ |
| int maxforkoff; /* upper limit on valid forkoff locations */ |
| int dsize; |
| xfs_mount_t *mp = dp->i_mount; |
| |
| offset = (XFS_LITINO(mp) - bytes) >> 3; /* rounded down */ |
| |
| switch (dp->i_d.di_format) { |
| case XFS_DINODE_FMT_DEV: |
| minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; |
| return (offset >= minforkoff) ? minforkoff : 0; |
| case XFS_DINODE_FMT_UUID: |
| minforkoff = roundup(sizeof(uuid_t), 8) >> 3; |
| return (offset >= minforkoff) ? minforkoff : 0; |
| } |
| |
| /* |
| * If the requested numbers of bytes is smaller or equal to the |
| * current attribute fork size we can always proceed. |
| * |
| * Note that if_bytes in the data fork might actually be larger than |
| * the current data fork size is due to delalloc extents. In that |
| * case either the extent count will go down when they are converted |
| * to real extents, or the delalloc conversion will take care of the |
| * literal area rebalancing. |
| */ |
| if (bytes <= XFS_IFORK_ASIZE(dp)) |
| return dp->i_d.di_forkoff; |
| |
| /* |
| * For attr2 we can try to move the forkoff if there is space in the |
| * literal area, but for the old format we are done if there is no |
| * space in the fixed attribute fork. |
| */ |
| if (!(mp->m_flags & XFS_MOUNT_ATTR2)) |
| return 0; |
| |
| dsize = dp->i_df.if_bytes; |
| |
| switch (dp->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| /* |
| * If there is no attr fork and the data fork is extents, |
| * determine if creating the default attr fork will result |
| * in the extents form migrating to btree. If so, the |
| * minimum offset only needs to be the space required for |
| * the btree root. |
| */ |
| if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > |
| xfs_default_attroffset(dp)) |
| dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| /* |
| * If we have a data btree then keep forkoff if we have one, |
| * otherwise we are adding a new attr, so then we set |
| * minforkoff to where the btree root can finish so we have |
| * plenty of room for attrs |
| */ |
| if (dp->i_d.di_forkoff) { |
| if (offset < dp->i_d.di_forkoff) |
| return 0; |
| return dp->i_d.di_forkoff; |
| } |
| dsize = XFS_BMAP_BROOT_SPACE(dp->i_df.if_broot); |
| break; |
| } |
| |
| /* |
| * A data fork btree root must have space for at least |
| * MINDBTPTRS key/ptr pairs if the data fork is small or empty. |
| */ |
| minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); |
| minforkoff = roundup(minforkoff, 8) >> 3; |
| |
| /* attr fork btree root can have at least this many key/ptr pairs */ |
| maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); |
| maxforkoff = maxforkoff >> 3; /* rounded down */ |
| |
| if (offset >= maxforkoff) |
| return maxforkoff; |
| if (offset >= minforkoff) |
| return offset; |
| return 0; |
| } |
| |
| /* |
| * Switch on the ATTR2 superblock bit (implies also FEATURES2) |
| */ |
| STATIC void |
| xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) |
| { |
| if ((mp->m_flags & XFS_MOUNT_ATTR2) && |
| !(xfs_sb_version_hasattr2(&mp->m_sb))) { |
| spin_lock(&mp->m_sb_lock); |
| if (!xfs_sb_version_hasattr2(&mp->m_sb)) { |
| xfs_sb_version_addattr2(&mp->m_sb); |
| spin_unlock(&mp->m_sb_lock); |
| xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2); |
| } else |
| spin_unlock(&mp->m_sb_lock); |
| } |
| } |
| |
| /* |
| * Create the initial contents of a shortform attribute list. |
| */ |
| void |
| xfs_attr_shortform_create(xfs_da_args_t *args) |
| { |
| xfs_attr_sf_hdr_t *hdr; |
| xfs_inode_t *dp; |
| xfs_ifork_t *ifp; |
| |
| trace_xfs_attr_sf_create(args); |
| |
| dp = args->dp; |
| ASSERT(dp != NULL); |
| ifp = dp->i_afp; |
| ASSERT(ifp != NULL); |
| ASSERT(ifp->if_bytes == 0); |
| if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) { |
| ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */ |
| dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL; |
| ifp->if_flags |= XFS_IFINLINE; |
| } else { |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| } |
| xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); |
| hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; |
| hdr->count = 0; |
| hdr->totsize = cpu_to_be16(sizeof(*hdr)); |
| xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| } |
| |
| /* |
| * Add a name/value pair to the shortform attribute list. |
| * Overflow from the inode has already been checked for. |
| */ |
| void |
| xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i, offset, size; |
| xfs_mount_t *mp; |
| xfs_inode_t *dp; |
| xfs_ifork_t *ifp; |
| |
| trace_xfs_attr_sf_add(args); |
| |
| dp = args->dp; |
| mp = dp->i_mount; |
| dp->i_d.di_forkoff = forkoff; |
| |
| ifp = dp->i_afp; |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| #ifdef DEBUG |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, sfe->nameval, args->namelen) != 0) |
| continue; |
| if (!xfs_attr_namesp_match(args->flags, sfe->flags)) |
| continue; |
| ASSERT(0); |
| #endif |
| } |
| |
| offset = (char *)sfe - (char *)sf; |
| size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); |
| xfs_idata_realloc(dp, size, XFS_ATTR_FORK); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); |
| |
| sfe->namelen = args->namelen; |
| sfe->valuelen = args->valuelen; |
| sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); |
| memcpy(sfe->nameval, args->name, args->namelen); |
| memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); |
| sf->hdr.count++; |
| be16_add_cpu(&sf->hdr.totsize, size); |
| xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| |
| xfs_sbversion_add_attr2(mp, args->trans); |
| } |
| |
| /* |
| * After the last attribute is removed revert to original inode format, |
| * making all literal area available to the data fork once more. |
| */ |
| STATIC void |
| xfs_attr_fork_reset( |
| struct xfs_inode *ip, |
| struct xfs_trans *tp) |
| { |
| xfs_idestroy_fork(ip, XFS_ATTR_FORK); |
| ip->i_d.di_forkoff = 0; |
| ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| |
| ASSERT(ip->i_d.di_anextents == 0); |
| ASSERT(ip->i_afp == NULL); |
| |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| } |
| |
| /* |
| * Remove an attribute from the shortform attribute list structure. |
| */ |
| int |
| xfs_attr_shortform_remove(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int base, size=0, end, totsize, i; |
| xfs_mount_t *mp; |
| xfs_inode_t *dp; |
| |
| trace_xfs_attr_sf_remove(args); |
| |
| dp = args->dp; |
| mp = dp->i_mount; |
| base = sizeof(xfs_attr_sf_hdr_t); |
| sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| end = sf->hdr.count; |
| for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), |
| base += size, i++) { |
| size = XFS_ATTR_SF_ENTSIZE(sfe); |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(sfe->nameval, args->name, args->namelen) != 0) |
| continue; |
| if (!xfs_attr_namesp_match(args->flags, sfe->flags)) |
| continue; |
| break; |
| } |
| if (i == end) |
| return(XFS_ERROR(ENOATTR)); |
| |
| /* |
| * Fix up the attribute fork data, covering the hole |
| */ |
| end = base + size; |
| totsize = be16_to_cpu(sf->hdr.totsize); |
| if (end != totsize) |
| memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); |
| sf->hdr.count--; |
| be16_add_cpu(&sf->hdr.totsize, -size); |
| |
| /* |
| * Fix up the start offset of the attribute fork |
| */ |
| totsize -= size; |
| if (totsize == sizeof(xfs_attr_sf_hdr_t) && |
| (mp->m_flags & XFS_MOUNT_ATTR2) && |
| (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| !(args->op_flags & XFS_DA_OP_ADDNAME)) { |
| xfs_attr_fork_reset(dp, args->trans); |
| } else { |
| xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); |
| dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); |
| ASSERT(dp->i_d.di_forkoff); |
| ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || |
| (args->op_flags & XFS_DA_OP_ADDNAME) || |
| !(mp->m_flags & XFS_MOUNT_ATTR2) || |
| dp->i_d.di_format == XFS_DINODE_FMT_BTREE); |
| xfs_trans_log_inode(args->trans, dp, |
| XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| } |
| |
| xfs_sbversion_add_attr2(mp, args->trans); |
| |
| return(0); |
| } |
| |
| /* |
| * Look up a name in a shortform attribute list structure. |
| */ |
| /*ARGSUSED*/ |
| int |
| xfs_attr_shortform_lookup(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i; |
| xfs_ifork_t *ifp; |
| |
| trace_xfs_attr_sf_lookup(args); |
| |
| ifp = args->dp->i_afp; |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, sfe->nameval, args->namelen) != 0) |
| continue; |
| if (!xfs_attr_namesp_match(args->flags, sfe->flags)) |
| continue; |
| return(XFS_ERROR(EEXIST)); |
| } |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Look up a name in a shortform attribute list structure. |
| */ |
| /*ARGSUSED*/ |
| int |
| xfs_attr_shortform_getvalue(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i; |
| |
| ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, sfe->nameval, args->namelen) != 0) |
| continue; |
| if (!xfs_attr_namesp_match(args->flags, sfe->flags)) |
| continue; |
| if (args->flags & ATTR_KERNOVAL) { |
| args->valuelen = sfe->valuelen; |
| return(XFS_ERROR(EEXIST)); |
| } |
| if (args->valuelen < sfe->valuelen) { |
| args->valuelen = sfe->valuelen; |
| return(XFS_ERROR(ERANGE)); |
| } |
| args->valuelen = sfe->valuelen; |
| memcpy(args->value, &sfe->nameval[args->namelen], |
| args->valuelen); |
| return(XFS_ERROR(EEXIST)); |
| } |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Convert from using the shortform to the leaf. |
| */ |
| int |
| xfs_attr_shortform_to_leaf(xfs_da_args_t *args) |
| { |
| xfs_inode_t *dp; |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| xfs_da_args_t nargs; |
| char *tmpbuffer; |
| int error, i, size; |
| xfs_dablk_t blkno; |
| struct xfs_buf *bp; |
| xfs_ifork_t *ifp; |
| |
| trace_xfs_attr_sf_to_leaf(args); |
| |
| dp = args->dp; |
| ifp = dp->i_afp; |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| size = be16_to_cpu(sf->hdr.totsize); |
| tmpbuffer = kmem_alloc(size, KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| memcpy(tmpbuffer, ifp->if_u1.if_data, size); |
| sf = (xfs_attr_shortform_t *)tmpbuffer; |
| |
| xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); |
| bp = NULL; |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) { |
| /* |
| * If we hit an IO error middle of the transaction inside |
| * grow_inode(), we may have inconsistent data. Bail out. |
| */ |
| if (error == EIO) |
| goto out; |
| xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ |
| memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ |
| goto out; |
| } |
| |
| ASSERT(blkno == 0); |
| error = xfs_attr_leaf_create(args, blkno, &bp); |
| if (error) { |
| error = xfs_da_shrink_inode(args, 0, bp); |
| bp = NULL; |
| if (error) |
| goto out; |
| xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ |
| memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ |
| goto out; |
| } |
| |
| memset((char *)&nargs, 0, sizeof(nargs)); |
| nargs.dp = dp; |
| nargs.firstblock = args->firstblock; |
| nargs.flist = args->flist; |
| nargs.total = args->total; |
| nargs.whichfork = XFS_ATTR_FORK; |
| nargs.trans = args->trans; |
| nargs.op_flags = XFS_DA_OP_OKNOENT; |
| |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; i++) { |
| nargs.name = sfe->nameval; |
| nargs.namelen = sfe->namelen; |
| nargs.value = &sfe->nameval[nargs.namelen]; |
| nargs.valuelen = sfe->valuelen; |
| nargs.hashval = xfs_da_hashname(sfe->nameval, |
| sfe->namelen); |
| nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags); |
| error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */ |
| ASSERT(error == ENOATTR); |
| error = xfs_attr_leaf_add(bp, &nargs); |
| ASSERT(error != ENOSPC); |
| if (error) |
| goto out; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| } |
| error = 0; |
| |
| out: |
| kmem_free(tmpbuffer); |
| return(error); |
| } |
| |
| STATIC int |
| xfs_attr_shortform_compare(const void *a, const void *b) |
| { |
| xfs_attr_sf_sort_t *sa, *sb; |
| |
| sa = (xfs_attr_sf_sort_t *)a; |
| sb = (xfs_attr_sf_sort_t *)b; |
| if (sa->hash < sb->hash) { |
| return(-1); |
| } else if (sa->hash > sb->hash) { |
| return(1); |
| } else { |
| return(sa->entno - sb->entno); |
| } |
| } |
| |
| |
| #define XFS_ISRESET_CURSOR(cursor) \ |
| (!((cursor)->initted) && !((cursor)->hashval) && \ |
| !((cursor)->blkno) && !((cursor)->offset)) |
| /* |
| * Copy out entries of shortform attribute lists for attr_list(). |
| * Shortform attribute lists are not stored in hashval sorted order. |
| * If the output buffer is not large enough to hold them all, then we |
| * we have to calculate each entries' hashvalue and sort them before |
| * we can begin returning them to the user. |
| */ |
| /*ARGSUSED*/ |
| int |
| xfs_attr_shortform_list(xfs_attr_list_context_t *context) |
| { |
| attrlist_cursor_kern_t *cursor; |
| xfs_attr_sf_sort_t *sbuf, *sbp; |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| xfs_inode_t *dp; |
| int sbsize, nsbuf, count, i; |
| int error; |
| |
| ASSERT(context != NULL); |
| dp = context->dp; |
| ASSERT(dp != NULL); |
| ASSERT(dp->i_afp != NULL); |
| sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; |
| ASSERT(sf != NULL); |
| if (!sf->hdr.count) |
| return(0); |
| cursor = context->cursor; |
| ASSERT(cursor != NULL); |
| |
| trace_xfs_attr_list_sf(context); |
| |
| /* |
| * If the buffer is large enough and the cursor is at the start, |
| * do not bother with sorting since we will return everything in |
| * one buffer and another call using the cursor won't need to be |
| * made. |
| * Note the generous fudge factor of 16 overhead bytes per entry. |
| * If bufsize is zero then put_listent must be a search function |
| * and can just scan through what we have. |
| */ |
| if (context->bufsize == 0 || |
| (XFS_ISRESET_CURSOR(cursor) && |
| (dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) { |
| for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) { |
| error = context->put_listent(context, |
| sfe->flags, |
| sfe->nameval, |
| (int)sfe->namelen, |
| (int)sfe->valuelen, |
| &sfe->nameval[sfe->namelen]); |
| |
| /* |
| * Either search callback finished early or |
| * didn't fit it all in the buffer after all. |
| */ |
| if (context->seen_enough) |
| break; |
| |
| if (error) |
| return error; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| } |
| trace_xfs_attr_list_sf_all(context); |
| return(0); |
| } |
| |
| /* do no more for a search callback */ |
| if (context->bufsize == 0) |
| return 0; |
| |
| /* |
| * It didn't all fit, so we have to sort everything on hashval. |
| */ |
| sbsize = sf->hdr.count * sizeof(*sbuf); |
| sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP | KM_NOFS); |
| |
| /* |
| * Scan the attribute list for the rest of the entries, storing |
| * the relevant info from only those that match into a buffer. |
| */ |
| nsbuf = 0; |
| for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) { |
| if (unlikely( |
| ((char *)sfe < (char *)sf) || |
| ((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) { |
| XFS_CORRUPTION_ERROR("xfs_attr_shortform_list", |
| XFS_ERRLEVEL_LOW, |
| context->dp->i_mount, sfe); |
| kmem_free(sbuf); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| sbp->entno = i; |
| sbp->hash = xfs_da_hashname(sfe->nameval, sfe->namelen); |
| sbp->name = sfe->nameval; |
| sbp->namelen = sfe->namelen; |
| /* These are bytes, and both on-disk, don't endian-flip */ |
| sbp->valuelen = sfe->valuelen; |
| sbp->flags = sfe->flags; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| sbp++; |
| nsbuf++; |
| } |
| |
| /* |
| * Sort the entries on hash then entno. |
| */ |
| xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare); |
| |
| /* |
| * Re-find our place IN THE SORTED LIST. |
| */ |
| count = 0; |
| cursor->initted = 1; |
| cursor->blkno = 0; |
| for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) { |
| if (sbp->hash == cursor->hashval) { |
| if (cursor->offset == count) { |
| break; |
| } |
| count++; |
| } else if (sbp->hash > cursor->hashval) { |
| break; |
| } |
| } |
| if (i == nsbuf) { |
| kmem_free(sbuf); |
| return(0); |
| } |
| |
| /* |
| * Loop putting entries into the user buffer. |
| */ |
| for ( ; i < nsbuf; i++, sbp++) { |
| if (cursor->hashval != sbp->hash) { |
| cursor->hashval = sbp->hash; |
| cursor->offset = 0; |
| } |
| error = context->put_listent(context, |
| sbp->flags, |
| sbp->name, |
| sbp->namelen, |
| sbp->valuelen, |
| &sbp->name[sbp->namelen]); |
| if (error) |
| return error; |
| if (context->seen_enough) |
| break; |
| cursor->offset++; |
| } |
| |
| kmem_free(sbuf); |
| return(0); |
| } |
| |
| /* |
| * Check a leaf attribute block to see if all the entries would fit into |
| * a shortform attribute list. |
| */ |
| int |
| xfs_attr_shortform_allfit( |
| struct xfs_buf *bp, |
| struct xfs_inode *dp) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| int bytes, i; |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| |
| entry = &leaf->entries[0]; |
| bytes = sizeof(struct xfs_attr_sf_hdr); |
| for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* don't copy partial entries */ |
| if (!(entry->flags & XFS_ATTR_LOCAL)) |
| return(0); |
| name_loc = xfs_attr_leaf_name_local(leaf, i); |
| if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) |
| return(0); |
| if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) |
| return(0); |
| bytes += sizeof(struct xfs_attr_sf_entry)-1 |
| + name_loc->namelen |
| + be16_to_cpu(name_loc->valuelen); |
| } |
| if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && |
| (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| (bytes == sizeof(struct xfs_attr_sf_hdr))) |
| return(-1); |
| return(xfs_attr_shortform_bytesfit(dp, bytes)); |
| } |
| |
| /* |
| * Convert a leaf attribute list to shortform attribute list |
| */ |
| int |
| xfs_attr_leaf_to_shortform( |
| struct xfs_buf *bp, |
| xfs_da_args_t *args, |
| int forkoff) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_da_args_t nargs; |
| xfs_inode_t *dp; |
| char *tmpbuffer; |
| int error, i; |
| |
| trace_xfs_attr_leaf_to_sf(args); |
| |
| dp = args->dp; |
| tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| |
| ASSERT(bp != NULL); |
| memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(dp->i_mount)); |
| leaf = (xfs_attr_leafblock_t *)tmpbuffer; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| memset(bp->b_addr, 0, XFS_LBSIZE(dp->i_mount)); |
| |
| /* |
| * Clean out the prior contents of the attribute list. |
| */ |
| error = xfs_da_shrink_inode(args, 0, bp); |
| if (error) |
| goto out; |
| |
| if (forkoff == -1) { |
| ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); |
| ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE); |
| xfs_attr_fork_reset(dp, args->trans); |
| goto out; |
| } |
| |
| xfs_attr_shortform_create(args); |
| |
| /* |
| * Copy the attributes |
| */ |
| memset((char *)&nargs, 0, sizeof(nargs)); |
| nargs.dp = dp; |
| nargs.firstblock = args->firstblock; |
| nargs.flist = args->flist; |
| nargs.total = args->total; |
| nargs.whichfork = XFS_ATTR_FORK; |
| nargs.trans = args->trans; |
| nargs.op_flags = XFS_DA_OP_OKNOENT; |
| entry = &leaf->entries[0]; |
| for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* don't copy partial entries */ |
| if (!entry->nameidx) |
| continue; |
| ASSERT(entry->flags & XFS_ATTR_LOCAL); |
| name_loc = xfs_attr_leaf_name_local(leaf, i); |
| nargs.name = name_loc->nameval; |
| nargs.namelen = name_loc->namelen; |
| nargs.value = &name_loc->nameval[nargs.namelen]; |
| nargs.valuelen = be16_to_cpu(name_loc->valuelen); |
| nargs.hashval = be32_to_cpu(entry->hashval); |
| nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags); |
| xfs_attr_shortform_add(&nargs, forkoff); |
| } |
| error = 0; |
| |
| out: |
| kmem_free(tmpbuffer); |
| return(error); |
| } |
| |
| /* |
| * Convert from using a single leaf to a root node and a leaf. |
| */ |
| int |
| xfs_attr_leaf_to_node(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_da_intnode_t *node; |
| xfs_inode_t *dp; |
| struct xfs_buf *bp1, *bp2; |
| xfs_dablk_t blkno; |
| int error; |
| |
| trace_xfs_attr_leaf_to_node(args); |
| |
| dp = args->dp; |
| bp1 = bp2 = NULL; |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) |
| goto out; |
| error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1, |
| XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| ASSERT(bp1 != NULL); |
| bp2 = NULL; |
| error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2, |
| XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| ASSERT(bp2 != NULL); |
| memcpy(bp2->b_addr, bp1->b_addr, XFS_LBSIZE(dp->i_mount)); |
| bp1 = NULL; |
| xfs_trans_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1); |
| |
| /* |
| * Set up the new root node. |
| */ |
| error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| node = bp1->b_addr; |
| leaf = bp2->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| /* both on-disk, don't endian-flip twice */ |
| node->btree[0].hashval = |
| leaf->entries[be16_to_cpu(leaf->hdr.count)-1 ].hashval; |
| node->btree[0].before = cpu_to_be32(blkno); |
| node->hdr.count = cpu_to_be16(1); |
| xfs_trans_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1); |
| error = 0; |
| out: |
| return(error); |
| } |
| |
| |
| /*======================================================================== |
| * Routines used for growing the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Create the initial contents of a leaf attribute list |
| * or a leaf in a node attribute list. |
| */ |
| STATIC int |
| xfs_attr_leaf_create( |
| xfs_da_args_t *args, |
| xfs_dablk_t blkno, |
| struct xfs_buf **bpp) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_inode_t *dp; |
| struct xfs_buf *bp; |
| int error; |
| |
| trace_xfs_attr_leaf_create(args); |
| |
| dp = args->dp; |
| ASSERT(dp != NULL); |
| error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp, |
| XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| leaf = bp->b_addr; |
| memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount)); |
| hdr = &leaf->hdr; |
| hdr->info.magic = cpu_to_be16(XFS_ATTR_LEAF_MAGIC); |
| hdr->firstused = cpu_to_be16(XFS_LBSIZE(dp->i_mount)); |
| if (!hdr->firstused) { |
| hdr->firstused = cpu_to_be16( |
| XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| |
| hdr->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); |
| hdr->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr->firstused) - |
| sizeof(xfs_attr_leaf_hdr_t)); |
| |
| xfs_trans_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1); |
| |
| *bpp = bp; |
| return(0); |
| } |
| |
| /* |
| * Split the leaf node, rebalance, then add the new entry. |
| */ |
| int |
| xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk, |
| xfs_da_state_blk_t *newblk) |
| { |
| xfs_dablk_t blkno; |
| int error; |
| |
| trace_xfs_attr_leaf_split(state->args); |
| |
| /* |
| * Allocate space for a new leaf node. |
| */ |
| ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); |
| error = xfs_da_grow_inode(state->args, &blkno); |
| if (error) |
| return(error); |
| error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp); |
| if (error) |
| return(error); |
| newblk->blkno = blkno; |
| newblk->magic = XFS_ATTR_LEAF_MAGIC; |
| |
| /* |
| * Rebalance the entries across the two leaves. |
| * NOTE: rebalance() currently depends on the 2nd block being empty. |
| */ |
| xfs_attr_leaf_rebalance(state, oldblk, newblk); |
| error = xfs_da_blk_link(state, oldblk, newblk); |
| if (error) |
| return(error); |
| |
| /* |
| * Save info on "old" attribute for "atomic rename" ops, leaf_add() |
| * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the |
| * "new" attrs info. Will need the "old" info to remove it later. |
| * |
| * Insert the "new" entry in the correct block. |
| */ |
| if (state->inleaf) { |
| trace_xfs_attr_leaf_add_old(state->args); |
| error = xfs_attr_leaf_add(oldblk->bp, state->args); |
| } else { |
| trace_xfs_attr_leaf_add_new(state->args); |
| error = xfs_attr_leaf_add(newblk->bp, state->args); |
| } |
| |
| /* |
| * Update last hashval in each block since we added the name. |
| */ |
| oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); |
| newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); |
| return(error); |
| } |
| |
| /* |
| * Add a name to the leaf attribute list structure. |
| */ |
| int |
| xfs_attr_leaf_add( |
| struct xfs_buf *bp, |
| struct xfs_da_args *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_attr_leaf_map_t *map; |
| int tablesize, entsize, sum, tmp, i; |
| |
| trace_xfs_attr_leaf_add(args); |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT((args->index >= 0) |
| && (args->index <= be16_to_cpu(leaf->hdr.count))); |
| hdr = &leaf->hdr; |
| entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen, |
| args->trans->t_mountp->m_sb.sb_blocksize, NULL); |
| |
| /* |
| * Search through freemap for first-fit on new name length. |
| * (may need to figure in size of entry struct too) |
| */ |
| tablesize = (be16_to_cpu(hdr->count) + 1) |
| * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1]; |
| for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) { |
| if (tablesize > be16_to_cpu(hdr->firstused)) { |
| sum += be16_to_cpu(map->size); |
| continue; |
| } |
| if (!map->size) |
| continue; /* no space in this map */ |
| tmp = entsize; |
| if (be16_to_cpu(map->base) < be16_to_cpu(hdr->firstused)) |
| tmp += sizeof(xfs_attr_leaf_entry_t); |
| if (be16_to_cpu(map->size) >= tmp) { |
| tmp = xfs_attr_leaf_add_work(bp, args, i); |
| return(tmp); |
| } |
| sum += be16_to_cpu(map->size); |
| } |
| |
| /* |
| * If there are no holes in the address space of the block, |
| * and we don't have enough freespace, then compaction will do us |
| * no good and we should just give up. |
| */ |
| if (!hdr->holes && (sum < entsize)) |
| return(XFS_ERROR(ENOSPC)); |
| |
| /* |
| * Compact the entries to coalesce free space. |
| * This may change the hdr->count via dropping INCOMPLETE entries. |
| */ |
| xfs_attr_leaf_compact(args->trans, bp); |
| |
| /* |
| * After compaction, the block is guaranteed to have only one |
| * free region, in freemap[0]. If it is not big enough, give up. |
| */ |
| if (be16_to_cpu(hdr->freemap[0].size) |
| < (entsize + sizeof(xfs_attr_leaf_entry_t))) |
| return(XFS_ERROR(ENOSPC)); |
| |
| return(xfs_attr_leaf_add_work(bp, args, 0)); |
| } |
| |
| /* |
| * Add a name to a leaf attribute list structure. |
| */ |
| STATIC int |
| xfs_attr_leaf_add_work( |
| struct xfs_buf *bp, |
| xfs_da_args_t *args, |
| int mapindex) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| xfs_attr_leaf_map_t *map; |
| xfs_mount_t *mp; |
| int tmp, i; |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| hdr = &leaf->hdr; |
| ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE)); |
| ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(hdr->count))); |
| |
| /* |
| * Force open some space in the entry array and fill it in. |
| */ |
| entry = &leaf->entries[args->index]; |
| if (args->index < be16_to_cpu(hdr->count)) { |
| tmp = be16_to_cpu(hdr->count) - args->index; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| memmove((char *)(entry+1), (char *)entry, tmp); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); |
| } |
| be16_add_cpu(&hdr->count, 1); |
| |
| /* |
| * Allocate space for the new string (at the end of the run). |
| */ |
| map = &hdr->freemap[mapindex]; |
| mp = args->trans->t_mountp; |
| ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp)); |
| ASSERT((be16_to_cpu(map->base) & 0x3) == 0); |
| ASSERT(be16_to_cpu(map->size) >= |
| xfs_attr_leaf_newentsize(args->namelen, args->valuelen, |
| mp->m_sb.sb_blocksize, NULL)); |
| ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp)); |
| ASSERT((be16_to_cpu(map->size) & 0x3) == 0); |
| be16_add_cpu(&map->size, |
| -xfs_attr_leaf_newentsize(args->namelen, args->valuelen, |
| mp->m_sb.sb_blocksize, &tmp)); |
| entry->nameidx = cpu_to_be16(be16_to_cpu(map->base) + |
| be16_to_cpu(map->size)); |
| entry->hashval = cpu_to_be32(args->hashval); |
| entry->flags = tmp ? XFS_ATTR_LOCAL : 0; |
| entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); |
| if (args->op_flags & XFS_DA_OP_RENAME) { |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| if ((args->blkno2 == args->blkno) && |
| (args->index2 <= args->index)) { |
| args->index2++; |
| } |
| } |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| ASSERT((args->index == 0) || |
| (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); |
| ASSERT((args->index == be16_to_cpu(hdr->count)-1) || |
| (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); |
| |
| /* |
| * For "remote" attribute values, simply note that we need to |
| * allocate space for the "remote" value. We can't actually |
| * allocate the extents in this transaction, and we can't decide |
| * which blocks they should be as we might allocate more blocks |
| * as part of this transaction (a split operation for example). |
| */ |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr_leaf_name_local(leaf, args->index); |
| name_loc->namelen = args->namelen; |
| name_loc->valuelen = cpu_to_be16(args->valuelen); |
| memcpy((char *)name_loc->nameval, args->name, args->namelen); |
| memcpy((char *)&name_loc->nameval[args->namelen], args->value, |
| be16_to_cpu(name_loc->valuelen)); |
| } else { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); |
| name_rmt->namelen = args->namelen; |
| memcpy((char *)name_rmt->name, args->name, args->namelen); |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| /* just in case */ |
| name_rmt->valuelen = 0; |
| name_rmt->valueblk = 0; |
| args->rmtblkno = 1; |
| args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen); |
| } |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, xfs_attr_leaf_name(leaf, args->index), |
| xfs_attr_leaf_entsize(leaf, args->index))); |
| |
| /* |
| * Update the control info for this leaf node |
| */ |
| if (be16_to_cpu(entry->nameidx) < be16_to_cpu(hdr->firstused)) { |
| /* both on-disk, don't endian-flip twice */ |
| hdr->firstused = entry->nameidx; |
| } |
| ASSERT(be16_to_cpu(hdr->firstused) >= |
| ((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr))); |
| tmp = (be16_to_cpu(hdr->count)-1) * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| map = &hdr->freemap[0]; |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) { |
| if (be16_to_cpu(map->base) == tmp) { |
| be16_add_cpu(&map->base, sizeof(xfs_attr_leaf_entry_t)); |
| be16_add_cpu(&map->size, |
| -((int)sizeof(xfs_attr_leaf_entry_t))); |
| } |
| } |
| be16_add_cpu(&hdr->usedbytes, xfs_attr_leaf_entsize(leaf, args->index)); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr))); |
| return(0); |
| } |
| |
| /* |
| * Garbage collect a leaf attribute list block by copying it to a new buffer. |
| */ |
| STATIC void |
| xfs_attr_leaf_compact( |
| struct xfs_trans *trans, |
| struct xfs_buf *bp) |
| { |
| xfs_attr_leafblock_t *leaf_s, *leaf_d; |
| xfs_attr_leaf_hdr_t *hdr_s, *hdr_d; |
| xfs_mount_t *mp; |
| char *tmpbuffer; |
| |
| mp = trans->t_mountp; |
| tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(mp)); |
| memset(bp->b_addr, 0, XFS_LBSIZE(mp)); |
| |
| /* |
| * Copy basic information |
| */ |
| leaf_s = (xfs_attr_leafblock_t *)tmpbuffer; |
| leaf_d = bp->b_addr; |
| hdr_s = &leaf_s->hdr; |
| hdr_d = &leaf_d->hdr; |
| hdr_d->info = hdr_s->info; /* struct copy */ |
| hdr_d->firstused = cpu_to_be16(XFS_LBSIZE(mp)); |
| /* handle truncation gracefully */ |
| if (!hdr_d->firstused) { |
| hdr_d->firstused = cpu_to_be16( |
| XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| hdr_d->usedbytes = 0; |
| hdr_d->count = 0; |
| hdr_d->holes = 0; |
| hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); |
| hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) - |
| sizeof(xfs_attr_leaf_hdr_t)); |
| |
| /* |
| * Copy all entry's in the same (sorted) order, |
| * but allocate name/value pairs packed and in sequence. |
| */ |
| xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0, |
| be16_to_cpu(hdr_s->count), mp); |
| xfs_trans_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1); |
| |
| kmem_free(tmpbuffer); |
| } |
| |
| /* |
| * Redistribute the attribute list entries between two leaf nodes, |
| * taking into account the size of the new entry. |
| * |
| * NOTE: if new block is empty, then it will get the upper half of the |
| * old block. At present, all (one) callers pass in an empty second block. |
| * |
| * This code adjusts the args->index/blkno and args->index2/blkno2 fields |
| * to match what it is doing in splitting the attribute leaf block. Those |
| * values are used in "atomic rename" operations on attributes. Note that |
| * the "new" and "old" values can end up in different blocks. |
| */ |
| STATIC void |
| xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2) |
| { |
| xfs_da_args_t *args; |
| xfs_da_state_blk_t *tmp_blk; |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| xfs_attr_leaf_hdr_t *hdr1, *hdr2; |
| int count, totallen, max, space, swap; |
| |
| /* |
| * Set up environment. |
| */ |
| ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); |
| leaf1 = blk1->bp->b_addr; |
| leaf2 = blk2->bp->b_addr; |
| ASSERT(leaf1->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(leaf2->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| args = state->args; |
| |
| trace_xfs_attr_leaf_rebalance(args); |
| |
| /* |
| * Check ordering of blocks, reverse if it makes things simpler. |
| * |
| * NOTE: Given that all (current) callers pass in an empty |
| * second block, this code should never set "swap". |
| */ |
| swap = 0; |
| if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) { |
| tmp_blk = blk1; |
| blk1 = blk2; |
| blk2 = tmp_blk; |
| leaf1 = blk1->bp->b_addr; |
| leaf2 = blk2->bp->b_addr; |
| swap = 1; |
| } |
| hdr1 = &leaf1->hdr; |
| hdr2 = &leaf2->hdr; |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. Then get |
| * the direction to copy and the number of elements to move. |
| * |
| * "inleaf" is true if the new entry should be inserted into blk1. |
| * If "swap" is also true, then reverse the sense of "inleaf". |
| */ |
| state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2, |
| &count, &totallen); |
| if (swap) |
| state->inleaf = !state->inleaf; |
| |
| /* |
| * Move any entries required from leaf to leaf: |
| */ |
| if (count < be16_to_cpu(hdr1->count)) { |
| /* |
| * Figure the total bytes to be added to the destination leaf. |
| */ |
| /* number entries being moved */ |
| count = be16_to_cpu(hdr1->count) - count; |
| space = be16_to_cpu(hdr1->usedbytes) - totallen; |
| space += count * sizeof(xfs_attr_leaf_entry_t); |
| |
| /* |
| * leaf2 is the destination, compact it if it looks tight. |
| */ |
| max = be16_to_cpu(hdr2->firstused) |
| - sizeof(xfs_attr_leaf_hdr_t); |
| max -= be16_to_cpu(hdr2->count) * sizeof(xfs_attr_leaf_entry_t); |
| if (space > max) { |
| xfs_attr_leaf_compact(args->trans, blk2->bp); |
| } |
| |
| /* |
| * Move high entries from leaf1 to low end of leaf2. |
| */ |
| xfs_attr_leaf_moveents(leaf1, be16_to_cpu(hdr1->count) - count, |
| leaf2, 0, count, state->mp); |
| |
| xfs_trans_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); |
| xfs_trans_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); |
| } else if (count > be16_to_cpu(hdr1->count)) { |
| /* |
| * I assert that since all callers pass in an empty |
| * second buffer, this code should never execute. |
| */ |
| |
| /* |
| * Figure the total bytes to be added to the destination leaf. |
| */ |
| /* number entries being moved */ |
| count -= be16_to_cpu(hdr1->count); |
| space = totallen - be16_to_cpu(hdr1->usedbytes); |
| space += count * sizeof(xfs_attr_leaf_entry_t); |
| |
| /* |
| * leaf1 is the destination, compact it if it looks tight. |
| */ |
| max = be16_to_cpu(hdr1->firstused) |
| - sizeof(xfs_attr_leaf_hdr_t); |
| max -= be16_to_cpu(hdr1->count) * sizeof(xfs_attr_leaf_entry_t); |
| if (space > max) { |
| xfs_attr_leaf_compact(args->trans, blk1->bp); |
| } |
| |
| /* |
| * Move low entries from leaf2 to high end of leaf1. |
| */ |
| xfs_attr_leaf_moveents(leaf2, 0, leaf1, |
| be16_to_cpu(hdr1->count), count, state->mp); |
| |
| xfs_trans_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); |
| xfs_trans_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); |
| } |
| |
| /* |
| * Copy out last hashval in each block for B-tree code. |
| */ |
| blk1->hashval = be32_to_cpu( |
| leaf1->entries[be16_to_cpu(leaf1->hdr.count)-1].hashval); |
| blk2->hashval = be32_to_cpu( |
| leaf2->entries[be16_to_cpu(leaf2->hdr.count)-1].hashval); |
| |
| /* |
| * Adjust the expected index for insertion. |
| * NOTE: this code depends on the (current) situation that the |
| * second block was originally empty. |
| * |
| * If the insertion point moved to the 2nd block, we must adjust |
| * the index. We must also track the entry just following the |
| * new entry for use in an "atomic rename" operation, that entry |
| * is always the "old" entry and the "new" entry is what we are |
| * inserting. The index/blkno fields refer to the "old" entry, |
| * while the index2/blkno2 fields refer to the "new" entry. |
| */ |
| if (blk1->index > be16_to_cpu(leaf1->hdr.count)) { |
| ASSERT(state->inleaf == 0); |
| blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count); |
| args->index = args->index2 = blk2->index; |
| args->blkno = args->blkno2 = blk2->blkno; |
| } else if (blk1->index == be16_to_cpu(leaf1->hdr.count)) { |
| if (state->inleaf) { |
| args->index = blk1->index; |
| args->blkno = blk1->blkno; |
| args->index2 = 0; |
| args->blkno2 = blk2->blkno; |
| } else { |
| blk2->index = blk1->index |
| - be16_to_cpu(leaf1->hdr.count); |
| args->index = args->index2 = blk2->index; |
| args->blkno = args->blkno2 = blk2->blkno; |
| } |
| } else { |
| ASSERT(state->inleaf == 1); |
| args->index = args->index2 = blk1->index; |
| args->blkno = args->blkno2 = blk1->blkno; |
| } |
| } |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. |
| * GROT: Is this really necessary? With other than a 512 byte blocksize, |
| * GROT: there will always be enough room in either block for a new entry. |
| * GROT: Do a double-split for this case? |
| */ |
| STATIC int |
| xfs_attr_leaf_figure_balance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2, |
| int *countarg, int *usedbytesarg) |
| { |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| xfs_attr_leaf_hdr_t *hdr1, *hdr2; |
| xfs_attr_leaf_entry_t *entry; |
| int count, max, index, totallen, half; |
| int lastdelta, foundit, tmp; |
| |
| /* |
| * Set up environment. |
| */ |
| leaf1 = blk1->bp->b_addr; |
| leaf2 = blk2->bp->b_addr; |
| hdr1 = &leaf1->hdr; |
| hdr2 = &leaf2->hdr; |
| foundit = 0; |
| totallen = 0; |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. |
| */ |
| max = be16_to_cpu(hdr1->count) + be16_to_cpu(hdr2->count); |
| half = (max+1) * sizeof(*entry); |
| half += be16_to_cpu(hdr1->usedbytes) + |
| be16_to_cpu(hdr2->usedbytes) + |
| xfs_attr_leaf_newentsize( |
| state->args->namelen, |
| state->args->valuelen, |
| state->blocksize, NULL); |
| half /= 2; |
| lastdelta = state->blocksize; |
| entry = &leaf1->entries[0]; |
| for (count = index = 0; count < max; entry++, index++, count++) { |
| |
| #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) |
| /* |
| * The new entry is in the first block, account for it. |
| */ |
| if (count == blk1->index) { |
| tmp = totallen + sizeof(*entry) + |
| xfs_attr_leaf_newentsize( |
| state->args->namelen, |
| state->args->valuelen, |
| state->blocksize, NULL); |
| if (XFS_ATTR_ABS(half - tmp) > lastdelta) |
| break; |
| lastdelta = XFS_ATTR_ABS(half - tmp); |
| totallen = tmp; |
| foundit = 1; |
| } |
| |
| /* |
| * Wrap around into the second block if necessary. |
| */ |
| if (count == be16_to_cpu(hdr1->count)) { |
| leaf1 = leaf2; |
| entry = &leaf1->entries[0]; |
| index = 0; |
| } |
| |
| /* |
| * Figure out if next leaf entry would be too much. |
| */ |
| tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, |
| index); |
| if (XFS_ATTR_ABS(half - tmp) > lastdelta) |
| break; |
| lastdelta = XFS_ATTR_ABS(half - tmp); |
| totallen = tmp; |
| #undef XFS_ATTR_ABS |
| } |
| |
| /* |
| * Calculate the number of usedbytes that will end up in lower block. |
| * If new entry not in lower block, fix up the count. |
| */ |
| totallen -= count * sizeof(*entry); |
| if (foundit) { |
| totallen -= sizeof(*entry) + |
| xfs_attr_leaf_newentsize( |
| state->args->namelen, |
| state->args->valuelen, |
| state->blocksize, NULL); |
| } |
| |
| *countarg = count; |
| *usedbytesarg = totallen; |
| return(foundit); |
| } |
| |
| /*======================================================================== |
| * Routines used for shrinking the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Check a leaf block and its neighbors to see if the block should be |
| * collapsed into one or the other neighbor. Always keep the block |
| * with the smaller block number. |
| * If the current block is over 50% full, don't try to join it, return 0. |
| * If the block is empty, fill in the state structure and return 2. |
| * If it can be collapsed, fill in the state structure and return 1. |
| * If nothing can be done, return 0. |
| * |
| * GROT: allow for INCOMPLETE entries in calculation. |
| */ |
| int |
| xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_da_state_blk_t *blk; |
| xfs_da_blkinfo_t *info; |
| int count, bytes, forward, error, retval, i; |
| xfs_dablk_t blkno; |
| struct xfs_buf *bp; |
| |
| /* |
| * Check for the degenerate case of the block being over 50% full. |
| * If so, it's not worth even looking to see if we might be able |
| * to coalesce with a sibling. |
| */ |
| blk = &state->path.blk[ state->path.active-1 ]; |
| info = blk->bp->b_addr; |
| ASSERT(info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| leaf = (xfs_attr_leafblock_t *)info; |
| count = be16_to_cpu(leaf->hdr.count); |
| bytes = sizeof(xfs_attr_leaf_hdr_t) + |
| count * sizeof(xfs_attr_leaf_entry_t) + |
| be16_to_cpu(leaf->hdr.usedbytes); |
| if (bytes > (state->blocksize >> 1)) { |
| *action = 0; /* blk over 50%, don't try to join */ |
| return(0); |
| } |
| |
| /* |
| * Check for the degenerate case of the block being empty. |
| * If the block is empty, we'll simply delete it, no need to |
| * coalesce it with a sibling block. We choose (arbitrarily) |
| * to merge with the forward block unless it is NULL. |
| */ |
| if (count == 0) { |
| /* |
| * Make altpath point to the block we want to keep and |
| * path point to the block we want to drop (this one). |
| */ |
| forward = (info->forw != 0); |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| error = xfs_da_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| if (error) |
| return(error); |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 2; |
| } |
| return(0); |
| } |
| |
| /* |
| * Examine each sibling block to see if we can coalesce with |
| * at least 25% free space to spare. We need to figure out |
| * whether to merge with the forward or the backward block. |
| * We prefer coalescing with the lower numbered sibling so as |
| * to shrink an attribute list over time. |
| */ |
| /* start with smaller blk num */ |
| forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back)); |
| for (i = 0; i < 2; forward = !forward, i++) { |
| if (forward) |
| blkno = be32_to_cpu(info->forw); |
| else |
| blkno = be32_to_cpu(info->back); |
| if (blkno == 0) |
| continue; |
| error = xfs_da_read_buf(state->args->trans, state->args->dp, |
| blkno, -1, &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| |
| leaf = (xfs_attr_leafblock_t *)info; |
| count = be16_to_cpu(leaf->hdr.count); |
| bytes = state->blocksize - (state->blocksize>>2); |
| bytes -= be16_to_cpu(leaf->hdr.usedbytes); |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| count += be16_to_cpu(leaf->hdr.count); |
| bytes -= be16_to_cpu(leaf->hdr.usedbytes); |
| bytes -= count * sizeof(xfs_attr_leaf_entry_t); |
| bytes -= sizeof(xfs_attr_leaf_hdr_t); |
| xfs_trans_brelse(state->args->trans, bp); |
| if (bytes >= 0) |
| break; /* fits with at least 25% to spare */ |
| } |
| if (i >= 2) { |
| *action = 0; |
| return(0); |
| } |
| |
| /* |
| * Make altpath point to the block we want to keep (the lower |
| * numbered block) and path point to the block we want to drop. |
| */ |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| if (blkno < blk->blkno) { |
| error = xfs_da_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| } else { |
| error = xfs_da_path_shift(state, &state->path, forward, |
| 0, &retval); |
| } |
| if (error) |
| return(error); |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 1; |
| } |
| return(0); |
| } |
| |
| /* |
| * Remove a name from the leaf attribute list structure. |
| * |
| * Return 1 if leaf is less than 37% full, 0 if >= 37% full. |
| * If two leaves are 37% full, when combined they will leave 25% free. |
| */ |
| int |
| xfs_attr_leaf_remove( |
| struct xfs_buf *bp, |
| xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_attr_leaf_map_t *map; |
| xfs_attr_leaf_entry_t *entry; |
| int before, after, smallest, entsize; |
| int tablesize, tmp, i; |
| xfs_mount_t *mp; |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| hdr = &leaf->hdr; |
| mp = args->trans->t_mountp; |
| ASSERT((be16_to_cpu(hdr->count) > 0) |
| && (be16_to_cpu(hdr->count) < (XFS_LBSIZE(mp)/8))); |
| ASSERT((args->index >= 0) |
| && (args->index < be16_to_cpu(hdr->count))); |
| ASSERT(be16_to_cpu(hdr->firstused) >= |
| ((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr))); |
| entry = &leaf->entries[args->index]; |
| ASSERT(be16_to_cpu(entry->nameidx) >= be16_to_cpu(hdr->firstused)); |
| ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp)); |
| |
| /* |
| * Scan through free region table: |
| * check for adjacency of free'd entry with an existing one, |
| * find smallest free region in case we need to replace it, |
| * adjust any map that borders the entry table, |
| */ |
| tablesize = be16_to_cpu(hdr->count) * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| map = &hdr->freemap[0]; |
| tmp = be16_to_cpu(map->size); |
| before = after = -1; |
| smallest = XFS_ATTR_LEAF_MAPSIZE - 1; |
| entsize = xfs_attr_leaf_entsize(leaf, args->index); |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) { |
| ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp)); |
| ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp)); |
| if (be16_to_cpu(map->base) == tablesize) { |
| be16_add_cpu(&map->base, |
| -((int)sizeof(xfs_attr_leaf_entry_t))); |
| be16_add_cpu(&map->size, sizeof(xfs_attr_leaf_entry_t)); |
| } |
| |
| if ((be16_to_cpu(map->base) + be16_to_cpu(map->size)) |
| == be16_to_cpu(entry->nameidx)) { |
| before = i; |
| } else if (be16_to_cpu(map->base) |
| == (be16_to_cpu(entry->nameidx) + entsize)) { |
| after = i; |
| } else if (be16_to_cpu(map->size) < tmp) { |
| tmp = be16_to_cpu(map->size); |
| smallest = i; |
| } |
| } |
| |
| /* |
| * Coalesce adjacent freemap regions, |
| * or replace the smallest region. |
| */ |
| if ((before >= 0) || (after >= 0)) { |
| if ((before >= 0) && (after >= 0)) { |
| map = &hdr->freemap[before]; |
| be16_add_cpu(&map->size, entsize); |
| be16_add_cpu(&map->size, |
| be16_to_cpu(hdr->freemap[after].size)); |
| hdr->freemap[after].base = 0; |
| hdr->freemap[after].size = 0; |
| } else if (before >= 0) { |
| map = &hdr->freemap[before]; |
| be16_add_cpu(&map->size, entsize); |
| } else { |
| map = &hdr->freemap[after]; |
| /* both on-disk, don't endian flip twice */ |
| map->base = entry->nameidx; |
| be16_add_cpu(&map->size, entsize); |
| } |
| } else { |
| /* |
| * Replace smallest region (if it is smaller than free'd entry) |
| */ |
| map = &hdr->freemap[smallest]; |
| if (be16_to_cpu(map->size) < entsize) { |
| map->base = cpu_to_be16(be16_to_cpu(entry->nameidx)); |
| map->size = cpu_to_be16(entsize); |
| } |
| } |
| |
| /* |
| * Did we remove the first entry? |
| */ |
| if (be16_to_cpu(entry->nameidx) == be16_to_cpu(hdr->firstused)) |
| smallest = 1; |
| else |
| smallest = 0; |
| |
| /* |
| * Compress the remaining entries and zero out the removed stuff. |
| */ |
| memset(xfs_attr_leaf_name(leaf, args->index), 0, entsize); |
| be16_add_cpu(&hdr->usedbytes, -entsize); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, xfs_attr_leaf_name(leaf, args->index), |
| entsize)); |
| |
| tmp = (be16_to_cpu(hdr->count) - args->index) |
| * sizeof(xfs_attr_leaf_entry_t); |
| memmove((char *)entry, (char *)(entry+1), tmp); |
| be16_add_cpu(&hdr->count, -1); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); |
| entry = &leaf->entries[be16_to_cpu(hdr->count)]; |
| memset((char *)entry, 0, sizeof(xfs_attr_leaf_entry_t)); |
| |
| /* |
| * If we removed the first entry, re-find the first used byte |
| * in the name area. Note that if the entry was the "firstused", |
| * then we don't have a "hole" in our block resulting from |
| * removing the name. |
| */ |
| if (smallest) { |
| tmp = XFS_LBSIZE(mp); |
| entry = &leaf->entries[0]; |
| for (i = be16_to_cpu(hdr->count)-1; i >= 0; entry++, i--) { |
| ASSERT(be16_to_cpu(entry->nameidx) >= |
| be16_to_cpu(hdr->firstused)); |
| ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp)); |
| |
| if (be16_to_cpu(entry->nameidx) < tmp) |
| tmp = be16_to_cpu(entry->nameidx); |
| } |
| hdr->firstused = cpu_to_be16(tmp); |
| if (!hdr->firstused) { |
| hdr->firstused = cpu_to_be16( |
| tmp - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| } else { |
| hdr->holes = 1; /* mark as needing compaction */ |
| } |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr))); |
| |
| /* |
| * Check if leaf is less than 50% full, caller may want to |
| * "join" the leaf with a sibling if so. |
| */ |
| tmp = sizeof(xfs_attr_leaf_hdr_t); |
| tmp += be16_to_cpu(leaf->hdr.count) * sizeof(xfs_attr_leaf_entry_t); |
| tmp += be16_to_cpu(leaf->hdr.usedbytes); |
| return(tmp < mp->m_attr_magicpct); /* leaf is < 37% full */ |
| } |
| |
| /* |
| * Move all the attribute list entries from drop_leaf into save_leaf. |
| */ |
| void |
| xfs_attr_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk, |
| xfs_da_state_blk_t *save_blk) |
| { |
| xfs_attr_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf; |
| xfs_attr_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr; |
| xfs_mount_t *mp; |
| char *tmpbuffer; |
| |
| trace_xfs_attr_leaf_unbalance(state->args); |
| |
| /* |
| * Set up environment. |
| */ |
| mp = state->mp; |
| ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(save_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| drop_leaf = drop_blk->bp->b_addr; |
| save_leaf = save_blk->bp->b_addr; |
| ASSERT(drop_leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(save_leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| drop_hdr = &drop_leaf->hdr; |
| save_hdr = &save_leaf->hdr; |
| |
| /* |
| * Save last hashval from dying block for later Btree fixup. |
| */ |
| drop_blk->hashval = be32_to_cpu( |
| drop_leaf->entries[be16_to_cpu(drop_leaf->hdr.count)-1].hashval); |
| |
| /* |
| * Check if we need a temp buffer, or can we do it in place. |
| * Note that we don't check "leaf" for holes because we will |
| * always be dropping it, toosmall() decided that for us already. |
| */ |
| if (save_hdr->holes == 0) { |
| /* |
| * dest leaf has no holes, so we add there. May need |
| * to make some room in the entry array. |
| */ |
| if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) { |
| xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, 0, |
| be16_to_cpu(drop_hdr->count), mp); |
| } else { |
| xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, |
| be16_to_cpu(save_hdr->count), |
| be16_to_cpu(drop_hdr->count), mp); |
| } |
| } else { |
| /* |
| * Destination has holes, so we make a temporary copy |
| * of the leaf and add them both to that. |
| */ |
| tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| memset(tmpbuffer, 0, state->blocksize); |
| tmp_leaf = (xfs_attr_leafblock_t *)tmpbuffer; |
| tmp_hdr = &tmp_leaf->hdr; |
| tmp_hdr->info = save_hdr->info; /* struct copy */ |
| tmp_hdr->count = 0; |
| tmp_hdr->firstused = cpu_to_be16(state->blocksize); |
| if (!tmp_hdr->firstused) { |
| tmp_hdr->firstused = cpu_to_be16( |
| state->blocksize - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| tmp_hdr->usedbytes = 0; |
| if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) { |
| xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, 0, |
| be16_to_cpu(drop_hdr->count), mp); |
| xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, |
| be16_to_cpu(tmp_leaf->hdr.count), |
| be16_to_cpu(save_hdr->count), mp); |
| } else { |
| xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, 0, |
| be16_to_cpu(save_hdr->count), mp); |
| xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, |
| be16_to_cpu(tmp_leaf->hdr.count), |
| be16_to_cpu(drop_hdr->count), mp); |
| } |
| memcpy((char *)save_leaf, (char *)tmp_leaf, state->blocksize); |
| kmem_free(tmpbuffer); |
| } |
| |
| xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, |
| state->blocksize - 1); |
| |
| /* |
| * Copy out last hashval in each block for B-tree code. |
| */ |
| save_blk->hashval = be32_to_cpu( |
| save_leaf->entries[be16_to_cpu(save_leaf->hdr.count)-1].hashval); |
| } |
| |
| /*======================================================================== |
| * Routines used for finding things in the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Look up a name in a leaf attribute list structure. |
| * This is the internal routine, it uses the caller's buffer. |
| * |
| * Note that duplicate keys are allowed, but only check within the |
| * current leaf node. The Btree code must check in adjacent leaf nodes. |
| * |
| * Return in args->index the index into the entry[] array of either |
| * the found entry, or where the entry should have been (insert before |
| * that entry). |
| * |
| * Don't change the args->value unless we find the attribute. |
| */ |
| int |
| xfs_attr_leaf_lookup_int( |
| struct xfs_buf *bp, |
| xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| int probe, span; |
| xfs_dahash_t hashval; |
| |
| trace_xfs_attr_leaf_lookup(args); |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(be16_to_cpu(leaf->hdr.count) |
| < (XFS_LBSIZE(args->dp->i_mount)/8)); |
| |
| /* |
| * Binary search. (note: small blocks will skip this loop) |
| */ |
| hashval = args->hashval; |
| probe = span = be16_to_cpu(leaf->hdr.count) / 2; |
| for (entry = &leaf->entries[probe]; span > 4; |
| entry = &leaf->entries[probe]) { |
| span /= 2; |
| if (be32_to_cpu(entry->hashval) < hashval) |
| probe += span; |
| else if (be32_to_cpu(entry->hashval) > hashval) |
| probe -= span; |
| else |
| break; |
| } |
| ASSERT((probe >= 0) && |
| (!leaf->hdr.count |
| || (probe < be16_to_cpu(leaf->hdr.count)))); |
| ASSERT((span <= 4) || (be32_to_cpu(entry->hashval) == hashval)); |
| |
| /* |
| * Since we may have duplicate hashval's, find the first matching |
| * hashval in the leaf. |
| */ |
| while ((probe > 0) && (be32_to_cpu(entry->hashval) >= hashval)) { |
| entry--; |
| probe--; |
| } |
| while ((probe < be16_to_cpu(leaf->hdr.count)) && |
| (be32_to_cpu(entry->hashval) < hashval)) { |
| entry++; |
| probe++; |
| } |
| if ((probe == be16_to_cpu(leaf->hdr.count)) || |
| (be32_to_cpu(entry->hashval) != hashval)) { |
| args->index = probe; |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Duplicate keys may be present, so search all of them for a match. |
| */ |
| for ( ; (probe < be16_to_cpu(leaf->hdr.count)) && |
| (be32_to_cpu(entry->hashval) == hashval); |
| entry++, probe++) { |
| /* |
| * GROT: Add code to remove incomplete entries. |
| */ |
| /* |
| * If we are looking for INCOMPLETE entries, show only those. |
| * If we are looking for complete entries, show only those. |
| */ |
| if ((args->flags & XFS_ATTR_INCOMPLETE) != |
| (entry->flags & XFS_ATTR_INCOMPLETE)) { |
| continue; |
| } |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr_leaf_name_local(leaf, probe); |
| if (name_loc->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, (char *)name_loc->nameval, args->namelen) != 0) |
| continue; |
| if (!xfs_attr_namesp_match(args->flags, entry->flags)) |
| continue; |
| args->index = probe; |
| return(XFS_ERROR(EEXIST)); |
| } else { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, probe); |
| if (name_rmt->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, (char *)name_rmt->name, |
| args->namelen) != 0) |
| continue; |
| if (!xfs_attr_namesp_match(args->flags, entry->flags)) |
| continue; |
| args->index = probe; |
| args->rmtblkno = be32_to_cpu(name_rmt->valueblk); |
| args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, |
| be32_to_cpu(name_rmt->valuelen)); |
| return(XFS_ERROR(EEXIST)); |
| } |
| } |
| args->index = probe; |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Get the value associated with an attribute name from a leaf attribute |
| * list structure. |
| */ |
| int |
| xfs_attr_leaf_getvalue( |
| struct xfs_buf *bp, |
| xfs_da_args_t *args) |
| { |
| int valuelen; |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(be16_to_cpu(leaf->hdr.count) |
| < (XFS_LBSIZE(args->dp->i_mount)/8)); |
| ASSERT(args->index < be16_to_cpu(leaf->hdr.count)); |
| |
| entry = &leaf->entries[args->index]; |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr_leaf_name_local(leaf, args->index); |
| ASSERT(name_loc->namelen == args->namelen); |
| ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); |
| valuelen = be16_to_cpu(name_loc->valuelen); |
| if (args->flags & ATTR_KERNOVAL) { |
| args->valuelen = valuelen; |
| return(0); |
| } |
| if (args->valuelen < valuelen) { |
| args->valuelen = valuelen; |
| return(XFS_ERROR(ERANGE)); |
| } |
| args->valuelen = valuelen; |
| memcpy(args->value, &name_loc->nameval[args->namelen], valuelen); |
| } else { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); |
| ASSERT(name_rmt->namelen == args->namelen); |
| ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); |
| valuelen = be32_to_cpu(name_rmt->valuelen); |
| args->rmtblkno = be32_to_cpu(name_rmt->valueblk); |
| args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen); |
| if (args->flags & ATTR_KERNOVAL) { |
| args->valuelen = valuelen; |
| return(0); |
| } |
| if (args->valuelen < valuelen) { |
| args->valuelen = valuelen; |
| return(XFS_ERROR(ERANGE)); |
| } |
| args->valuelen = valuelen; |
| } |
| return(0); |
| } |
| |
| /*======================================================================== |
| * Utility routines. |
| *========================================================================*/ |
| |
| /* |
| * Move the indicated entries from one leaf to another. |
| * NOTE: this routine modifies both source and destination leaves. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_attr_leaf_moveents(xfs_attr_leafblock_t *leaf_s, int start_s, |
| xfs_attr_leafblock_t *leaf_d, int start_d, |
| int count, xfs_mount_t *mp) |
| { |
| xfs_attr_leaf_hdr_t *hdr_s, *hdr_d; |
| xfs_attr_leaf_entry_t *entry_s, *entry_d; |
| int desti, tmp, i; |
| |
| /* |
| * Check for nothing to do. |
| */ |
| if (count == 0) |
| return; |
| |
| /* |
| * Set up environment. |
| */ |
| ASSERT(leaf_s->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(leaf_d->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| hdr_s = &leaf_s->hdr; |
| hdr_d = &leaf_d->hdr; |
| ASSERT((be16_to_cpu(hdr_s->count) > 0) && |
| (be16_to_cpu(hdr_s->count) < (XFS_LBSIZE(mp)/8))); |
| ASSERT(be16_to_cpu(hdr_s->firstused) >= |
| ((be16_to_cpu(hdr_s->count) |
| * sizeof(*entry_s))+sizeof(*hdr_s))); |
| ASSERT(be16_to_cpu(hdr_d->count) < (XFS_LBSIZE(mp)/8)); |
| ASSERT(be16_to_cpu(hdr_d->firstused) >= |
| ((be16_to_cpu(hdr_d->count) |
| * sizeof(*entry_d))+sizeof(*hdr_d))); |
| |
| ASSERT(start_s < be16_to_cpu(hdr_s->count)); |
| ASSERT(start_d <= be16_to_cpu(hdr_d->count)); |
| ASSERT(count <= be16_to_cpu(hdr_s->count)); |
| |
| /* |
| * Move the entries in the destination leaf up to make a hole? |
| */ |
| if (start_d < be16_to_cpu(hdr_d->count)) { |
| tmp = be16_to_cpu(hdr_d->count) - start_d; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_d->entries[start_d]; |
| entry_d = &leaf_d->entries[start_d + count]; |
| memmove((char *)entry_d, (char *)entry_s, tmp); |
| } |
| |
| /* |
| * Copy all entry's in the same (sorted) order, |
| * but allocate attribute info packed and in sequence. |
| */ |
| entry_s = &leaf_s->entries[start_s]; |
| entry_d = &leaf_d->entries[start_d]; |
| desti = start_d; |
| for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { |
| ASSERT(be16_to_cpu(entry_s->nameidx) |
| >= be16_to_cpu(hdr_s->firstused)); |
| tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); |
| #ifdef GROT |
| /* |
| * Code to drop INCOMPLETE entries. Difficult to use as we |
| * may also need to change the insertion index. Code turned |
| * off for 6.2, should be revisited later. |
| */ |
| if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ |
| memset(xfs_attr_leaf_name(leaf_s, start_s + i), 0, tmp); |
| be16_add_cpu(&hdr_s->usedbytes, -tmp); |
| be16_add_cpu(&hdr_s->count, -1); |
| entry_d--; /* to compensate for ++ in loop hdr */ |
| desti--; |
| if ((start_s + i) < offset) |
| result++; /* insertion index adjustment */ |
| } else { |
| #endif /* GROT */ |
| be16_add_cpu(&hdr_d->firstused, -tmp); |
| /* both on-disk, don't endian flip twice */ |
| entry_d->hashval = entry_s->hashval; |
| /* both on-disk, don't endian flip twice */ |
| entry_d->nameidx = hdr_d->firstused; |
| entry_d->flags = entry_s->flags; |
| ASSERT(be16_to_cpu(entry_d->nameidx) + tmp |
| <= XFS_LBSIZE(mp)); |
| memmove(xfs_attr_leaf_name(leaf_d, desti), |
| xfs_attr_leaf_name(leaf_s, start_s + i), tmp); |
| ASSERT(be16_to_cpu(entry_s->nameidx) + tmp |
| <= XFS_LBSIZE(mp)); |
| memset(xfs_attr_leaf_name(leaf_s, start_s + i), 0, tmp); |
| be16_add_cpu(&hdr_s->usedbytes, -tmp); |
| be16_add_cpu(&hdr_d->usedbytes, tmp); |
| be16_add_cpu(&hdr_s->count, -1); |
| be16_add_cpu(&hdr_d->count, 1); |
| tmp = be16_to_cpu(hdr_d->count) |
| * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| ASSERT(be16_to_cpu(hdr_d->firstused) >= tmp); |
| #ifdef GROT |
| } |
| #endif /* GROT */ |
| } |
| |
| /* |
| * Zero out the entries we just copied. |
| */ |
| if (start_s == be16_to_cpu(hdr_s->count)) { |
| tmp = count * sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_s->entries[start_s]; |
| ASSERT(((char *)entry_s + tmp) <= |
| ((char *)leaf_s + XFS_LBSIZE(mp))); |
| memset((char *)entry_s, 0, tmp); |
| } else { |
| /* |
| * Move the remaining entries down to fill the hole, |
| * then zero the entries at the top. |
| */ |
| tmp = be16_to_cpu(hdr_s->count) - count; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_s->entries[start_s + count]; |
| entry_d = &leaf_s->entries[start_s]; |
| memmove((char *)entry_d, (char *)entry_s, tmp); |
| |
| tmp = count * sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_s->entries[be16_to_cpu(hdr_s->count)]; |
| ASSERT(((char *)entry_s + tmp) <= |
| ((char *)leaf_s + XFS_LBSIZE(mp))); |
| memset((char *)entry_s, 0, tmp); |
| } |
| |
| /* |
| * Fill in the freemap information |
| */ |
| hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); |
| be16_add_cpu(&hdr_d->freemap[0].base, be16_to_cpu(hdr_d->count) * |
| sizeof(xfs_attr_leaf_entry_t)); |
| hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) |
| - be16_to_cpu(hdr_d->freemap[0].base)); |
| hdr_d->freemap[1].base = 0; |
| hdr_d->freemap[2].base = 0; |
| hdr_d->freemap[1].size = 0; |
| hdr_d->freemap[2].size = 0; |
| hdr_s->holes = 1; /* leaf may not be compact */ |
| } |
| |
| /* |
| * Compare two leaf blocks "order". |
| * Return 0 unless leaf2 should go before leaf1. |
| */ |
| int |
| xfs_attr_leaf_order( |
| struct xfs_buf *leaf1_bp, |
| struct xfs_buf *leaf2_bp) |
| { |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| |
| leaf1 = leaf1_bp->b_addr; |
| leaf2 = leaf2_bp->b_addr; |
| ASSERT((leaf1->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)) && |
| (leaf2->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC))); |
| if ((be16_to_cpu(leaf1->hdr.count) > 0) && |
| (be16_to_cpu(leaf2->hdr.count) > 0) && |
| ((be32_to_cpu(leaf2->entries[0].hashval) < |
| be32_to_cpu(leaf1->entries[0].hashval)) || |
| (be32_to_cpu(leaf2->entries[ |
| be16_to_cpu(leaf2->hdr.count)-1].hashval) < |
| be32_to_cpu(leaf1->entries[ |
| be16_to_cpu(leaf1->hdr.count)-1].hashval)))) { |
| return(1); |
| } |
| return(0); |
| } |
| |
| /* |
| * Pick up the last hashvalue from a leaf block. |
| */ |
| xfs_dahash_t |
| xfs_attr_leaf_lasthash( |
| struct xfs_buf *bp, |
| int *count) |
| { |
| xfs_attr_leafblock_t *leaf; |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| if (count) |
| *count = be16_to_cpu(leaf->hdr.count); |
| if (!leaf->hdr.count) |
| return(0); |
| return be32_to_cpu(leaf->entries[be16_to_cpu(leaf->hdr.count)-1].hashval); |
| } |
| |
| /* |
| * Calculate the number of bytes used to store the indicated attribute |
| * (whether local or remote only calculate bytes in this block). |
| */ |
| STATIC int |
| xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) |
| { |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| int size; |
| |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| if (leaf->entries[index].flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr_leaf_name_local(leaf, index); |
| size = xfs_attr_leaf_entsize_local(name_loc->namelen, |
| be16_to_cpu(name_loc->valuelen)); |
| } else { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, index); |
| size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); |
| } |
| return(size); |
| } |
| |
| /* |
| * Calculate the number of bytes that would be required to store the new |
| * attribute (whether local or remote only calculate bytes in this block). |
| * This routine decides as a side effect whether the attribute will be |
| * a "local" or a "remote" attribute. |
| */ |
| int |
| xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local) |
| { |
| int size; |
| |
| size = xfs_attr_leaf_entsize_local(namelen, valuelen); |
| if (size < xfs_attr_leaf_entsize_local_max(blocksize)) { |
| if (local) { |
| *local = 1; |
| } |
| } else { |
| size = xfs_attr_leaf_entsize_remote(namelen); |
| if (local) { |
| *local = 0; |
| } |
| } |
| return(size); |
| } |
| |
| /* |
| * Copy out attribute list entries for attr_list(), for leaf attribute lists. |
| */ |
| int |
| xfs_attr_leaf_list_int( |
| struct xfs_buf *bp, |
| xfs_attr_list_context_t *context) |
| { |
| attrlist_cursor_kern_t *cursor; |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| int retval, i; |
| |
| ASSERT(bp != NULL); |
| leaf = bp->b_addr; |
| cursor = context->cursor; |
| cursor->initted = 1; |
| |
| trace_xfs_attr_list_leaf(context); |
| |
| /* |
| * Re-find our place in the leaf block if this is a new syscall. |
| */ |
| if (context->resynch) { |
| entry = &leaf->entries[0]; |
| for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { |
| if (be32_to_cpu(entry->hashval) == cursor->hashval) { |
| if (cursor->offset == context->dupcnt) { |
| context->dupcnt = 0; |
| break; |
| } |
| context->dupcnt++; |
| } else if (be32_to_cpu(entry->hashval) > |
| cursor->hashval) { |
| context->dupcnt = 0; |
| break; |
| } |
| } |
| if (i == be16_to_cpu(leaf->hdr.count)) { |
| trace_xfs_attr_list_notfound(context); |
| return(0); |
| } |
| } else { |
| entry = &leaf->entries[0]; |
| i = 0; |
| } |
| context->resynch = 0; |
| |
| /* |
| * We have found our place, start copying out the new attributes. |
| */ |
| retval = 0; |
| for ( ; (i < be16_to_cpu(leaf->hdr.count)); entry++, i++) { |
| if (be32_to_cpu(entry->hashval) != cursor->hashval) { |
| cursor->hashval = be32_to_cpu(entry->hashval); |
| cursor->offset = 0; |
| } |
| |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* skip incomplete entries */ |
| |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| xfs_attr_leaf_name_local_t *name_loc = |
| xfs_attr_leaf_name_local(leaf, i); |
| |
| retval = context->put_listent(context, |
| entry->flags, |
| name_loc->nameval, |
| (int)name_loc->namelen, |
| be16_to_cpu(name_loc->valuelen), |
| &name_loc->nameval[name_loc->namelen]); |
| if (retval) |
| return retval; |
| } else { |
| xfs_attr_leaf_name_remote_t *name_rmt = |
| xfs_attr_leaf_name_remote(leaf, i); |
| |
| int valuelen = be32_to_cpu(name_rmt->valuelen); |
| |
| if (context->put_value) { |
| xfs_da_args_t args; |
| |
| memset((char *)&args, 0, sizeof(args)); |
| args.dp = context->dp; |
| args.whichfork = XFS_ATTR_FORK; |
| args.valuelen = valuelen; |
| args.value = kmem_alloc(valuelen, KM_SLEEP | KM_NOFS); |
| args.rmtblkno = be32_to_cpu(name_rmt->valueblk); |
| args.rmtblkcnt = XFS_B_TO_FSB(args.dp->i_mount, valuelen); |
| retval = xfs_attr_rmtval_get(&args); |
| if (retval) |
| return retval; |
| retval = context->put_listent(context, |
| entry->flags, |
| name_rmt->name, |
| (int)name_rmt->namelen, |
| valuelen, |
| args.value); |
| kmem_free(args.value); |
| } else { |
| retval = context->put_listent(context, |
| entry->flags, |
| name_rmt->name, |
| (int)name_rmt->namelen, |
| valuelen, |
| NULL); |
| } |
| if (retval) |
| return retval; |
| } |
| if (context->seen_enough) |
| break; |
| cursor->offset++; |
| } |
| trace_xfs_attr_list_leaf_end(context); |
| return(retval); |
| } |
| |
| |
| /*======================================================================== |
| * Manage the INCOMPLETE flag in a leaf entry |
| *========================================================================*/ |
| |
| /* |
| * Clear the INCOMPLETE flag on an entry in a leaf block. |
| */ |
| int |
| xfs_attr_leaf_clearflag(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| struct xfs_buf *bp; |
| int error; |
| #ifdef DEBUG |
| xfs_attr_leaf_name_local_t *name_loc; |
| int namelen; |
| char *name; |
| #endif /* DEBUG */ |
| |
| trace_xfs_attr_leaf_clearflag(args); |
| /* |
| * Set up the operation. |
| */ |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp, |
| XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp != NULL); |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(args->index < be16_to_cpu(leaf->hdr.count)); |
| ASSERT(args->index >= 0); |
| entry = &leaf->entries[ args->index ]; |
| ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); |
| |
| #ifdef DEBUG |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr_leaf_name_local(leaf, args->index); |
| namelen = name_loc->namelen; |
| name = (char *)name_loc->nameval; |
| } else { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); |
| namelen = name_rmt->namelen; |
| name = (char *)name_rmt->name; |
| } |
| ASSERT(be32_to_cpu(entry->hashval) == args->hashval); |
| ASSERT(namelen == args->namelen); |
| ASSERT(memcmp(name, args->name, namelen) == 0); |
| #endif /* DEBUG */ |
| |
| entry->flags &= ~XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| |
| if (args->rmtblkno) { |
| ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); |
| name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); |
| name_rmt->valueblk = cpu_to_be32(args->rmtblkno); |
| name_rmt->valuelen = cpu_to_be32(args->valuelen); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| return xfs_trans_roll(&args->trans, args->dp); |
| } |
| |
| /* |
| * Set the INCOMPLETE flag on an entry in a leaf block. |
| */ |
| int |
| xfs_attr_leaf_setflag(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| struct xfs_buf *bp; |
| int error; |
| |
| trace_xfs_attr_leaf_setflag(args); |
| |
| /* |
| * Set up the operation. |
| */ |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp, |
| XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp != NULL); |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(args->index < be16_to_cpu(leaf->hdr.count)); |
| ASSERT(args->index >= 0); |
| entry = &leaf->entries[ args->index ]; |
| |
| ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| if ((entry->flags & XFS_ATTR_LOCAL) == 0) { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); |
| name_rmt->valueblk = 0; |
| name_rmt->valuelen = 0; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| return xfs_trans_roll(&args->trans, args->dp); |
| } |
| |
| /* |
| * In a single transaction, clear the INCOMPLETE flag on the leaf entry |
| * given by args->blkno/index and set the INCOMPLETE flag on the leaf |
| * entry given by args->blkno2/index2. |
| * |
| * Note that they could be in different blocks, or in the same block. |
| */ |
| int |
| xfs_attr_leaf_flipflags(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| xfs_attr_leaf_entry_t *entry1, *entry2; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| struct xfs_buf *bp1, *bp2; |
| int error; |
| #ifdef DEBUG |
| xfs_attr_leaf_name_local_t *name_loc; |
| int namelen1, namelen2; |
| char *name1, *name2; |
| #endif /* DEBUG */ |
| |
| trace_xfs_attr_leaf_flipflags(args); |
| |
| /* |
| * Read the block containing the "old" attr |
| */ |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp1, |
| XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp1 != NULL); |
| |
| /* |
| * Read the block containing the "new" attr, if it is different |
| */ |
| if (args->blkno2 != args->blkno) { |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno2, |
| -1, &bp2, XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp2 != NULL); |
| } else { |
| bp2 = bp1; |
| } |
| |
| leaf1 = bp1->b_addr; |
| ASSERT(leaf1->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(args->index < be16_to_cpu(leaf1->hdr.count)); |
| ASSERT(args->index >= 0); |
| entry1 = &leaf1->entries[ args->index ]; |
| |
| leaf2 = bp2->b_addr; |
| ASSERT(leaf2->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| ASSERT(args->index2 < be16_to_cpu(leaf2->hdr.count)); |
| ASSERT(args->index2 >= 0); |
| entry2 = &leaf2->entries[ args->index2 ]; |
| |
| #ifdef DEBUG |
| if (entry1->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr_leaf_name_local(leaf1, args->index); |
| namelen1 = name_loc->namelen; |
| name1 = (char *)name_loc->nameval; |
| } else { |
| name_rmt = xfs_attr_leaf_name_remote(leaf1, args->index); |
| namelen1 = name_rmt->namelen; |
| name1 = (char *)name_rmt->name; |
| } |
| if (entry2->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr_leaf_name_local(leaf2, args->index2); |
| namelen2 = name_loc->namelen; |
| name2 = (char *)name_loc->nameval; |
| } else { |
| name_rmt = xfs_attr_leaf_name_remote(leaf2, args->index2); |
| namelen2 = name_rmt->namelen; |
| name2 = (char *)name_rmt->name; |
| } |
| ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); |
| ASSERT(namelen1 == namelen2); |
| ASSERT(memcmp(name1, name2, namelen1) == 0); |
| #endif /* DEBUG */ |
| |
| ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); |
| ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); |
| |
| entry1->flags &= ~XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp1, |
| XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); |
| if (args->rmtblkno) { |
| ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); |
| name_rmt = xfs_attr_leaf_name_remote(leaf1, args->index); |
| name_rmt->valueblk = cpu_to_be32(args->rmtblkno); |
| name_rmt->valuelen = cpu_to_be32(args->valuelen); |
| xfs_trans_log_buf(args->trans, bp1, |
| XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| entry2->flags |= XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp2, |
| XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); |
| if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { |
| name_rmt = xfs_attr_leaf_name_remote(leaf2, args->index2); |
| name_rmt->valueblk = 0; |
| name_rmt->valuelen = 0; |
| xfs_trans_log_buf(args->trans, bp2, |
| XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| error = xfs_trans_roll(&args->trans, args->dp); |
| |
| return(error); |
| } |
| |
| /*======================================================================== |
| * Indiscriminately delete the entire attribute fork |
| *========================================================================*/ |
| |
| /* |
| * Recurse (gasp!) through the attribute nodes until we find leaves. |
| * We're doing a depth-first traversal in order to invalidate everything. |
| */ |
| int |
| xfs_attr_root_inactive(xfs_trans_t **trans, xfs_inode_t *dp) |
| { |
| xfs_da_blkinfo_t *info; |
| xfs_daddr_t blkno; |
| struct xfs_buf *bp; |
| int error; |
| |
| /* |
| * Read block 0 to see what we have to work with. |
| * We only get here if we have extents, since we remove |
| * the extents in reverse order the extent containing |
| * block 0 must still be there. |
| */ |
| error = xfs_da_read_buf(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| blkno = XFS_BUF_ADDR(bp); |
| |
| /* |
| * Invalidate the tree, even if the "tree" is only a single leaf block. |
| * This is a depth-first traversal! |
| */ |
| info = bp->b_addr; |
| if (info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC)) { |
| error = xfs_attr_node_inactive(trans, dp, bp, 1); |
| } else if (info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)) { |
| error = xfs_attr_leaf_inactive(trans, dp, bp); |
| } else { |
| error = XFS_ERROR(EIO); |
| xfs_trans_brelse(*trans, bp); |
| } |
| if (error) |
| return(error); |
| |
| /* |
| * Invalidate the incore copy of the root block. |
| */ |
| error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| xfs_trans_binval(*trans, bp); /* remove from cache */ |
| /* |
| * Commit the invalidate and start the next transaction. |
| */ |
| error = xfs_trans_roll(trans, dp); |
| |
| return (error); |
| } |
| |
| /* |
| * Recurse (gasp!) through the attribute nodes until we find leaves. |
| * We're doing a depth-first traversal in order to invalidate everything. |
| */ |
| STATIC int |
| xfs_attr_node_inactive( |
| struct xfs_trans **trans, |
| struct xfs_inode *dp, |
| struct xfs_buf *bp, |
| int level) |
| { |
| xfs_da_blkinfo_t *info; |
| xfs_da_intnode_t *node; |
| xfs_dablk_t child_fsb; |
| xfs_daddr_t parent_blkno, child_blkno; |
| int error, count, i; |
| struct xfs_buf *child_bp; |
| |
| /* |
| * Since this code is recursive (gasp!) we must protect ourselves. |
| */ |
| if (level > XFS_DA_NODE_MAXDEPTH) { |
| xfs_trans_brelse(*trans, bp); /* no locks for later trans */ |
| return(XFS_ERROR(EIO)); |
| } |
| |
| node = bp->b_addr; |
| ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| parent_blkno = XFS_BUF_ADDR(bp); /* save for re-read later */ |
| count = be16_to_cpu(node->hdr.count); |
| if (!count) { |
| xfs_trans_brelse(*trans, bp); |
| return(0); |
| } |
| child_fsb = be32_to_cpu(node->btree[0].before); |
| xfs_trans_brelse(*trans, bp); /* no locks for later trans */ |
| |
| /* |
| * If this is the node level just above the leaves, simply loop |
| * over the leaves removing all of them. If this is higher up |
| * in the tree, recurse downward. |
| */ |
| for (i = 0; i < count; i++) { |
| /* |
| * Read the subsidiary block to see what we have to work with. |
| * Don't do this in a transaction. This is a depth-first |
| * traversal of the tree so we may deal with many blocks |
| * before we come back to this one. |
| */ |
| error = xfs_da_read_buf(*trans, dp, child_fsb, -2, &child_bp, |
| XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| if (child_bp) { |
| /* save for re-read later */ |
| child_blkno = XFS_BUF_ADDR(child_bp); |
| |
| /* |
| * Invalidate the subtree, however we have to. |
| */ |
| info = child_bp->b_addr; |
| if (info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC)) { |
| error = xfs_attr_node_inactive(trans, dp, |
| child_bp, level+1); |
| } else if (info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)) { |
| error = xfs_attr_leaf_inactive(trans, dp, |
| child_bp); |
| } else { |
| error = XFS_ERROR(EIO); |
| xfs_trans_brelse(*trans, child_bp); |
| } |
| if (error) |
| return(error); |
| |
| /* |
| * Remove the subsidiary block from the cache |
| * and from the log. |
| */ |
| error = xfs_da_get_buf(*trans, dp, 0, child_blkno, |
| &child_bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| xfs_trans_binval(*trans, child_bp); |
| } |
| |
| /* |
| * If we're not done, re-read the parent to get the next |
| * child block number. |
| */ |
| if ((i+1) < count) { |
| error = xfs_da_read_buf(*trans, dp, 0, parent_blkno, |
| &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| child_fsb = be32_to_cpu(node->btree[i+1].before); |
| xfs_trans_brelse(*trans, bp); |
| } |
| /* |
| * Atomically commit the whole invalidate stuff. |
| */ |
| error = xfs_trans_roll(trans, dp); |
| if (error) |
| return (error); |
| } |
| |
| return(0); |
| } |
| |
| /* |
| * Invalidate all of the "remote" value regions pointed to by a particular |
| * leaf block. |
| * Note that we must release the lock on the buffer so that we are not |
| * caught holding something that the logging code wants to flush to disk. |
| */ |
| STATIC int |
| xfs_attr_leaf_inactive( |
| struct xfs_trans **trans, |
| struct xfs_inode *dp, |
| struct xfs_buf *bp) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| xfs_attr_inactive_list_t *list, *lp; |
| int error, count, size, tmp, i; |
| |
| leaf = bp->b_addr; |
| ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| |
| /* |
| * Count the number of "remote" value extents. |
| */ |
| count = 0; |
| entry = &leaf->entries[0]; |
| for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { |
| if (be16_to_cpu(entry->nameidx) && |
| ((entry->flags & XFS_ATTR_LOCAL) == 0)) { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, i); |
| if (name_rmt->valueblk) |
| count++; |
| } |
| } |
| |
| /* |
| * If there are no "remote" values, we're done. |
| */ |
| if (count == 0) { |
| xfs_trans_brelse(*trans, bp); |
| return(0); |
| } |
| |
| /* |
| * Allocate storage for a list of all the "remote" value extents. |
| */ |
| size = count * sizeof(xfs_attr_inactive_list_t); |
| list = (xfs_attr_inactive_list_t *)kmem_alloc(size, KM_SLEEP); |
| |
| /* |
| * Identify each of the "remote" value extents. |
| */ |
| lp = list; |
| entry = &leaf->entries[0]; |
| for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { |
| if (be16_to_cpu(entry->nameidx) && |
| ((entry->flags & XFS_ATTR_LOCAL) == 0)) { |
| name_rmt = xfs_attr_leaf_name_remote(leaf, i); |
| if (name_rmt->valueblk) { |
| lp->valueblk = be32_to_cpu(name_rmt->valueblk); |
| lp->valuelen = XFS_B_TO_FSB(dp->i_mount, |
| be32_to_cpu(name_rmt->valuelen)); |
| lp++; |
| } |
| } |
| } |
| xfs_trans_brelse(*trans, bp); /* unlock for trans. in freextent() */ |
| |
| /* |
| * Invalidate each of the "remote" value extents. |
| */ |
| error = 0; |
| for (lp = list, i = 0; i < count; i++, lp++) { |
| tmp = xfs_attr_leaf_freextent(trans, dp, |
| lp->valueblk, lp->valuelen); |
| |
| if (error == 0) |
| error = tmp; /* save only the 1st errno */ |
| } |
| |
| kmem_free((xfs_caddr_t)list); |
| return(error); |
| } |
| |
| /* |
| * Look at all the extents for this logical region, |
| * invalidate any buffers that are incore/in transactions. |
| */ |
| STATIC int |
| xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp, |
| xfs_dablk_t blkno, int blkcnt) |
| { |
| xfs_bmbt_irec_t map; |
| xfs_dablk_t tblkno; |
| int tblkcnt, dblkcnt, nmap, error; |
| xfs_daddr_t dblkno; |
| xfs_buf_t *bp; |
| |
| /* |
| * Roll through the "value", invalidating the attribute value's |
| * blocks. |
| */ |
| tblkno = blkno; |
| tblkcnt = blkcnt; |
| while (tblkcnt > 0) { |
| /* |
| * Try to remember where we decided to put the value. |
| */ |
| nmap = 1; |
| error = xfs_bmapi_read(dp, (xfs_fileoff_t)tblkno, tblkcnt, |
| &map, &nmap, XFS_BMAPI_ATTRFORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(nmap == 1); |
| ASSERT(map.br_startblock != DELAYSTARTBLOCK); |
| |
| /* |
| * If it's a hole, these are already unmapped |
| * so there's nothing to invalidate. |
| */ |
| if (map.br_startblock != HOLESTARTBLOCK) { |
| |
| dblkno = XFS_FSB_TO_DADDR(dp->i_mount, |
| map.br_startblock); |
| dblkcnt = XFS_FSB_TO_BB(dp->i_mount, |
| map.br_blockcount); |
| bp = xfs_trans_get_buf(*trans, |
| dp->i_mount->m_ddev_targp, |
| dblkno, dblkcnt, 0); |
| if (!bp) |
| return ENOMEM; |
| xfs_trans_binval(*trans, bp); |
| /* |
| * Roll to next transaction. |
| */ |
| error = xfs_trans_roll(trans, dp); |
| if (error) |
| return (error); |
| } |
| |
| tblkno += map.br_blockcount; |
| tblkcnt -= map.br_blockcount; |
| } |
| |
| return(0); |
| } |