| /* |
| * Copyright (c) 2006, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| * Place - Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * Copyright (C) 2006-2008 Intel Corporation |
| * Author: Ashok Raj <ashok.raj@intel.com> |
| * Author: Shaohua Li <shaohua.li@intel.com> |
| * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| * Author: Fenghua Yu <fenghua.yu@intel.com> |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/bitmap.h> |
| #include <linux/debugfs.h> |
| #include <linux/slab.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/pci.h> |
| #include <linux/dmar.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mempool.h> |
| #include <linux/timer.h> |
| #include <linux/iova.h> |
| #include <linux/intel-iommu.h> |
| #include <asm/cacheflush.h> |
| #include <asm/iommu.h> |
| #include "pci.h" |
| |
| #define ROOT_SIZE VTD_PAGE_SIZE |
| #define CONTEXT_SIZE VTD_PAGE_SIZE |
| |
| #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| |
| #define IOAPIC_RANGE_START (0xfee00000) |
| #define IOAPIC_RANGE_END (0xfeefffff) |
| #define IOVA_START_ADDR (0x1000) |
| |
| #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 |
| |
| #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1) |
| |
| #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
| #define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK) |
| #define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK) |
| |
| /* |
| * 0: Present |
| * 1-11: Reserved |
| * 12-63: Context Ptr (12 - (haw-1)) |
| * 64-127: Reserved |
| */ |
| struct root_entry { |
| u64 val; |
| u64 rsvd1; |
| }; |
| #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) |
| static inline bool root_present(struct root_entry *root) |
| { |
| return (root->val & 1); |
| } |
| static inline void set_root_present(struct root_entry *root) |
| { |
| root->val |= 1; |
| } |
| static inline void set_root_value(struct root_entry *root, unsigned long value) |
| { |
| root->val |= value & VTD_PAGE_MASK; |
| } |
| |
| static inline struct context_entry * |
| get_context_addr_from_root(struct root_entry *root) |
| { |
| return (struct context_entry *) |
| (root_present(root)?phys_to_virt( |
| root->val & VTD_PAGE_MASK) : |
| NULL); |
| } |
| |
| /* |
| * low 64 bits: |
| * 0: present |
| * 1: fault processing disable |
| * 2-3: translation type |
| * 12-63: address space root |
| * high 64 bits: |
| * 0-2: address width |
| * 3-6: aval |
| * 8-23: domain id |
| */ |
| struct context_entry { |
| u64 lo; |
| u64 hi; |
| }; |
| |
| static inline bool context_present(struct context_entry *context) |
| { |
| return (context->lo & 1); |
| } |
| static inline void context_set_present(struct context_entry *context) |
| { |
| context->lo |= 1; |
| } |
| |
| static inline void context_set_fault_enable(struct context_entry *context) |
| { |
| context->lo &= (((u64)-1) << 2) | 1; |
| } |
| |
| #define CONTEXT_TT_MULTI_LEVEL 0 |
| |
| static inline void context_set_translation_type(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo &= (((u64)-1) << 4) | 3; |
| context->lo |= (value & 3) << 2; |
| } |
| |
| static inline void context_set_address_root(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo |= value & VTD_PAGE_MASK; |
| } |
| |
| static inline void context_set_address_width(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= value & 7; |
| } |
| |
| static inline void context_set_domain_id(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= (value & ((1 << 16) - 1)) << 8; |
| } |
| |
| static inline void context_clear_entry(struct context_entry *context) |
| { |
| context->lo = 0; |
| context->hi = 0; |
| } |
| |
| /* |
| * 0: readable |
| * 1: writable |
| * 2-6: reserved |
| * 7: super page |
| * 8-11: available |
| * 12-63: Host physcial address |
| */ |
| struct dma_pte { |
| u64 val; |
| }; |
| |
| static inline void dma_clear_pte(struct dma_pte *pte) |
| { |
| pte->val = 0; |
| } |
| |
| static inline void dma_set_pte_readable(struct dma_pte *pte) |
| { |
| pte->val |= DMA_PTE_READ; |
| } |
| |
| static inline void dma_set_pte_writable(struct dma_pte *pte) |
| { |
| pte->val |= DMA_PTE_WRITE; |
| } |
| |
| static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) |
| { |
| pte->val = (pte->val & ~3) | (prot & 3); |
| } |
| |
| static inline u64 dma_pte_addr(struct dma_pte *pte) |
| { |
| return (pte->val & VTD_PAGE_MASK); |
| } |
| |
| static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr) |
| { |
| pte->val |= (addr & VTD_PAGE_MASK); |
| } |
| |
| static inline bool dma_pte_present(struct dma_pte *pte) |
| { |
| return (pte->val & 3) != 0; |
| } |
| |
| struct dmar_domain { |
| int id; /* domain id */ |
| struct intel_iommu *iommu; /* back pointer to owning iommu */ |
| |
| struct list_head devices; /* all devices' list */ |
| struct iova_domain iovad; /* iova's that belong to this domain */ |
| |
| struct dma_pte *pgd; /* virtual address */ |
| spinlock_t mapping_lock; /* page table lock */ |
| int gaw; /* max guest address width */ |
| |
| /* adjusted guest address width, 0 is level 2 30-bit */ |
| int agaw; |
| |
| #define DOMAIN_FLAG_MULTIPLE_DEVICES 1 |
| int flags; |
| }; |
| |
| /* PCI domain-device relationship */ |
| struct device_domain_info { |
| struct list_head link; /* link to domain siblings */ |
| struct list_head global; /* link to global list */ |
| u8 bus; /* PCI bus numer */ |
| u8 devfn; /* PCI devfn number */ |
| struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */ |
| struct dmar_domain *domain; /* pointer to domain */ |
| }; |
| |
| static void flush_unmaps_timeout(unsigned long data); |
| |
| DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); |
| |
| #define HIGH_WATER_MARK 250 |
| struct deferred_flush_tables { |
| int next; |
| struct iova *iova[HIGH_WATER_MARK]; |
| struct dmar_domain *domain[HIGH_WATER_MARK]; |
| }; |
| |
| static struct deferred_flush_tables *deferred_flush; |
| |
| /* bitmap for indexing intel_iommus */ |
| static int g_num_of_iommus; |
| |
| static DEFINE_SPINLOCK(async_umap_flush_lock); |
| static LIST_HEAD(unmaps_to_do); |
| |
| static int timer_on; |
| static long list_size; |
| |
| static void domain_remove_dev_info(struct dmar_domain *domain); |
| |
| int dmar_disabled; |
| static int __initdata dmar_map_gfx = 1; |
| static int dmar_forcedac; |
| static int intel_iommu_strict; |
| |
| #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) |
| static DEFINE_SPINLOCK(device_domain_lock); |
| static LIST_HEAD(device_domain_list); |
| |
| static int __init intel_iommu_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| while (*str) { |
| if (!strncmp(str, "off", 3)) { |
| dmar_disabled = 1; |
| printk(KERN_INFO"Intel-IOMMU: disabled\n"); |
| } else if (!strncmp(str, "igfx_off", 8)) { |
| dmar_map_gfx = 0; |
| printk(KERN_INFO |
| "Intel-IOMMU: disable GFX device mapping\n"); |
| } else if (!strncmp(str, "forcedac", 8)) { |
| printk(KERN_INFO |
| "Intel-IOMMU: Forcing DAC for PCI devices\n"); |
| dmar_forcedac = 1; |
| } else if (!strncmp(str, "strict", 6)) { |
| printk(KERN_INFO |
| "Intel-IOMMU: disable batched IOTLB flush\n"); |
| intel_iommu_strict = 1; |
| } |
| |
| str += strcspn(str, ","); |
| while (*str == ',') |
| str++; |
| } |
| return 0; |
| } |
| __setup("intel_iommu=", intel_iommu_setup); |
| |
| static struct kmem_cache *iommu_domain_cache; |
| static struct kmem_cache *iommu_devinfo_cache; |
| static struct kmem_cache *iommu_iova_cache; |
| |
| static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep) |
| { |
| unsigned int flags; |
| void *vaddr; |
| |
| /* trying to avoid low memory issues */ |
| flags = current->flags & PF_MEMALLOC; |
| current->flags |= PF_MEMALLOC; |
| vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC); |
| current->flags &= (~PF_MEMALLOC | flags); |
| return vaddr; |
| } |
| |
| |
| static inline void *alloc_pgtable_page(void) |
| { |
| unsigned int flags; |
| void *vaddr; |
| |
| /* trying to avoid low memory issues */ |
| flags = current->flags & PF_MEMALLOC; |
| current->flags |= PF_MEMALLOC; |
| vaddr = (void *)get_zeroed_page(GFP_ATOMIC); |
| current->flags &= (~PF_MEMALLOC | flags); |
| return vaddr; |
| } |
| |
| static inline void free_pgtable_page(void *vaddr) |
| { |
| free_page((unsigned long)vaddr); |
| } |
| |
| static inline void *alloc_domain_mem(void) |
| { |
| return iommu_kmem_cache_alloc(iommu_domain_cache); |
| } |
| |
| static void free_domain_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_domain_cache, vaddr); |
| } |
| |
| static inline void * alloc_devinfo_mem(void) |
| { |
| return iommu_kmem_cache_alloc(iommu_devinfo_cache); |
| } |
| |
| static inline void free_devinfo_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_devinfo_cache, vaddr); |
| } |
| |
| struct iova *alloc_iova_mem(void) |
| { |
| return iommu_kmem_cache_alloc(iommu_iova_cache); |
| } |
| |
| void free_iova_mem(struct iova *iova) |
| { |
| kmem_cache_free(iommu_iova_cache, iova); |
| } |
| |
| /* Gets context entry for a given bus and devfn */ |
| static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, |
| u8 bus, u8 devfn) |
| { |
| struct root_entry *root; |
| struct context_entry *context; |
| unsigned long phy_addr; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| root = &iommu->root_entry[bus]; |
| context = get_context_addr_from_root(root); |
| if (!context) { |
| context = (struct context_entry *)alloc_pgtable_page(); |
| if (!context) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return NULL; |
| } |
| __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); |
| phy_addr = virt_to_phys((void *)context); |
| set_root_value(root, phy_addr); |
| set_root_present(root); |
| __iommu_flush_cache(iommu, root, sizeof(*root)); |
| } |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return &context[devfn]; |
| } |
| |
| static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| struct root_entry *root; |
| struct context_entry *context; |
| int ret; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| root = &iommu->root_entry[bus]; |
| context = get_context_addr_from_root(root); |
| if (!context) { |
| ret = 0; |
| goto out; |
| } |
| ret = context_present(&context[devfn]); |
| out: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return ret; |
| } |
| |
| static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| struct root_entry *root; |
| struct context_entry *context; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| root = &iommu->root_entry[bus]; |
| context = get_context_addr_from_root(root); |
| if (context) { |
| context_clear_entry(&context[devfn]); |
| __iommu_flush_cache(iommu, &context[devfn], \ |
| sizeof(*context)); |
| } |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static void free_context_table(struct intel_iommu *iommu) |
| { |
| struct root_entry *root; |
| int i; |
| unsigned long flags; |
| struct context_entry *context; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| if (!iommu->root_entry) { |
| goto out; |
| } |
| for (i = 0; i < ROOT_ENTRY_NR; i++) { |
| root = &iommu->root_entry[i]; |
| context = get_context_addr_from_root(root); |
| if (context) |
| free_pgtable_page(context); |
| } |
| free_pgtable_page(iommu->root_entry); |
| iommu->root_entry = NULL; |
| out: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| /* page table handling */ |
| #define LEVEL_STRIDE (9) |
| #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) |
| |
| static inline int agaw_to_level(int agaw) |
| { |
| return agaw + 2; |
| } |
| |
| static inline int agaw_to_width(int agaw) |
| { |
| return 30 + agaw * LEVEL_STRIDE; |
| |
| } |
| |
| static inline int width_to_agaw(int width) |
| { |
| return (width - 30) / LEVEL_STRIDE; |
| } |
| |
| static inline unsigned int level_to_offset_bits(int level) |
| { |
| return (12 + (level - 1) * LEVEL_STRIDE); |
| } |
| |
| static inline int address_level_offset(u64 addr, int level) |
| { |
| return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK); |
| } |
| |
| static inline u64 level_mask(int level) |
| { |
| return ((u64)-1 << level_to_offset_bits(level)); |
| } |
| |
| static inline u64 level_size(int level) |
| { |
| return ((u64)1 << level_to_offset_bits(level)); |
| } |
| |
| static inline u64 align_to_level(u64 addr, int level) |
| { |
| return ((addr + level_size(level) - 1) & level_mask(level)); |
| } |
| |
| static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr) |
| { |
| int addr_width = agaw_to_width(domain->agaw); |
| struct dma_pte *parent, *pte = NULL; |
| int level = agaw_to_level(domain->agaw); |
| int offset; |
| unsigned long flags; |
| |
| BUG_ON(!domain->pgd); |
| |
| addr &= (((u64)1) << addr_width) - 1; |
| parent = domain->pgd; |
| |
| spin_lock_irqsave(&domain->mapping_lock, flags); |
| while (level > 0) { |
| void *tmp_page; |
| |
| offset = address_level_offset(addr, level); |
| pte = &parent[offset]; |
| if (level == 1) |
| break; |
| |
| if (!dma_pte_present(pte)) { |
| tmp_page = alloc_pgtable_page(); |
| |
| if (!tmp_page) { |
| spin_unlock_irqrestore(&domain->mapping_lock, |
| flags); |
| return NULL; |
| } |
| __iommu_flush_cache(domain->iommu, tmp_page, |
| PAGE_SIZE); |
| dma_set_pte_addr(pte, virt_to_phys(tmp_page)); |
| /* |
| * high level table always sets r/w, last level page |
| * table control read/write |
| */ |
| dma_set_pte_readable(pte); |
| dma_set_pte_writable(pte); |
| __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); |
| } |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| level--; |
| } |
| |
| spin_unlock_irqrestore(&domain->mapping_lock, flags); |
| return pte; |
| } |
| |
| /* return address's pte at specific level */ |
| static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr, |
| int level) |
| { |
| struct dma_pte *parent, *pte = NULL; |
| int total = agaw_to_level(domain->agaw); |
| int offset; |
| |
| parent = domain->pgd; |
| while (level <= total) { |
| offset = address_level_offset(addr, total); |
| pte = &parent[offset]; |
| if (level == total) |
| return pte; |
| |
| if (!dma_pte_present(pte)) |
| break; |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| total--; |
| } |
| return NULL; |
| } |
| |
| /* clear one page's page table */ |
| static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr) |
| { |
| struct dma_pte *pte = NULL; |
| |
| /* get last level pte */ |
| pte = dma_addr_level_pte(domain, addr, 1); |
| |
| if (pte) { |
| dma_clear_pte(pte); |
| __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); |
| } |
| } |
| |
| /* clear last level pte, a tlb flush should be followed */ |
| static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end) |
| { |
| int addr_width = agaw_to_width(domain->agaw); |
| |
| start &= (((u64)1) << addr_width) - 1; |
| end &= (((u64)1) << addr_width) - 1; |
| /* in case it's partial page */ |
| start = PAGE_ALIGN(start); |
| end &= PAGE_MASK; |
| |
| /* we don't need lock here, nobody else touches the iova range */ |
| while (start < end) { |
| dma_pte_clear_one(domain, start); |
| start += VTD_PAGE_SIZE; |
| } |
| } |
| |
| /* free page table pages. last level pte should already be cleared */ |
| static void dma_pte_free_pagetable(struct dmar_domain *domain, |
| u64 start, u64 end) |
| { |
| int addr_width = agaw_to_width(domain->agaw); |
| struct dma_pte *pte; |
| int total = agaw_to_level(domain->agaw); |
| int level; |
| u64 tmp; |
| |
| start &= (((u64)1) << addr_width) - 1; |
| end &= (((u64)1) << addr_width) - 1; |
| |
| /* we don't need lock here, nobody else touches the iova range */ |
| level = 2; |
| while (level <= total) { |
| tmp = align_to_level(start, level); |
| if (tmp >= end || (tmp + level_size(level) > end)) |
| return; |
| |
| while (tmp < end) { |
| pte = dma_addr_level_pte(domain, tmp, level); |
| if (pte) { |
| free_pgtable_page( |
| phys_to_virt(dma_pte_addr(pte))); |
| dma_clear_pte(pte); |
| __iommu_flush_cache(domain->iommu, |
| pte, sizeof(*pte)); |
| } |
| tmp += level_size(level); |
| } |
| level++; |
| } |
| /* free pgd */ |
| if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) { |
| free_pgtable_page(domain->pgd); |
| domain->pgd = NULL; |
| } |
| } |
| |
| /* iommu handling */ |
| static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
| { |
| struct root_entry *root; |
| unsigned long flags; |
| |
| root = (struct root_entry *)alloc_pgtable_page(); |
| if (!root) |
| return -ENOMEM; |
| |
| __iommu_flush_cache(iommu, root, ROOT_SIZE); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| iommu->root_entry = root; |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return 0; |
| } |
| |
| static void iommu_set_root_entry(struct intel_iommu *iommu) |
| { |
| void *addr; |
| u32 cmd, sts; |
| unsigned long flag; |
| |
| addr = iommu->root_entry; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); |
| |
| cmd = iommu->gcmd | DMA_GCMD_SRTP; |
| writel(cmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_RTPS), sts); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static void iommu_flush_write_buffer(struct intel_iommu *iommu) |
| { |
| u32 val; |
| unsigned long flag; |
| |
| if (!cap_rwbf(iommu->cap)) |
| return; |
| val = iommu->gcmd | DMA_GCMD_WBF; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(val, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(val & DMA_GSTS_WBFS)), val); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static int __iommu_flush_context(struct intel_iommu *iommu, |
| u16 did, u16 source_id, u8 function_mask, u64 type, |
| int non_present_entry_flush) |
| { |
| u64 val = 0; |
| unsigned long flag; |
| |
| /* |
| * In the non-present entry flush case, if hardware doesn't cache |
| * non-present entry we do nothing and if hardware cache non-present |
| * entry, we flush entries of domain 0 (the domain id is used to cache |
| * any non-present entries) |
| */ |
| if (non_present_entry_flush) { |
| if (!cap_caching_mode(iommu->cap)) |
| return 1; |
| else |
| did = 0; |
| } |
| |
| switch (type) { |
| case DMA_CCMD_GLOBAL_INVL: |
| val = DMA_CCMD_GLOBAL_INVL; |
| break; |
| case DMA_CCMD_DOMAIN_INVL: |
| val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
| break; |
| case DMA_CCMD_DEVICE_INVL: |
| val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
| | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
| break; |
| default: |
| BUG(); |
| } |
| val |= DMA_CCMD_ICC; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
| dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| /* flush context entry will implicitly flush write buffer */ |
| return 0; |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
| u64 addr, unsigned int size_order, u64 type, |
| int non_present_entry_flush) |
| { |
| int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
| u64 val = 0, val_iva = 0; |
| unsigned long flag; |
| |
| /* |
| * In the non-present entry flush case, if hardware doesn't cache |
| * non-present entry we do nothing and if hardware cache non-present |
| * entry, we flush entries of domain 0 (the domain id is used to cache |
| * any non-present entries) |
| */ |
| if (non_present_entry_flush) { |
| if (!cap_caching_mode(iommu->cap)) |
| return 1; |
| else |
| did = 0; |
| } |
| |
| switch (type) { |
| case DMA_TLB_GLOBAL_FLUSH: |
| /* global flush doesn't need set IVA_REG */ |
| val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
| break; |
| case DMA_TLB_DSI_FLUSH: |
| val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| break; |
| case DMA_TLB_PSI_FLUSH: |
| val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| /* Note: always flush non-leaf currently */ |
| val_iva = size_order | addr; |
| break; |
| default: |
| BUG(); |
| } |
| /* Note: set drain read/write */ |
| #if 0 |
| /* |
| * This is probably to be super secure.. Looks like we can |
| * ignore it without any impact. |
| */ |
| if (cap_read_drain(iommu->cap)) |
| val |= DMA_TLB_READ_DRAIN; |
| #endif |
| if (cap_write_drain(iommu->cap)) |
| val |= DMA_TLB_WRITE_DRAIN; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| /* Note: Only uses first TLB reg currently */ |
| if (val_iva) |
| dmar_writeq(iommu->reg + tlb_offset, val_iva); |
| dmar_writeq(iommu->reg + tlb_offset + 8, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
| dmar_readq, (!(val & DMA_TLB_IVT)), val); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| /* check IOTLB invalidation granularity */ |
| if (DMA_TLB_IAIG(val) == 0) |
| printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); |
| if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
| pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", |
| (unsigned long long)DMA_TLB_IIRG(type), |
| (unsigned long long)DMA_TLB_IAIG(val)); |
| /* flush iotlb entry will implicitly flush write buffer */ |
| return 0; |
| } |
| |
| static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, |
| u64 addr, unsigned int pages, int non_present_entry_flush) |
| { |
| unsigned int mask; |
| |
| BUG_ON(addr & (~VTD_PAGE_MASK)); |
| BUG_ON(pages == 0); |
| |
| /* Fallback to domain selective flush if no PSI support */ |
| if (!cap_pgsel_inv(iommu->cap)) |
| return iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| DMA_TLB_DSI_FLUSH, |
| non_present_entry_flush); |
| |
| /* |
| * PSI requires page size to be 2 ^ x, and the base address is naturally |
| * aligned to the size |
| */ |
| mask = ilog2(__roundup_pow_of_two(pages)); |
| /* Fallback to domain selective flush if size is too big */ |
| if (mask > cap_max_amask_val(iommu->cap)) |
| return iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| DMA_TLB_DSI_FLUSH, non_present_entry_flush); |
| |
| return iommu->flush.flush_iotlb(iommu, did, addr, mask, |
| DMA_TLB_PSI_FLUSH, |
| non_present_entry_flush); |
| } |
| |
| static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
| { |
| u32 pmen; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->register_lock, flags); |
| pmen = readl(iommu->reg + DMAR_PMEN_REG); |
| pmen &= ~DMA_PMEN_EPM; |
| writel(pmen, iommu->reg + DMAR_PMEN_REG); |
| |
| /* wait for the protected region status bit to clear */ |
| IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, |
| readl, !(pmen & DMA_PMEN_PRS), pmen); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static int iommu_enable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->register_lock, flags); |
| writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_TES), sts); |
| |
| iommu->gcmd |= DMA_GCMD_TE; |
| spin_unlock_irqrestore(&iommu->register_lock, flags); |
| return 0; |
| } |
| |
| static int iommu_disable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flag; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| iommu->gcmd &= ~DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(sts & DMA_GSTS_TES)), sts); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| return 0; |
| } |
| |
| /* iommu interrupt handling. Most stuff are MSI-like. */ |
| |
| static const char *fault_reason_strings[] = |
| { |
| "Software", |
| "Present bit in root entry is clear", |
| "Present bit in context entry is clear", |
| "Invalid context entry", |
| "Access beyond MGAW", |
| "PTE Write access is not set", |
| "PTE Read access is not set", |
| "Next page table ptr is invalid", |
| "Root table address invalid", |
| "Context table ptr is invalid", |
| "non-zero reserved fields in RTP", |
| "non-zero reserved fields in CTP", |
| "non-zero reserved fields in PTE", |
| }; |
| #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1) |
| |
| const char *dmar_get_fault_reason(u8 fault_reason) |
| { |
| if (fault_reason > MAX_FAULT_REASON_IDX) |
| return "Unknown"; |
| else |
| return fault_reason_strings[fault_reason]; |
| } |
| |
| void dmar_msi_unmask(unsigned int irq) |
| { |
| struct intel_iommu *iommu = get_irq_data(irq); |
| unsigned long flag; |
| |
| /* unmask it */ |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(0, iommu->reg + DMAR_FECTL_REG); |
| /* Read a reg to force flush the post write */ |
| readl(iommu->reg + DMAR_FECTL_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_mask(unsigned int irq) |
| { |
| unsigned long flag; |
| struct intel_iommu *iommu = get_irq_data(irq); |
| |
| /* mask it */ |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG); |
| /* Read a reg to force flush the post write */ |
| readl(iommu->reg + DMAR_FECTL_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_write(int irq, struct msi_msg *msg) |
| { |
| struct intel_iommu *iommu = get_irq_data(irq); |
| unsigned long flag; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(msg->data, iommu->reg + DMAR_FEDATA_REG); |
| writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG); |
| writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_read(int irq, struct msi_msg *msg) |
| { |
| struct intel_iommu *iommu = get_irq_data(irq); |
| unsigned long flag; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| msg->data = readl(iommu->reg + DMAR_FEDATA_REG); |
| msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG); |
| msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type, |
| u8 fault_reason, u16 source_id, unsigned long long addr) |
| { |
| const char *reason; |
| |
| reason = dmar_get_fault_reason(fault_reason); |
| |
| printk(KERN_ERR |
| "DMAR:[%s] Request device [%02x:%02x.%d] " |
| "fault addr %llx \n" |
| "DMAR:[fault reason %02d] %s\n", |
| (type ? "DMA Read" : "DMA Write"), |
| (source_id >> 8), PCI_SLOT(source_id & 0xFF), |
| PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason); |
| return 0; |
| } |
| |
| #define PRIMARY_FAULT_REG_LEN (16) |
| static irqreturn_t iommu_page_fault(int irq, void *dev_id) |
| { |
| struct intel_iommu *iommu = dev_id; |
| int reg, fault_index; |
| u32 fault_status; |
| unsigned long flag; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| |
| /* TBD: ignore advanced fault log currently */ |
| if (!(fault_status & DMA_FSTS_PPF)) |
| goto clear_overflow; |
| |
| fault_index = dma_fsts_fault_record_index(fault_status); |
| reg = cap_fault_reg_offset(iommu->cap); |
| while (1) { |
| u8 fault_reason; |
| u16 source_id; |
| u64 guest_addr; |
| int type; |
| u32 data; |
| |
| /* highest 32 bits */ |
| data = readl(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| if (!(data & DMA_FRCD_F)) |
| break; |
| |
| fault_reason = dma_frcd_fault_reason(data); |
| type = dma_frcd_type(data); |
| |
| data = readl(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 8); |
| source_id = dma_frcd_source_id(data); |
| |
| guest_addr = dmar_readq(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN); |
| guest_addr = dma_frcd_page_addr(guest_addr); |
| /* clear the fault */ |
| writel(DMA_FRCD_F, iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| iommu_page_fault_do_one(iommu, type, fault_reason, |
| source_id, guest_addr); |
| |
| fault_index++; |
| if (fault_index > cap_num_fault_regs(iommu->cap)) |
| fault_index = 0; |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| } |
| clear_overflow: |
| /* clear primary fault overflow */ |
| fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| if (fault_status & DMA_FSTS_PFO) |
| writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| return IRQ_HANDLED; |
| } |
| |
| int dmar_set_interrupt(struct intel_iommu *iommu) |
| { |
| int irq, ret; |
| |
| irq = create_irq(); |
| if (!irq) { |
| printk(KERN_ERR "IOMMU: no free vectors\n"); |
| return -EINVAL; |
| } |
| |
| set_irq_data(irq, iommu); |
| iommu->irq = irq; |
| |
| ret = arch_setup_dmar_msi(irq); |
| if (ret) { |
| set_irq_data(irq, NULL); |
| iommu->irq = 0; |
| destroy_irq(irq); |
| return 0; |
| } |
| |
| /* Force fault register is cleared */ |
| iommu_page_fault(irq, iommu); |
| |
| ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu); |
| if (ret) |
| printk(KERN_ERR "IOMMU: can't request irq\n"); |
| return ret; |
| } |
| |
| static int iommu_init_domains(struct intel_iommu *iommu) |
| { |
| unsigned long ndomains; |
| unsigned long nlongs; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| pr_debug("Number of Domains supportd <%ld>\n", ndomains); |
| nlongs = BITS_TO_LONGS(ndomains); |
| |
| /* TBD: there might be 64K domains, |
| * consider other allocation for future chip |
| */ |
| iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); |
| if (!iommu->domain_ids) { |
| printk(KERN_ERR "Allocating domain id array failed\n"); |
| return -ENOMEM; |
| } |
| iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), |
| GFP_KERNEL); |
| if (!iommu->domains) { |
| printk(KERN_ERR "Allocating domain array failed\n"); |
| kfree(iommu->domain_ids); |
| return -ENOMEM; |
| } |
| |
| spin_lock_init(&iommu->lock); |
| |
| /* |
| * if Caching mode is set, then invalid translations are tagged |
| * with domainid 0. Hence we need to pre-allocate it. |
| */ |
| if (cap_caching_mode(iommu->cap)) |
| set_bit(0, iommu->domain_ids); |
| return 0; |
| } |
| |
| |
| static void domain_exit(struct dmar_domain *domain); |
| |
| void free_dmar_iommu(struct intel_iommu *iommu) |
| { |
| struct dmar_domain *domain; |
| int i; |
| |
| i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap)); |
| for (; i < cap_ndoms(iommu->cap); ) { |
| domain = iommu->domains[i]; |
| clear_bit(i, iommu->domain_ids); |
| domain_exit(domain); |
| i = find_next_bit(iommu->domain_ids, |
| cap_ndoms(iommu->cap), i+1); |
| } |
| |
| if (iommu->gcmd & DMA_GCMD_TE) |
| iommu_disable_translation(iommu); |
| |
| if (iommu->irq) { |
| set_irq_data(iommu->irq, NULL); |
| /* This will mask the irq */ |
| free_irq(iommu->irq, iommu); |
| destroy_irq(iommu->irq); |
| } |
| |
| kfree(iommu->domains); |
| kfree(iommu->domain_ids); |
| |
| /* free context mapping */ |
| free_context_table(iommu); |
| } |
| |
| static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu) |
| { |
| unsigned long num; |
| unsigned long ndomains; |
| struct dmar_domain *domain; |
| unsigned long flags; |
| |
| domain = alloc_domain_mem(); |
| if (!domain) |
| return NULL; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| if (num >= ndomains) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| free_domain_mem(domain); |
| printk(KERN_ERR "IOMMU: no free domain ids\n"); |
| return NULL; |
| } |
| |
| set_bit(num, iommu->domain_ids); |
| domain->id = num; |
| domain->iommu = iommu; |
| domain->flags = 0; |
| iommu->domains[num] = domain; |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return domain; |
| } |
| |
| static void iommu_free_domain(struct dmar_domain *domain) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->iommu->lock, flags); |
| clear_bit(domain->id, domain->iommu->domain_ids); |
| spin_unlock_irqrestore(&domain->iommu->lock, flags); |
| } |
| |
| static struct iova_domain reserved_iova_list; |
| static struct lock_class_key reserved_alloc_key; |
| static struct lock_class_key reserved_rbtree_key; |
| |
| static void dmar_init_reserved_ranges(void) |
| { |
| struct pci_dev *pdev = NULL; |
| struct iova *iova; |
| int i; |
| u64 addr, size; |
| |
| init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); |
| |
| lockdep_set_class(&reserved_iova_list.iova_alloc_lock, |
| &reserved_alloc_key); |
| lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, |
| &reserved_rbtree_key); |
| |
| /* IOAPIC ranges shouldn't be accessed by DMA */ |
| iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), |
| IOVA_PFN(IOAPIC_RANGE_END)); |
| if (!iova) |
| printk(KERN_ERR "Reserve IOAPIC range failed\n"); |
| |
| /* Reserve all PCI MMIO to avoid peer-to-peer access */ |
| for_each_pci_dev(pdev) { |
| struct resource *r; |
| |
| for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| r = &pdev->resource[i]; |
| if (!r->flags || !(r->flags & IORESOURCE_MEM)) |
| continue; |
| addr = r->start; |
| addr &= PAGE_MASK; |
| size = r->end - addr; |
| size = PAGE_ALIGN(size); |
| iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr), |
| IOVA_PFN(size + addr) - 1); |
| if (!iova) |
| printk(KERN_ERR "Reserve iova failed\n"); |
| } |
| } |
| |
| } |
| |
| static void domain_reserve_special_ranges(struct dmar_domain *domain) |
| { |
| copy_reserved_iova(&reserved_iova_list, &domain->iovad); |
| } |
| |
| static inline int guestwidth_to_adjustwidth(int gaw) |
| { |
| int agaw; |
| int r = (gaw - 12) % 9; |
| |
| if (r == 0) |
| agaw = gaw; |
| else |
| agaw = gaw + 9 - r; |
| if (agaw > 64) |
| agaw = 64; |
| return agaw; |
| } |
| |
| static int domain_init(struct dmar_domain *domain, int guest_width) |
| { |
| struct intel_iommu *iommu; |
| int adjust_width, agaw; |
| unsigned long sagaw; |
| |
| init_iova_domain(&domain->iovad, DMA_32BIT_PFN); |
| spin_lock_init(&domain->mapping_lock); |
| |
| domain_reserve_special_ranges(domain); |
| |
| /* calculate AGAW */ |
| iommu = domain->iommu; |
| if (guest_width > cap_mgaw(iommu->cap)) |
| guest_width = cap_mgaw(iommu->cap); |
| domain->gaw = guest_width; |
| adjust_width = guestwidth_to_adjustwidth(guest_width); |
| agaw = width_to_agaw(adjust_width); |
| sagaw = cap_sagaw(iommu->cap); |
| if (!test_bit(agaw, &sagaw)) { |
| /* hardware doesn't support it, choose a bigger one */ |
| pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); |
| agaw = find_next_bit(&sagaw, 5, agaw); |
| if (agaw >= 5) |
| return -ENODEV; |
| } |
| domain->agaw = agaw; |
| INIT_LIST_HEAD(&domain->devices); |
| |
| /* always allocate the top pgd */ |
| domain->pgd = (struct dma_pte *)alloc_pgtable_page(); |
| if (!domain->pgd) |
| return -ENOMEM; |
| __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); |
| return 0; |
| } |
| |
| static void domain_exit(struct dmar_domain *domain) |
| { |
| u64 end; |
| |
| /* Domain 0 is reserved, so dont process it */ |
| if (!domain) |
| return; |
| |
| domain_remove_dev_info(domain); |
| /* destroy iovas */ |
| put_iova_domain(&domain->iovad); |
| end = DOMAIN_MAX_ADDR(domain->gaw); |
| end = end & (~PAGE_MASK); |
| |
| /* clear ptes */ |
| dma_pte_clear_range(domain, 0, end); |
| |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, 0, end); |
| |
| iommu_free_domain(domain); |
| free_domain_mem(domain); |
| } |
| |
| static int domain_context_mapping_one(struct dmar_domain *domain, |
| u8 bus, u8 devfn) |
| { |
| struct context_entry *context; |
| struct intel_iommu *iommu = domain->iommu; |
| unsigned long flags; |
| |
| pr_debug("Set context mapping for %02x:%02x.%d\n", |
| bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| BUG_ON(!domain->pgd); |
| context = device_to_context_entry(iommu, bus, devfn); |
| if (!context) |
| return -ENOMEM; |
| spin_lock_irqsave(&iommu->lock, flags); |
| if (context_present(context)) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return 0; |
| } |
| |
| context_set_domain_id(context, domain->id); |
| context_set_address_width(context, domain->agaw); |
| context_set_address_root(context, virt_to_phys(domain->pgd)); |
| context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL); |
| context_set_fault_enable(context); |
| context_set_present(context); |
| __iommu_flush_cache(iommu, context, sizeof(*context)); |
| |
| /* it's a non-present to present mapping */ |
| if (iommu->flush.flush_context(iommu, domain->id, |
| (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL, 1)) |
| iommu_flush_write_buffer(iommu); |
| else |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return 0; |
| } |
| |
| static int |
| domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev) |
| { |
| int ret; |
| struct pci_dev *tmp, *parent; |
| |
| ret = domain_context_mapping_one(domain, pdev->bus->number, |
| pdev->devfn); |
| if (ret) |
| return ret; |
| |
| /* dependent device mapping */ |
| tmp = pci_find_upstream_pcie_bridge(pdev); |
| if (!tmp) |
| return 0; |
| /* Secondary interface's bus number and devfn 0 */ |
| parent = pdev->bus->self; |
| while (parent != tmp) { |
| ret = domain_context_mapping_one(domain, parent->bus->number, |
| parent->devfn); |
| if (ret) |
| return ret; |
| parent = parent->bus->self; |
| } |
| if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ |
| return domain_context_mapping_one(domain, |
| tmp->subordinate->number, 0); |
| else /* this is a legacy PCI bridge */ |
| return domain_context_mapping_one(domain, |
| tmp->bus->number, tmp->devfn); |
| } |
| |
| static int domain_context_mapped(struct dmar_domain *domain, |
| struct pci_dev *pdev) |
| { |
| int ret; |
| struct pci_dev *tmp, *parent; |
| |
| ret = device_context_mapped(domain->iommu, |
| pdev->bus->number, pdev->devfn); |
| if (!ret) |
| return ret; |
| /* dependent device mapping */ |
| tmp = pci_find_upstream_pcie_bridge(pdev); |
| if (!tmp) |
| return ret; |
| /* Secondary interface's bus number and devfn 0 */ |
| parent = pdev->bus->self; |
| while (parent != tmp) { |
| ret = device_context_mapped(domain->iommu, parent->bus->number, |
| parent->devfn); |
| if (!ret) |
| return ret; |
| parent = parent->bus->self; |
| } |
| if (tmp->is_pcie) |
| return device_context_mapped(domain->iommu, |
| tmp->subordinate->number, 0); |
| else |
| return device_context_mapped(domain->iommu, |
| tmp->bus->number, tmp->devfn); |
| } |
| |
| static int |
| domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova, |
| u64 hpa, size_t size, int prot) |
| { |
| u64 start_pfn, end_pfn; |
| struct dma_pte *pte; |
| int index; |
| int addr_width = agaw_to_width(domain->agaw); |
| |
| hpa &= (((u64)1) << addr_width) - 1; |
| |
| if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
| return -EINVAL; |
| iova &= PAGE_MASK; |
| start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT; |
| end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT; |
| index = 0; |
| while (start_pfn < end_pfn) { |
| pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index); |
| if (!pte) |
| return -ENOMEM; |
| /* We don't need lock here, nobody else |
| * touches the iova range |
| */ |
| BUG_ON(dma_pte_addr(pte)); |
| dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT); |
| dma_set_pte_prot(pte, prot); |
| __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); |
| start_pfn++; |
| index++; |
| } |
| return 0; |
| } |
| |
| static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn) |
| { |
| clear_context_table(domain->iommu, bus, devfn); |
| domain->iommu->flush.flush_context(domain->iommu, 0, 0, 0, |
| DMA_CCMD_GLOBAL_INVL, 0); |
| domain->iommu->flush.flush_iotlb(domain->iommu, 0, 0, 0, |
| DMA_TLB_GLOBAL_FLUSH, 0); |
| } |
| |
| static void domain_remove_dev_info(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| while (!list_empty(&domain->devices)) { |
| info = list_entry(domain->devices.next, |
| struct device_domain_info, link); |
| list_del(&info->link); |
| list_del(&info->global); |
| if (info->dev) |
| info->dev->dev.archdata.iommu = NULL; |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| detach_domain_for_dev(info->domain, info->bus, info->devfn); |
| free_devinfo_mem(info); |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| /* |
| * find_domain |
| * Note: we use struct pci_dev->dev.archdata.iommu stores the info |
| */ |
| static struct dmar_domain * |
| find_domain(struct pci_dev *pdev) |
| { |
| struct device_domain_info *info; |
| |
| /* No lock here, assumes no domain exit in normal case */ |
| info = pdev->dev.archdata.iommu; |
| if (info) |
| return info->domain; |
| return NULL; |
| } |
| |
| /* domain is initialized */ |
| static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) |
| { |
| struct dmar_domain *domain, *found = NULL; |
| struct intel_iommu *iommu; |
| struct dmar_drhd_unit *drhd; |
| struct device_domain_info *info, *tmp; |
| struct pci_dev *dev_tmp; |
| unsigned long flags; |
| int bus = 0, devfn = 0; |
| |
| domain = find_domain(pdev); |
| if (domain) |
| return domain; |
| |
| dev_tmp = pci_find_upstream_pcie_bridge(pdev); |
| if (dev_tmp) { |
| if (dev_tmp->is_pcie) { |
| bus = dev_tmp->subordinate->number; |
| devfn = 0; |
| } else { |
| bus = dev_tmp->bus->number; |
| devfn = dev_tmp->devfn; |
| } |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &device_domain_list, global) { |
| if (info->bus == bus && info->devfn == devfn) { |
| found = info->domain; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| /* pcie-pci bridge already has a domain, uses it */ |
| if (found) { |
| domain = found; |
| goto found_domain; |
| } |
| } |
| |
| /* Allocate new domain for the device */ |
| drhd = dmar_find_matched_drhd_unit(pdev); |
| if (!drhd) { |
| printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", |
| pci_name(pdev)); |
| return NULL; |
| } |
| iommu = drhd->iommu; |
| |
| domain = iommu_alloc_domain(iommu); |
| if (!domain) |
| goto error; |
| |
| if (domain_init(domain, gaw)) { |
| domain_exit(domain); |
| goto error; |
| } |
| |
| /* register pcie-to-pci device */ |
| if (dev_tmp) { |
| info = alloc_devinfo_mem(); |
| if (!info) { |
| domain_exit(domain); |
| goto error; |
| } |
| info->bus = bus; |
| info->devfn = devfn; |
| info->dev = NULL; |
| info->domain = domain; |
| /* This domain is shared by devices under p2p bridge */ |
| domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES; |
| |
| /* pcie-to-pci bridge already has a domain, uses it */ |
| found = NULL; |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(tmp, &device_domain_list, global) { |
| if (tmp->bus == bus && tmp->devfn == devfn) { |
| found = tmp->domain; |
| break; |
| } |
| } |
| if (found) { |
| free_devinfo_mem(info); |
| domain_exit(domain); |
| domain = found; |
| } else { |
| list_add(&info->link, &domain->devices); |
| list_add(&info->global, &device_domain_list); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| found_domain: |
| info = alloc_devinfo_mem(); |
| if (!info) |
| goto error; |
| info->bus = pdev->bus->number; |
| info->devfn = pdev->devfn; |
| info->dev = pdev; |
| info->domain = domain; |
| spin_lock_irqsave(&device_domain_lock, flags); |
| /* somebody is fast */ |
| found = find_domain(pdev); |
| if (found != NULL) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| if (found != domain) { |
| domain_exit(domain); |
| domain = found; |
| } |
| free_devinfo_mem(info); |
| return domain; |
| } |
| list_add(&info->link, &domain->devices); |
| list_add(&info->global, &device_domain_list); |
| pdev->dev.archdata.iommu = info; |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| return domain; |
| error: |
| /* recheck it here, maybe others set it */ |
| return find_domain(pdev); |
| } |
| |
| static int iommu_prepare_identity_map(struct pci_dev *pdev, |
| unsigned long long start, |
| unsigned long long end) |
| { |
| struct dmar_domain *domain; |
| unsigned long size; |
| unsigned long long base; |
| int ret; |
| |
| printk(KERN_INFO |
| "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", |
| pci_name(pdev), start, end); |
| /* page table init */ |
| domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| if (!domain) |
| return -ENOMEM; |
| |
| /* The address might not be aligned */ |
| base = start & PAGE_MASK; |
| size = end - base; |
| size = PAGE_ALIGN(size); |
| if (!reserve_iova(&domain->iovad, IOVA_PFN(base), |
| IOVA_PFN(base + size) - 1)) { |
| printk(KERN_ERR "IOMMU: reserve iova failed\n"); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| pr_debug("Mapping reserved region %lx@%llx for %s\n", |
| size, base, pci_name(pdev)); |
| /* |
| * RMRR range might have overlap with physical memory range, |
| * clear it first |
| */ |
| dma_pte_clear_range(domain, base, base + size); |
| |
| ret = domain_page_mapping(domain, base, base, size, |
| DMA_PTE_READ|DMA_PTE_WRITE); |
| if (ret) |
| goto error; |
| |
| /* context entry init */ |
| ret = domain_context_mapping(domain, pdev); |
| if (!ret) |
| return 0; |
| error: |
| domain_exit(domain); |
| return ret; |
| |
| } |
| |
| static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, |
| struct pci_dev *pdev) |
| { |
| if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
| return 0; |
| return iommu_prepare_identity_map(pdev, rmrr->base_address, |
| rmrr->end_address + 1); |
| } |
| |
| #ifdef CONFIG_DMAR_GFX_WA |
| struct iommu_prepare_data { |
| struct pci_dev *pdev; |
| int ret; |
| }; |
| |
| static int __init iommu_prepare_work_fn(unsigned long start_pfn, |
| unsigned long end_pfn, void *datax) |
| { |
| struct iommu_prepare_data *data; |
| |
| data = (struct iommu_prepare_data *)datax; |
| |
| data->ret = iommu_prepare_identity_map(data->pdev, |
| start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT); |
| return data->ret; |
| |
| } |
| |
| static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev) |
| { |
| int nid; |
| struct iommu_prepare_data data; |
| |
| data.pdev = pdev; |
| data.ret = 0; |
| |
| for_each_online_node(nid) { |
| work_with_active_regions(nid, iommu_prepare_work_fn, &data); |
| if (data.ret) |
| return data.ret; |
| } |
| return data.ret; |
| } |
| |
| static void __init iommu_prepare_gfx_mapping(void) |
| { |
| struct pci_dev *pdev = NULL; |
| int ret; |
| |
| for_each_pci_dev(pdev) { |
| if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO || |
| !IS_GFX_DEVICE(pdev)) |
| continue; |
| printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n", |
| pci_name(pdev)); |
| ret = iommu_prepare_with_active_regions(pdev); |
| if (ret) |
| printk(KERN_ERR "IOMMU: mapping reserved region failed\n"); |
| } |
| } |
| #else /* !CONFIG_DMAR_GFX_WA */ |
| static inline void iommu_prepare_gfx_mapping(void) |
| { |
| return; |
| } |
| #endif |
| |
| #ifdef CONFIG_DMAR_FLOPPY_WA |
| static inline void iommu_prepare_isa(void) |
| { |
| struct pci_dev *pdev; |
| int ret; |
| |
| pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); |
| if (!pdev) |
| return; |
| |
| printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n"); |
| ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024); |
| |
| if (ret) |
| printk("IOMMU: Failed to create 0-64M identity map, " |
| "floppy might not work\n"); |
| |
| } |
| #else |
| static inline void iommu_prepare_isa(void) |
| { |
| return; |
| } |
| #endif /* !CONFIG_DMAR_FLPY_WA */ |
| |
| static int __init init_dmars(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct dmar_rmrr_unit *rmrr; |
| struct pci_dev *pdev; |
| struct intel_iommu *iommu; |
| int i, ret, unit = 0; |
| |
| /* |
| * for each drhd |
| * allocate root |
| * initialize and program root entry to not present |
| * endfor |
| */ |
| for_each_drhd_unit(drhd) { |
| g_num_of_iommus++; |
| /* |
| * lock not needed as this is only incremented in the single |
| * threaded kernel __init code path all other access are read |
| * only |
| */ |
| } |
| |
| deferred_flush = kzalloc(g_num_of_iommus * |
| sizeof(struct deferred_flush_tables), GFP_KERNEL); |
| if (!deferred_flush) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| |
| iommu = drhd->iommu; |
| |
| ret = iommu_init_domains(iommu); |
| if (ret) |
| goto error; |
| |
| /* |
| * TBD: |
| * we could share the same root & context tables |
| * amoung all IOMMU's. Need to Split it later. |
| */ |
| ret = iommu_alloc_root_entry(iommu); |
| if (ret) { |
| printk(KERN_ERR "IOMMU: allocate root entry failed\n"); |
| goto error; |
| } |
| } |
| |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| |
| iommu = drhd->iommu; |
| if (dmar_enable_qi(iommu)) { |
| /* |
| * Queued Invalidate not enabled, use Register Based |
| * Invalidate |
| */ |
| iommu->flush.flush_context = __iommu_flush_context; |
| iommu->flush.flush_iotlb = __iommu_flush_iotlb; |
| printk(KERN_INFO "IOMMU 0x%Lx: using Register based " |
| "invalidation\n", |
| (unsigned long long)drhd->reg_base_addr); |
| } else { |
| iommu->flush.flush_context = qi_flush_context; |
| iommu->flush.flush_iotlb = qi_flush_iotlb; |
| printk(KERN_INFO "IOMMU 0x%Lx: using Queued " |
| "invalidation\n", |
| (unsigned long long)drhd->reg_base_addr); |
| } |
| } |
| |
| /* |
| * For each rmrr |
| * for each dev attached to rmrr |
| * do |
| * locate drhd for dev, alloc domain for dev |
| * allocate free domain |
| * allocate page table entries for rmrr |
| * if context not allocated for bus |
| * allocate and init context |
| * set present in root table for this bus |
| * init context with domain, translation etc |
| * endfor |
| * endfor |
| */ |
| for_each_rmrr_units(rmrr) { |
| for (i = 0; i < rmrr->devices_cnt; i++) { |
| pdev = rmrr->devices[i]; |
| /* some BIOS lists non-exist devices in DMAR table */ |
| if (!pdev) |
| continue; |
| ret = iommu_prepare_rmrr_dev(rmrr, pdev); |
| if (ret) |
| printk(KERN_ERR |
| "IOMMU: mapping reserved region failed\n"); |
| } |
| } |
| |
| iommu_prepare_gfx_mapping(); |
| |
| iommu_prepare_isa(); |
| |
| /* |
| * for each drhd |
| * enable fault log |
| * global invalidate context cache |
| * global invalidate iotlb |
| * enable translation |
| */ |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| iommu = drhd->iommu; |
| sprintf (iommu->name, "dmar%d", unit++); |
| |
| iommu_flush_write_buffer(iommu); |
| |
| ret = dmar_set_interrupt(iommu); |
| if (ret) |
| goto error; |
| |
| iommu_set_root_entry(iommu); |
| |
| iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL, |
| 0); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, |
| 0); |
| iommu_disable_protect_mem_regions(iommu); |
| |
| ret = iommu_enable_translation(iommu); |
| if (ret) |
| goto error; |
| } |
| |
| return 0; |
| error: |
| for_each_drhd_unit(drhd) { |
| if (drhd->ignored) |
| continue; |
| iommu = drhd->iommu; |
| free_iommu(iommu); |
| } |
| return ret; |
| } |
| |
| static inline u64 aligned_size(u64 host_addr, size_t size) |
| { |
| u64 addr; |
| addr = (host_addr & (~PAGE_MASK)) + size; |
| return PAGE_ALIGN(addr); |
| } |
| |
| struct iova * |
| iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end) |
| { |
| struct iova *piova; |
| |
| /* Make sure it's in range */ |
| end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end); |
| if (!size || (IOVA_START_ADDR + size > end)) |
| return NULL; |
| |
| piova = alloc_iova(&domain->iovad, |
| size >> PAGE_SHIFT, IOVA_PFN(end), 1); |
| return piova; |
| } |
| |
| static struct iova * |
| __intel_alloc_iova(struct device *dev, struct dmar_domain *domain, |
| size_t size, u64 dma_mask) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct iova *iova = NULL; |
| |
| if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac) |
| iova = iommu_alloc_iova(domain, size, dma_mask); |
| else { |
| /* |
| * First try to allocate an io virtual address in |
| * DMA_32BIT_MASK and if that fails then try allocating |
| * from higher range |
| */ |
| iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK); |
| if (!iova) |
| iova = iommu_alloc_iova(domain, size, dma_mask); |
| } |
| |
| if (!iova) { |
| printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev)); |
| return NULL; |
| } |
| |
| return iova; |
| } |
| |
| static struct dmar_domain * |
| get_valid_domain_for_dev(struct pci_dev *pdev) |
| { |
| struct dmar_domain *domain; |
| int ret; |
| |
| domain = get_domain_for_dev(pdev, |
| DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| if (!domain) { |
| printk(KERN_ERR |
| "Allocating domain for %s failed", pci_name(pdev)); |
| return NULL; |
| } |
| |
| /* make sure context mapping is ok */ |
| if (unlikely(!domain_context_mapped(domain, pdev))) { |
| ret = domain_context_mapping(domain, pdev); |
| if (ret) { |
| printk(KERN_ERR |
| "Domain context map for %s failed", |
| pci_name(pdev)); |
| return NULL; |
| } |
| } |
| |
| return domain; |
| } |
| |
| static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, |
| size_t size, int dir, u64 dma_mask) |
| { |
| struct pci_dev *pdev = to_pci_dev(hwdev); |
| struct dmar_domain *domain; |
| phys_addr_t start_paddr; |
| struct iova *iova; |
| int prot = 0; |
| int ret; |
| |
| BUG_ON(dir == DMA_NONE); |
| if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
| return paddr; |
| |
| domain = get_valid_domain_for_dev(pdev); |
| if (!domain) |
| return 0; |
| |
| size = aligned_size((u64)paddr, size); |
| |
| iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask); |
| if (!iova) |
| goto error; |
| |
| start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; |
| |
| /* |
| * Check if DMAR supports zero-length reads on write only |
| * mappings.. |
| */ |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| !cap_zlr(domain->iommu->cap)) |
| prot |= DMA_PTE_READ; |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| prot |= DMA_PTE_WRITE; |
| /* |
| * paddr - (paddr + size) might be partial page, we should map the whole |
| * page. Note: if two part of one page are separately mapped, we |
| * might have two guest_addr mapping to the same host paddr, but this |
| * is not a big problem |
| */ |
| ret = domain_page_mapping(domain, start_paddr, |
| ((u64)paddr) & PAGE_MASK, size, prot); |
| if (ret) |
| goto error; |
| |
| /* it's a non-present to present mapping */ |
| ret = iommu_flush_iotlb_psi(domain->iommu, domain->id, |
| start_paddr, size >> VTD_PAGE_SHIFT, 1); |
| if (ret) |
| iommu_flush_write_buffer(domain->iommu); |
| |
| return start_paddr + ((u64)paddr & (~PAGE_MASK)); |
| |
| error: |
| if (iova) |
| __free_iova(&domain->iovad, iova); |
| printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n", |
| pci_name(pdev), size, (unsigned long long)paddr, dir); |
| return 0; |
| } |
| |
| dma_addr_t intel_map_single(struct device *hwdev, phys_addr_t paddr, |
| size_t size, int dir) |
| { |
| return __intel_map_single(hwdev, paddr, size, dir, |
| to_pci_dev(hwdev)->dma_mask); |
| } |
| |
| static void flush_unmaps(void) |
| { |
| int i, j; |
| |
| timer_on = 0; |
| |
| /* just flush them all */ |
| for (i = 0; i < g_num_of_iommus; i++) { |
| if (deferred_flush[i].next) { |
| struct intel_iommu *iommu = |
| deferred_flush[i].domain[0]->iommu; |
| |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
| DMA_TLB_GLOBAL_FLUSH, 0); |
| for (j = 0; j < deferred_flush[i].next; j++) { |
| __free_iova(&deferred_flush[i].domain[j]->iovad, |
| deferred_flush[i].iova[j]); |
| } |
| deferred_flush[i].next = 0; |
| } |
| } |
| |
| list_size = 0; |
| } |
| |
| static void flush_unmaps_timeout(unsigned long data) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&async_umap_flush_lock, flags); |
| flush_unmaps(); |
| spin_unlock_irqrestore(&async_umap_flush_lock, flags); |
| } |
| |
| static void add_unmap(struct dmar_domain *dom, struct iova *iova) |
| { |
| unsigned long flags; |
| int next, iommu_id; |
| |
| spin_lock_irqsave(&async_umap_flush_lock, flags); |
| if (list_size == HIGH_WATER_MARK) |
| flush_unmaps(); |
| |
| iommu_id = dom->iommu->seq_id; |
| |
| next = deferred_flush[iommu_id].next; |
| deferred_flush[iommu_id].domain[next] = dom; |
| deferred_flush[iommu_id].iova[next] = iova; |
| deferred_flush[iommu_id].next++; |
| |
| if (!timer_on) { |
| mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); |
| timer_on = 1; |
| } |
| list_size++; |
| spin_unlock_irqrestore(&async_umap_flush_lock, flags); |
| } |
| |
| void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size, |
| int dir) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct dmar_domain *domain; |
| unsigned long start_addr; |
| struct iova *iova; |
| |
| if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
| return; |
| domain = find_domain(pdev); |
| BUG_ON(!domain); |
| |
| iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); |
| if (!iova) |
| return; |
| |
| start_addr = iova->pfn_lo << PAGE_SHIFT; |
| size = aligned_size((u64)dev_addr, size); |
| |
| pr_debug("Device %s unmapping: %lx@%llx\n", |
| pci_name(pdev), size, (unsigned long long)start_addr); |
| |
| /* clear the whole page */ |
| dma_pte_clear_range(domain, start_addr, start_addr + size); |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, start_addr, start_addr + size); |
| if (intel_iommu_strict) { |
| if (iommu_flush_iotlb_psi(domain->iommu, |
| domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0)) |
| iommu_flush_write_buffer(domain->iommu); |
| /* free iova */ |
| __free_iova(&domain->iovad, iova); |
| } else { |
| add_unmap(domain, iova); |
| /* |
| * queue up the release of the unmap to save the 1/6th of the |
| * cpu used up by the iotlb flush operation... |
| */ |
| } |
| } |
| |
| void *intel_alloc_coherent(struct device *hwdev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flags) |
| { |
| void *vaddr; |
| int order; |
| |
| size = PAGE_ALIGN(size); |
| order = get_order(size); |
| flags &= ~(GFP_DMA | GFP_DMA32); |
| |
| vaddr = (void *)__get_free_pages(flags, order); |
| if (!vaddr) |
| return NULL; |
| memset(vaddr, 0, size); |
| |
| *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, |
| DMA_BIDIRECTIONAL, |
| hwdev->coherent_dma_mask); |
| if (*dma_handle) |
| return vaddr; |
| free_pages((unsigned long)vaddr, order); |
| return NULL; |
| } |
| |
| void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, |
| dma_addr_t dma_handle) |
| { |
| int order; |
| |
| size = PAGE_ALIGN(size); |
| order = get_order(size); |
| |
| intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL); |
| free_pages((unsigned long)vaddr, order); |
| } |
| |
| #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg))) |
| |
| void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, |
| int nelems, int dir) |
| { |
| int i; |
| struct pci_dev *pdev = to_pci_dev(hwdev); |
| struct dmar_domain *domain; |
| unsigned long start_addr; |
| struct iova *iova; |
| size_t size = 0; |
| void *addr; |
| struct scatterlist *sg; |
| |
| if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
| return; |
| |
| domain = find_domain(pdev); |
| |
| iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); |
| if (!iova) |
| return; |
| for_each_sg(sglist, sg, nelems, i) { |
| addr = SG_ENT_VIRT_ADDRESS(sg); |
| size += aligned_size((u64)addr, sg->length); |
| } |
| |
| start_addr = iova->pfn_lo << PAGE_SHIFT; |
| |
| /* clear the whole page */ |
| dma_pte_clear_range(domain, start_addr, start_addr + size); |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, start_addr, start_addr + size); |
| |
| if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr, |
| size >> VTD_PAGE_SHIFT, 0)) |
| iommu_flush_write_buffer(domain->iommu); |
| |
| /* free iova */ |
| __free_iova(&domain->iovad, iova); |
| } |
| |
| static int intel_nontranslate_map_sg(struct device *hddev, |
| struct scatterlist *sglist, int nelems, int dir) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nelems, i) { |
| BUG_ON(!sg_page(sg)); |
| sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg)); |
| sg->dma_length = sg->length; |
| } |
| return nelems; |
| } |
| |
| int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, |
| int dir) |
| { |
| void *addr; |
| int i; |
| struct pci_dev *pdev = to_pci_dev(hwdev); |
| struct dmar_domain *domain; |
| size_t size = 0; |
| int prot = 0; |
| size_t offset = 0; |
| struct iova *iova = NULL; |
| int ret; |
| struct scatterlist *sg; |
| unsigned long start_addr; |
| |
| BUG_ON(dir == DMA_NONE); |
| if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
| return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); |
| |
| domain = get_valid_domain_for_dev(pdev); |
| if (!domain) |
| return 0; |
| |
| for_each_sg(sglist, sg, nelems, i) { |
| addr = SG_ENT_VIRT_ADDRESS(sg); |
| addr = (void *)virt_to_phys(addr); |
| size += aligned_size((u64)addr, sg->length); |
| } |
| |
| iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask); |
| if (!iova) { |
| sglist->dma_length = 0; |
| return 0; |
| } |
| |
| /* |
| * Check if DMAR supports zero-length reads on write only |
| * mappings.. |
| */ |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| !cap_zlr(domain->iommu->cap)) |
| prot |= DMA_PTE_READ; |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| prot |= DMA_PTE_WRITE; |
| |
| start_addr = iova->pfn_lo << PAGE_SHIFT; |
| offset = 0; |
| for_each_sg(sglist, sg, nelems, i) { |
| addr = SG_ENT_VIRT_ADDRESS(sg); |
| addr = (void *)virt_to_phys(addr); |
| size = aligned_size((u64)addr, sg->length); |
| ret = domain_page_mapping(domain, start_addr + offset, |
| ((u64)addr) & PAGE_MASK, |
| size, prot); |
| if (ret) { |
| /* clear the page */ |
| dma_pte_clear_range(domain, start_addr, |
| start_addr + offset); |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, start_addr, |
| start_addr + offset); |
| /* free iova */ |
| __free_iova(&domain->iovad, iova); |
| return 0; |
| } |
| sg->dma_address = start_addr + offset + |
| ((u64)addr & (~PAGE_MASK)); |
| sg->dma_length = sg->length; |
| offset += size; |
| } |
| |
| /* it's a non-present to present mapping */ |
| if (iommu_flush_iotlb_psi(domain->iommu, domain->id, |
| start_addr, offset >> VTD_PAGE_SHIFT, 1)) |
| iommu_flush_write_buffer(domain->iommu); |
| return nelems; |
| } |
| |
| static struct dma_mapping_ops intel_dma_ops = { |
| .alloc_coherent = intel_alloc_coherent, |
| .free_coherent = intel_free_coherent, |
| .map_single = intel_map_single, |
| .unmap_single = intel_unmap_single, |
| .map_sg = intel_map_sg, |
| .unmap_sg = intel_unmap_sg, |
| }; |
| |
| static inline int iommu_domain_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_domain_cache = kmem_cache_create("iommu_domain", |
| sizeof(struct dmar_domain), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| |
| NULL); |
| if (!iommu_domain_cache) { |
| printk(KERN_ERR "Couldn't create iommu_domain cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static inline int iommu_devinfo_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", |
| sizeof(struct device_domain_info), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (!iommu_devinfo_cache) { |
| printk(KERN_ERR "Couldn't create devinfo cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static inline int iommu_iova_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_iova_cache = kmem_cache_create("iommu_iova", |
| sizeof(struct iova), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (!iommu_iova_cache) { |
| printk(KERN_ERR "Couldn't create iova cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static int __init iommu_init_mempool(void) |
| { |
| int ret; |
| ret = iommu_iova_cache_init(); |
| if (ret) |
| return ret; |
| |
| ret = iommu_domain_cache_init(); |
| if (ret) |
| goto domain_error; |
| |
| ret = iommu_devinfo_cache_init(); |
| if (!ret) |
| return ret; |
| |
| kmem_cache_destroy(iommu_domain_cache); |
| domain_error: |
| kmem_cache_destroy(iommu_iova_cache); |
| |
| return -ENOMEM; |
| } |
| |
| static void __init iommu_exit_mempool(void) |
| { |
| kmem_cache_destroy(iommu_devinfo_cache); |
| kmem_cache_destroy(iommu_domain_cache); |
| kmem_cache_destroy(iommu_iova_cache); |
| |
| } |
| |
| static void __init init_no_remapping_devices(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| |
| for_each_drhd_unit(drhd) { |
| if (!drhd->include_all) { |
| int i; |
| for (i = 0; i < drhd->devices_cnt; i++) |
| if (drhd->devices[i] != NULL) |
| break; |
| /* ignore DMAR unit if no pci devices exist */ |
| if (i == drhd->devices_cnt) |
| drhd->ignored = 1; |
| } |
| } |
| |
| if (dmar_map_gfx) |
| return; |
| |
| for_each_drhd_unit(drhd) { |
| int i; |
| if (drhd->ignored || drhd->include_all) |
| continue; |
| |
| for (i = 0; i < drhd->devices_cnt; i++) |
| if (drhd->devices[i] && |
| !IS_GFX_DEVICE(drhd->devices[i])) |
| break; |
| |
| if (i < drhd->devices_cnt) |
| continue; |
| |
| /* bypass IOMMU if it is just for gfx devices */ |
| drhd->ignored = 1; |
| for (i = 0; i < drhd->devices_cnt; i++) { |
| if (!drhd->devices[i]) |
| continue; |
| drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; |
| } |
| } |
| } |
| |
| int __init intel_iommu_init(void) |
| { |
| int ret = 0; |
| |
| if (dmar_table_init()) |
| return -ENODEV; |
| |
| if (dmar_dev_scope_init()) |
| return -ENODEV; |
| |
| /* |
| * Check the need for DMA-remapping initialization now. |
| * Above initialization will also be used by Interrupt-remapping. |
| */ |
| if (no_iommu || swiotlb || dmar_disabled) |
| return -ENODEV; |
| |
| iommu_init_mempool(); |
| dmar_init_reserved_ranges(); |
| |
| init_no_remapping_devices(); |
| |
| ret = init_dmars(); |
| if (ret) { |
| printk(KERN_ERR "IOMMU: dmar init failed\n"); |
| put_iova_domain(&reserved_iova_list); |
| iommu_exit_mempool(); |
| return ret; |
| } |
| printk(KERN_INFO |
| "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); |
| |
| init_timer(&unmap_timer); |
| force_iommu = 1; |
| dma_ops = &intel_dma_ops; |
| return 0; |
| } |
| |
| void intel_iommu_domain_exit(struct dmar_domain *domain) |
| { |
| u64 end; |
| |
| /* Domain 0 is reserved, so dont process it */ |
| if (!domain) |
| return; |
| |
| end = DOMAIN_MAX_ADDR(domain->gaw); |
| end = end & (~VTD_PAGE_MASK); |
| |
| /* clear ptes */ |
| dma_pte_clear_range(domain, 0, end); |
| |
| /* free page tables */ |
| dma_pte_free_pagetable(domain, 0, end); |
| |
| iommu_free_domain(domain); |
| free_domain_mem(domain); |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_domain_exit); |
| |
| struct dmar_domain *intel_iommu_domain_alloc(struct pci_dev *pdev) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct dmar_domain *domain; |
| struct intel_iommu *iommu; |
| |
| drhd = dmar_find_matched_drhd_unit(pdev); |
| if (!drhd) { |
| printk(KERN_ERR "intel_iommu_domain_alloc: drhd == NULL\n"); |
| return NULL; |
| } |
| |
| iommu = drhd->iommu; |
| if (!iommu) { |
| printk(KERN_ERR |
| "intel_iommu_domain_alloc: iommu == NULL\n"); |
| return NULL; |
| } |
| domain = iommu_alloc_domain(iommu); |
| if (!domain) { |
| printk(KERN_ERR |
| "intel_iommu_domain_alloc: domain == NULL\n"); |
| return NULL; |
| } |
| if (domain_init(domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| printk(KERN_ERR |
| "intel_iommu_domain_alloc: domain_init() failed\n"); |
| intel_iommu_domain_exit(domain); |
| return NULL; |
| } |
| return domain; |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_domain_alloc); |
| |
| int intel_iommu_context_mapping( |
| struct dmar_domain *domain, struct pci_dev *pdev) |
| { |
| int rc; |
| rc = domain_context_mapping(domain, pdev); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_context_mapping); |
| |
| int intel_iommu_page_mapping( |
| struct dmar_domain *domain, dma_addr_t iova, |
| u64 hpa, size_t size, int prot) |
| { |
| int rc; |
| rc = domain_page_mapping(domain, iova, hpa, size, prot); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_page_mapping); |
| |
| void intel_iommu_detach_dev(struct dmar_domain *domain, u8 bus, u8 devfn) |
| { |
| detach_domain_for_dev(domain, bus, devfn); |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_detach_dev); |
| |
| struct dmar_domain * |
| intel_iommu_find_domain(struct pci_dev *pdev) |
| { |
| return find_domain(pdev); |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_find_domain); |
| |
| int intel_iommu_found(void) |
| { |
| return g_num_of_iommus; |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_found); |
| |
| u64 intel_iommu_iova_to_pfn(struct dmar_domain *domain, u64 iova) |
| { |
| struct dma_pte *pte; |
| u64 pfn; |
| |
| pfn = 0; |
| pte = addr_to_dma_pte(domain, iova); |
| |
| if (pte) |
| pfn = dma_pte_addr(pte); |
| |
| return pfn >> VTD_PAGE_SHIFT; |
| } |
| EXPORT_SYMBOL_GPL(intel_iommu_iova_to_pfn); |