blob: 8cc8253f1100490fc65bf288042daaef57b62b1f [file] [log] [blame]
/*
* bcm63xx_udc.c -- BCM63xx UDC high/full speed USB device controller
*
* Copyright (C) 2012 Kevin Cernekee <cernekee@gmail.com>
* Copyright (C) 2012 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/clk.h>
#include <linux/compiler.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kconfig.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/workqueue.h>
#include <bcm63xx_cpu.h>
#include <bcm63xx_iudma.h>
#include <bcm63xx_dev_usb_usbd.h>
#include <bcm63xx_io.h>
#include <bcm63xx_regs.h>
#define DRV_MODULE_NAME "bcm63xx_udc"
static const char bcm63xx_ep0name[] = "ep0";
static const char *const bcm63xx_ep_name[] = {
bcm63xx_ep0name,
"ep1in-bulk", "ep2out-bulk", "ep3in-int", "ep4out-int",
};
static bool use_fullspeed;
module_param(use_fullspeed, bool, S_IRUGO);
MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
/*
* RX IRQ coalescing options:
*
* false (default) - one IRQ per DATAx packet. Slow but reliable. The
* driver is able to pass the "testusb" suite and recover from conditions like:
*
* 1) Device queues up a 2048-byte RX IUDMA transaction on an OUT bulk ep
* 2) Host sends 512 bytes of data
* 3) Host decides to reconfigure the device and sends SET_INTERFACE
* 4) Device shuts down the endpoint and cancels the RX transaction
*
* true - one IRQ per transfer, for transfers <= 2048B. Generates
* considerably fewer IRQs, but error recovery is less robust. Does not
* reliably pass "testusb".
*
* TX always uses coalescing, because we can cancel partially complete TX
* transfers by repeatedly flushing the FIFO. The hardware doesn't allow
* this on RX.
*/
static bool irq_coalesce;
module_param(irq_coalesce, bool, S_IRUGO);
MODULE_PARM_DESC(irq_coalesce, "take one IRQ per RX transfer");
#define BCM63XX_NUM_EP 5
#define BCM63XX_NUM_IUDMA 6
#define BCM63XX_NUM_FIFO_PAIRS 3
#define IUDMA_RESET_TIMEOUT_US 10000
#define IUDMA_EP0_RXCHAN 0
#define IUDMA_EP0_TXCHAN 1
#define IUDMA_MAX_FRAGMENT 2048
#define BCM63XX_MAX_CTRL_PKT 64
#define BCMEP_CTRL 0x00
#define BCMEP_ISOC 0x01
#define BCMEP_BULK 0x02
#define BCMEP_INTR 0x03
#define BCMEP_OUT 0x00
#define BCMEP_IN 0x01
#define BCM63XX_SPD_FULL 1
#define BCM63XX_SPD_HIGH 0
#define IUDMA_DMAC_OFFSET 0x200
#define IUDMA_DMAS_OFFSET 0x400
enum bcm63xx_ep0_state {
EP0_REQUEUE,
EP0_IDLE,
EP0_IN_DATA_PHASE_SETUP,
EP0_IN_DATA_PHASE_COMPLETE,
EP0_OUT_DATA_PHASE_SETUP,
EP0_OUT_DATA_PHASE_COMPLETE,
EP0_OUT_STATUS_PHASE,
EP0_IN_FAKE_STATUS_PHASE,
EP0_SHUTDOWN,
};
static const char __maybe_unused bcm63xx_ep0_state_names[][32] = {
"REQUEUE",
"IDLE",
"IN_DATA_PHASE_SETUP",
"IN_DATA_PHASE_COMPLETE",
"OUT_DATA_PHASE_SETUP",
"OUT_DATA_PHASE_COMPLETE",
"OUT_STATUS_PHASE",
"IN_FAKE_STATUS_PHASE",
"SHUTDOWN",
};
/**
* struct iudma_ch_cfg - Static configuration for an IUDMA channel.
* @ep_num: USB endpoint number.
* @n_bds: Number of buffer descriptors in the ring.
* @ep_type: Endpoint type (control, bulk, interrupt).
* @dir: Direction (in, out).
* @n_fifo_slots: Number of FIFO entries to allocate for this channel.
* @max_pkt_hs: Maximum packet size in high speed mode.
* @max_pkt_fs: Maximum packet size in full speed mode.
*/
struct iudma_ch_cfg {
int ep_num;
int n_bds;
int ep_type;
int dir;
int n_fifo_slots;
int max_pkt_hs;
int max_pkt_fs;
};
static const struct iudma_ch_cfg iudma_defaults[] = {
/* This controller was designed to support a CDC/RNDIS application.
It may be possible to reconfigure some of the endpoints, but
the hardware limitations (FIFO sizing and number of DMA channels)
may significantly impact flexibility and/or stability. Change
these values at your own risk.
ep_num ep_type n_fifo_slots max_pkt_fs
idx | n_bds | dir | max_pkt_hs |
| | | | | | | | */
[0] = { -1, 4, BCMEP_CTRL, BCMEP_OUT, 32, 64, 64 },
[1] = { 0, 4, BCMEP_CTRL, BCMEP_OUT, 32, 64, 64 },
[2] = { 2, 16, BCMEP_BULK, BCMEP_OUT, 128, 512, 64 },
[3] = { 1, 16, BCMEP_BULK, BCMEP_IN, 128, 512, 64 },
[4] = { 4, 4, BCMEP_INTR, BCMEP_OUT, 32, 64, 64 },
[5] = { 3, 4, BCMEP_INTR, BCMEP_IN, 32, 64, 64 },
};
struct bcm63xx_udc;
/**
* struct iudma_ch - Represents the current state of a single IUDMA channel.
* @ch_idx: IUDMA channel index (0 to BCM63XX_NUM_IUDMA-1).
* @ep_num: USB endpoint number. -1 for ep0 RX.
* @enabled: Whether bcm63xx_ep_enable() has been called.
* @max_pkt: "Chunk size" on the USB interface. Based on interface speed.
* @is_tx: true for TX, false for RX.
* @bep: Pointer to the associated endpoint. NULL for ep0 RX.
* @udc: Reference to the device controller.
* @read_bd: Next buffer descriptor to reap from the hardware.
* @write_bd: Next BD available for a new packet.
* @end_bd: Points to the final BD in the ring.
* @n_bds_used: Number of BD entries currently occupied.
* @bd_ring: Base pointer to the BD ring.
* @bd_ring_dma: Physical (DMA) address of bd_ring.
* @n_bds: Total number of BDs in the ring.
*
* ep0 has two IUDMA channels (IUDMA_EP0_RXCHAN and IUDMA_EP0_TXCHAN), as it is
* bidirectional. The "struct usb_ep" associated with ep0 is for TX (IN)
* only.
*
* Each bulk/intr endpoint has a single IUDMA channel and a single
* struct usb_ep.
*/
struct iudma_ch {
unsigned int ch_idx;
int ep_num;
bool enabled;
int max_pkt;
bool is_tx;
struct bcm63xx_ep *bep;
struct bcm63xx_udc *udc;
struct bcm_enet_desc *read_bd;
struct bcm_enet_desc *write_bd;
struct bcm_enet_desc *end_bd;
int n_bds_used;
struct bcm_enet_desc *bd_ring;
dma_addr_t bd_ring_dma;
unsigned int n_bds;
};
/**
* struct bcm63xx_ep - Internal (driver) state of a single endpoint.
* @ep_num: USB endpoint number.
* @iudma: Pointer to IUDMA channel state.
* @ep: USB gadget layer representation of the EP.
* @udc: Reference to the device controller.
* @queue: Linked list of outstanding requests for this EP.
* @halted: 1 if the EP is stalled; 0 otherwise.
*/
struct bcm63xx_ep {
unsigned int ep_num;
struct iudma_ch *iudma;
struct usb_ep ep;
struct bcm63xx_udc *udc;
struct list_head queue;
unsigned halted:1;
};
/**
* struct bcm63xx_req - Internal (driver) state of a single request.
* @queue: Links back to the EP's request list.
* @req: USB gadget layer representation of the request.
* @offset: Current byte offset into the data buffer (next byte to queue).
* @bd_bytes: Number of data bytes in outstanding BD entries.
* @iudma: IUDMA channel used for the request.
*/
struct bcm63xx_req {
struct list_head queue; /* ep's requests */
struct usb_request req;
unsigned int offset;
unsigned int bd_bytes;
struct iudma_ch *iudma;
};
/**
* struct bcm63xx_udc - Driver/hardware private context.
* @lock: Spinlock to mediate access to this struct, and (most) HW regs.
* @dev: Generic Linux device structure.
* @pd: Platform data (board/port info).
* @usbd_clk: Clock descriptor for the USB device block.
* @usbh_clk: Clock descriptor for the USB host block.
* @gadget: USB slave device.
* @driver: Driver for USB slave devices.
* @usbd_regs: Base address of the USBD/USB20D block.
* @iudma_regs: Base address of the USBD's associated IUDMA block.
* @bep: Array of endpoints, including ep0.
* @iudma: Array of all IUDMA channels used by this controller.
* @cfg: USB configuration number, from SET_CONFIGURATION wValue.
* @iface: USB interface number, from SET_INTERFACE wIndex.
* @alt_iface: USB alt interface number, from SET_INTERFACE wValue.
* @ep0_ctrl_req: Request object for bcm63xx_udc-initiated ep0 transactions.
* @ep0_ctrl_buf: Data buffer for ep0_ctrl_req.
* @ep0state: Current state of the ep0 state machine.
* @ep0_wq: Workqueue struct used to wake up the ep0 state machine.
* @wedgemap: Bitmap of wedged endpoints.
* @ep0_req_reset: USB reset is pending.
* @ep0_req_set_cfg: Need to spoof a SET_CONFIGURATION packet.
* @ep0_req_set_iface: Need to spoof a SET_INTERFACE packet.
* @ep0_req_shutdown: Driver is shutting down; requesting ep0 to halt activity.
* @ep0_req_completed: ep0 request has completed; worker has not seen it yet.
* @ep0_reply: Pending reply from gadget driver.
* @ep0_request: Outstanding ep0 request.
* @debugfs_root: debugfs directory: /sys/kernel/debug/<DRV_MODULE_NAME>.
* @debugfs_usbd: debugfs file "usbd" for controller state.
* @debugfs_iudma: debugfs file "usbd" for IUDMA state.
*/
struct bcm63xx_udc {
spinlock_t lock;
struct device *dev;
struct bcm63xx_usbd_platform_data *pd;
struct clk *usbd_clk;
struct clk *usbh_clk;
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
void __iomem *usbd_regs;
void __iomem *iudma_regs;
struct bcm63xx_ep bep[BCM63XX_NUM_EP];
struct iudma_ch iudma[BCM63XX_NUM_IUDMA];
int cfg;
int iface;
int alt_iface;
struct bcm63xx_req ep0_ctrl_req;
u8 *ep0_ctrl_buf;
int ep0state;
struct work_struct ep0_wq;
unsigned long wedgemap;
unsigned ep0_req_reset:1;
unsigned ep0_req_set_cfg:1;
unsigned ep0_req_set_iface:1;
unsigned ep0_req_shutdown:1;
unsigned ep0_req_completed:1;
struct usb_request *ep0_reply;
struct usb_request *ep0_request;
struct dentry *debugfs_root;
struct dentry *debugfs_usbd;
struct dentry *debugfs_iudma;
};
static const struct usb_ep_ops bcm63xx_udc_ep_ops;
/***********************************************************************
* Convenience functions
***********************************************************************/
static inline struct bcm63xx_udc *gadget_to_udc(struct usb_gadget *g)
{
return container_of(g, struct bcm63xx_udc, gadget);
}
static inline struct bcm63xx_ep *our_ep(struct usb_ep *ep)
{
return container_of(ep, struct bcm63xx_ep, ep);
}
static inline struct bcm63xx_req *our_req(struct usb_request *req)
{
return container_of(req, struct bcm63xx_req, req);
}
static inline u32 usbd_readl(struct bcm63xx_udc *udc, u32 off)
{
return bcm_readl(udc->usbd_regs + off);
}
static inline void usbd_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
{
bcm_writel(val, udc->usbd_regs + off);
}
static inline u32 usb_dma_readl(struct bcm63xx_udc *udc, u32 off)
{
return bcm_readl(udc->iudma_regs + off);
}
static inline void usb_dma_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
{
bcm_writel(val, udc->iudma_regs + off);
}
static inline u32 usb_dmac_readl(struct bcm63xx_udc *udc, u32 off)
{
return bcm_readl(udc->iudma_regs + IUDMA_DMAC_OFFSET + off);
}
static inline void usb_dmac_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
{
bcm_writel(val, udc->iudma_regs + IUDMA_DMAC_OFFSET + off);
}
static inline u32 usb_dmas_readl(struct bcm63xx_udc *udc, u32 off)
{
return bcm_readl(udc->iudma_regs + IUDMA_DMAS_OFFSET + off);
}
static inline void usb_dmas_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
{
bcm_writel(val, udc->iudma_regs + IUDMA_DMAS_OFFSET + off);
}
static inline void set_clocks(struct bcm63xx_udc *udc, bool is_enabled)
{
if (is_enabled) {
clk_enable(udc->usbh_clk);
clk_enable(udc->usbd_clk);
udelay(10);
} else {
clk_disable(udc->usbd_clk);
clk_disable(udc->usbh_clk);
}
}
/***********************************************************************
* Low-level IUDMA / FIFO operations
***********************************************************************/
/**
* bcm63xx_ep_dma_select - Helper function to set up the init_sel signal.
* @udc: Reference to the device controller.
* @idx: Desired init_sel value.
*
* The "init_sel" signal is used as a selection index for both endpoints
* and IUDMA channels. Since these do not map 1:1, the use of this signal
* depends on the context.
*/
static void bcm63xx_ep_dma_select(struct bcm63xx_udc *udc, int idx)
{
u32 val = usbd_readl(udc, USBD_CONTROL_REG);
val &= ~USBD_CONTROL_INIT_SEL_MASK;
val |= idx << USBD_CONTROL_INIT_SEL_SHIFT;
usbd_writel(udc, val, USBD_CONTROL_REG);
}
/**
* bcm63xx_set_stall - Enable/disable stall on one endpoint.
* @udc: Reference to the device controller.
* @bep: Endpoint on which to operate.
* @is_stalled: true to enable stall, false to disable.
*
* See notes in bcm63xx_update_wedge() regarding automatic clearing of
* halt/stall conditions.
*/
static void bcm63xx_set_stall(struct bcm63xx_udc *udc, struct bcm63xx_ep *bep,
bool is_stalled)
{
u32 val;
val = USBD_STALL_UPDATE_MASK |
(is_stalled ? USBD_STALL_ENABLE_MASK : 0) |
(bep->ep_num << USBD_STALL_EPNUM_SHIFT);
usbd_writel(udc, val, USBD_STALL_REG);
}
/**
* bcm63xx_fifo_setup - (Re)initialize FIFO boundaries and settings.
* @udc: Reference to the device controller.
*
* These parameters depend on the USB link speed. Settings are
* per-IUDMA-channel-pair.
*/
static void bcm63xx_fifo_setup(struct bcm63xx_udc *udc)
{
int is_hs = udc->gadget.speed == USB_SPEED_HIGH;
u32 i, val, rx_fifo_slot, tx_fifo_slot;
/* set up FIFO boundaries and packet sizes; this is done in pairs */
rx_fifo_slot = tx_fifo_slot = 0;
for (i = 0; i < BCM63XX_NUM_IUDMA; i += 2) {
const struct iudma_ch_cfg *rx_cfg = &iudma_defaults[i];
const struct iudma_ch_cfg *tx_cfg = &iudma_defaults[i + 1];
bcm63xx_ep_dma_select(udc, i >> 1);
val = (rx_fifo_slot << USBD_RXFIFO_CONFIG_START_SHIFT) |
((rx_fifo_slot + rx_cfg->n_fifo_slots - 1) <<
USBD_RXFIFO_CONFIG_END_SHIFT);
rx_fifo_slot += rx_cfg->n_fifo_slots;
usbd_writel(udc, val, USBD_RXFIFO_CONFIG_REG);
usbd_writel(udc,
is_hs ? rx_cfg->max_pkt_hs : rx_cfg->max_pkt_fs,
USBD_RXFIFO_EPSIZE_REG);
val = (tx_fifo_slot << USBD_TXFIFO_CONFIG_START_SHIFT) |
((tx_fifo_slot + tx_cfg->n_fifo_slots - 1) <<
USBD_TXFIFO_CONFIG_END_SHIFT);
tx_fifo_slot += tx_cfg->n_fifo_slots;
usbd_writel(udc, val, USBD_TXFIFO_CONFIG_REG);
usbd_writel(udc,
is_hs ? tx_cfg->max_pkt_hs : tx_cfg->max_pkt_fs,
USBD_TXFIFO_EPSIZE_REG);
usbd_readl(udc, USBD_TXFIFO_EPSIZE_REG);
}
}
/**
* bcm63xx_fifo_reset_ep - Flush a single endpoint's FIFO.
* @udc: Reference to the device controller.
* @ep_num: Endpoint number.
*/
static void bcm63xx_fifo_reset_ep(struct bcm63xx_udc *udc, int ep_num)
{
u32 val;
bcm63xx_ep_dma_select(udc, ep_num);
val = usbd_readl(udc, USBD_CONTROL_REG);
val |= USBD_CONTROL_FIFO_RESET_MASK;
usbd_writel(udc, val, USBD_CONTROL_REG);
usbd_readl(udc, USBD_CONTROL_REG);
}
/**
* bcm63xx_fifo_reset - Flush all hardware FIFOs.
* @udc: Reference to the device controller.
*/
static void bcm63xx_fifo_reset(struct bcm63xx_udc *udc)
{
int i;
for (i = 0; i < BCM63XX_NUM_FIFO_PAIRS; i++)
bcm63xx_fifo_reset_ep(udc, i);
}
/**
* bcm63xx_ep_init - Initial (one-time) endpoint initialization.
* @udc: Reference to the device controller.
*/
static void bcm63xx_ep_init(struct bcm63xx_udc *udc)
{
u32 i, val;
for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
const struct iudma_ch_cfg *cfg = &iudma_defaults[i];
if (cfg->ep_num < 0)
continue;
bcm63xx_ep_dma_select(udc, cfg->ep_num);
val = (cfg->ep_type << USBD_EPNUM_TYPEMAP_TYPE_SHIFT) |
((i >> 1) << USBD_EPNUM_TYPEMAP_DMA_CH_SHIFT);
usbd_writel(udc, val, USBD_EPNUM_TYPEMAP_REG);
}
}
/**
* bcm63xx_ep_setup - Configure per-endpoint settings.
* @udc: Reference to the device controller.
*
* This needs to be rerun if the speed/cfg/intf/altintf changes.
*/
static void bcm63xx_ep_setup(struct bcm63xx_udc *udc)
{
u32 val, i;
usbd_writel(udc, USBD_CSR_SETUPADDR_DEF, USBD_CSR_SETUPADDR_REG);
for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
const struct iudma_ch_cfg *cfg = &iudma_defaults[i];
int max_pkt = udc->gadget.speed == USB_SPEED_HIGH ?
cfg->max_pkt_hs : cfg->max_pkt_fs;
int idx = cfg->ep_num;
udc->iudma[i].max_pkt = max_pkt;
if (idx < 0)
continue;
udc->bep[idx].ep.maxpacket = max_pkt;
val = (idx << USBD_CSR_EP_LOG_SHIFT) |
(cfg->dir << USBD_CSR_EP_DIR_SHIFT) |
(cfg->ep_type << USBD_CSR_EP_TYPE_SHIFT) |
(udc->cfg << USBD_CSR_EP_CFG_SHIFT) |
(udc->iface << USBD_CSR_EP_IFACE_SHIFT) |
(udc->alt_iface << USBD_CSR_EP_ALTIFACE_SHIFT) |
(max_pkt << USBD_CSR_EP_MAXPKT_SHIFT);
usbd_writel(udc, val, USBD_CSR_EP_REG(idx));
}
}
/**
* iudma_write - Queue a single IUDMA transaction.
* @udc: Reference to the device controller.
* @iudma: IUDMA channel to use.
* @breq: Request containing the transaction data.
*
* For RX IUDMA, this will queue a single buffer descriptor, as RX IUDMA
* does not honor SOP/EOP so the handling of multiple buffers is ambiguous.
* So iudma_write() may be called several times to fulfill a single
* usb_request.
*
* For TX IUDMA, this can queue multiple buffer descriptors if needed.
*/
static void iudma_write(struct bcm63xx_udc *udc, struct iudma_ch *iudma,
struct bcm63xx_req *breq)
{
int first_bd = 1, last_bd = 0, extra_zero_pkt = 0;
unsigned int bytes_left = breq->req.length - breq->offset;
const int max_bd_bytes = !irq_coalesce && !iudma->is_tx ?
iudma->max_pkt : IUDMA_MAX_FRAGMENT;
iudma->n_bds_used = 0;
breq->bd_bytes = 0;
breq->iudma = iudma;
if ((bytes_left % iudma->max_pkt == 0) && bytes_left && breq->req.zero)
extra_zero_pkt = 1;
do {
struct bcm_enet_desc *d = iudma->write_bd;
u32 dmaflags = 0;
unsigned int n_bytes;
if (d == iudma->end_bd) {
dmaflags |= DMADESC_WRAP_MASK;
iudma->write_bd = iudma->bd_ring;
} else {
iudma->write_bd++;
}
iudma->n_bds_used++;
n_bytes = min_t(int, bytes_left, max_bd_bytes);
if (n_bytes)
dmaflags |= n_bytes << DMADESC_LENGTH_SHIFT;
else
dmaflags |= (1 << DMADESC_LENGTH_SHIFT) |
DMADESC_USB_ZERO_MASK;
dmaflags |= DMADESC_OWNER_MASK;
if (first_bd) {
dmaflags |= DMADESC_SOP_MASK;
first_bd = 0;
}
/*
* extra_zero_pkt forces one more iteration through the loop
* after all data is queued up, to send the zero packet
*/
if (extra_zero_pkt && !bytes_left)
extra_zero_pkt = 0;
if (!iudma->is_tx || iudma->n_bds_used == iudma->n_bds ||
(n_bytes == bytes_left && !extra_zero_pkt)) {
last_bd = 1;
dmaflags |= DMADESC_EOP_MASK;
}
d->address = breq->req.dma + breq->offset;
mb();
d->len_stat = dmaflags;
breq->offset += n_bytes;
breq->bd_bytes += n_bytes;
bytes_left -= n_bytes;
} while (!last_bd);
usb_dmac_writel(udc, ENETDMAC_CHANCFG_EN_MASK,
ENETDMAC_CHANCFG_REG(iudma->ch_idx));
}
/**
* iudma_read - Check for IUDMA buffer completion.
* @udc: Reference to the device controller.
* @iudma: IUDMA channel to use.
*
* This checks to see if ALL of the outstanding BDs on the DMA channel
* have been filled. If so, it returns the actual transfer length;
* otherwise it returns -EBUSY.
*/
static int iudma_read(struct bcm63xx_udc *udc, struct iudma_ch *iudma)
{
int i, actual_len = 0;
struct bcm_enet_desc *d = iudma->read_bd;
if (!iudma->n_bds_used)
return -EINVAL;
for (i = 0; i < iudma->n_bds_used; i++) {
u32 dmaflags;
dmaflags = d->len_stat;
if (dmaflags & DMADESC_OWNER_MASK)
return -EBUSY;
actual_len += (dmaflags & DMADESC_LENGTH_MASK) >>
DMADESC_LENGTH_SHIFT;
if (d == iudma->end_bd)
d = iudma->bd_ring;
else
d++;
}
iudma->read_bd = d;
iudma->n_bds_used = 0;
return actual_len;
}
/**
* iudma_reset_channel - Stop DMA on a single channel.
* @udc: Reference to the device controller.
* @iudma: IUDMA channel to reset.
*/
static void iudma_reset_channel(struct bcm63xx_udc *udc, struct iudma_ch *iudma)
{
int timeout = IUDMA_RESET_TIMEOUT_US;
struct bcm_enet_desc *d;
int ch_idx = iudma->ch_idx;
if (!iudma->is_tx)
bcm63xx_fifo_reset_ep(udc, max(0, iudma->ep_num));
/* stop DMA, then wait for the hardware to wrap up */
usb_dmac_writel(udc, 0, ENETDMAC_CHANCFG_REG(ch_idx));
while (usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG(ch_idx)) &
ENETDMAC_CHANCFG_EN_MASK) {
udelay(1);
/* repeatedly flush the FIFO data until the BD completes */
if (iudma->is_tx && iudma->ep_num >= 0)
bcm63xx_fifo_reset_ep(udc, iudma->ep_num);
if (!timeout--) {
dev_err(udc->dev, "can't reset IUDMA channel %d\n",
ch_idx);
break;
}
if (timeout == IUDMA_RESET_TIMEOUT_US / 2) {
dev_warn(udc->dev, "forcibly halting IUDMA channel %d\n",
ch_idx);
usb_dmac_writel(udc, ENETDMAC_CHANCFG_BUFHALT_MASK,
ENETDMAC_CHANCFG_REG(ch_idx));
}
}
usb_dmac_writel(udc, ~0, ENETDMAC_IR_REG(ch_idx));
/* don't leave "live" HW-owned entries for the next guy to step on */
for (d = iudma->bd_ring; d <= iudma->end_bd; d++)
d->len_stat = 0;
mb();
iudma->read_bd = iudma->write_bd = iudma->bd_ring;
iudma->n_bds_used = 0;
/* set up IRQs, UBUS burst size, and BD base for this channel */
usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK,
ENETDMAC_IRMASK_REG(ch_idx));
usb_dmac_writel(udc, 8, ENETDMAC_MAXBURST_REG(ch_idx));
usb_dmas_writel(udc, iudma->bd_ring_dma, ENETDMAS_RSTART_REG(ch_idx));
usb_dmas_writel(udc, 0, ENETDMAS_SRAM2_REG(ch_idx));
}
/**
* iudma_init_channel - One-time IUDMA channel initialization.
* @udc: Reference to the device controller.
* @ch_idx: Channel to initialize.
*/
static int iudma_init_channel(struct bcm63xx_udc *udc, unsigned int ch_idx)
{
struct iudma_ch *iudma = &udc->iudma[ch_idx];
const struct iudma_ch_cfg *cfg = &iudma_defaults[ch_idx];
unsigned int n_bds = cfg->n_bds;
struct bcm63xx_ep *bep = NULL;
iudma->ep_num = cfg->ep_num;
iudma->ch_idx = ch_idx;
iudma->is_tx = !!(ch_idx & 0x01);
if (iudma->ep_num >= 0) {
bep = &udc->bep[iudma->ep_num];
bep->iudma = iudma;
INIT_LIST_HEAD(&bep->queue);
}
iudma->bep = bep;
iudma->udc = udc;
/* ep0 is always active; others are controlled by the gadget driver */
if (iudma->ep_num <= 0)
iudma->enabled = true;
iudma->n_bds = n_bds;
iudma->bd_ring = dmam_alloc_coherent(udc->dev,
n_bds * sizeof(struct bcm_enet_desc),
&iudma->bd_ring_dma, GFP_KERNEL);
if (!iudma->bd_ring)
return -ENOMEM;
iudma->end_bd = &iudma->bd_ring[n_bds - 1];
return 0;
}
/**
* iudma_init - One-time initialization of all IUDMA channels.
* @udc: Reference to the device controller.
*
* Enable DMA, flush channels, and enable global IUDMA IRQs.
*/
static int iudma_init(struct bcm63xx_udc *udc)
{
int i, rc;
usb_dma_writel(udc, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
rc = iudma_init_channel(udc, i);
if (rc)
return rc;
iudma_reset_channel(udc, &udc->iudma[i]);
}
usb_dma_writel(udc, BIT(BCM63XX_NUM_IUDMA)-1, ENETDMA_GLB_IRQMASK_REG);
return 0;
}
/**
* iudma_uninit - Uninitialize IUDMA channels.
* @udc: Reference to the device controller.
*
* Kill global IUDMA IRQs, flush channels, and kill DMA.
*/
static void iudma_uninit(struct bcm63xx_udc *udc)
{
int i;
usb_dma_writel(udc, 0, ENETDMA_GLB_IRQMASK_REG);
for (i = 0; i < BCM63XX_NUM_IUDMA; i++)
iudma_reset_channel(udc, &udc->iudma[i]);
usb_dma_writel(udc, 0, ENETDMA_CFG_REG);
}
/***********************************************************************
* Other low-level USBD operations
***********************************************************************/
/**
* bcm63xx_set_ctrl_irqs - Mask/unmask control path interrupts.
* @udc: Reference to the device controller.
* @enable_irqs: true to enable, false to disable.
*/
static void bcm63xx_set_ctrl_irqs(struct bcm63xx_udc *udc, bool enable_irqs)
{
u32 val;
usbd_writel(udc, 0, USBD_STATUS_REG);
val = BIT(USBD_EVENT_IRQ_USB_RESET) |
BIT(USBD_EVENT_IRQ_SETUP) |
BIT(USBD_EVENT_IRQ_SETCFG) |
BIT(USBD_EVENT_IRQ_SETINTF) |
BIT(USBD_EVENT_IRQ_USB_LINK);
usbd_writel(udc, enable_irqs ? val : 0, USBD_EVENT_IRQ_MASK_REG);
usbd_writel(udc, val, USBD_EVENT_IRQ_STATUS_REG);
}
/**
* bcm63xx_select_phy_mode - Select between USB device and host mode.
* @udc: Reference to the device controller.
* @is_device: true for device, false for host.
*
* This should probably be reworked to use the drivers/usb/otg
* infrastructure.
*
* By default, the AFE/pullups are disabled in device mode, until
* bcm63xx_select_pullup() is called.
*/
static void bcm63xx_select_phy_mode(struct bcm63xx_udc *udc, bool is_device)
{
u32 val, portmask = BIT(udc->pd->port_no);
if (BCMCPU_IS_6328()) {
/* configure pinmux to sense VBUS signal */
val = bcm_gpio_readl(GPIO_PINMUX_OTHR_REG);
val &= ~GPIO_PINMUX_OTHR_6328_USB_MASK;
val |= is_device ? GPIO_PINMUX_OTHR_6328_USB_DEV :
GPIO_PINMUX_OTHR_6328_USB_HOST;
bcm_gpio_writel(val, GPIO_PINMUX_OTHR_REG);
}
val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG);
if (is_device) {
val |= (portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT);
val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
} else {
val &= ~(portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT);
val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
}
bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG);
val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_SWAP_6368_REG);
if (is_device)
val |= USBH_PRIV_SWAP_USBD_MASK;
else
val &= ~USBH_PRIV_SWAP_USBD_MASK;
bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_SWAP_6368_REG);
}
/**
* bcm63xx_select_pullup - Enable/disable the pullup on D+
* @udc: Reference to the device controller.
* @is_on: true to enable the pullup, false to disable.
*
* If the pullup is active, the host will sense a FS/HS device connected to
* the port. If the pullup is inactive, the host will think the USB
* device has been disconnected.
*/
static void bcm63xx_select_pullup(struct bcm63xx_udc *udc, bool is_on)
{
u32 val, portmask = BIT(udc->pd->port_no);
val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG);
if (is_on)
val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
else
val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG);
}
/**
* bcm63xx_uninit_udc_hw - Shut down the hardware prior to driver removal.
* @udc: Reference to the device controller.
*
* This just masks the IUDMA IRQs and releases the clocks. It is assumed
* that bcm63xx_udc_stop() has already run, and the clocks are stopped.
*/
static void bcm63xx_uninit_udc_hw(struct bcm63xx_udc *udc)
{
set_clocks(udc, true);
iudma_uninit(udc);
set_clocks(udc, false);
clk_put(udc->usbd_clk);
clk_put(udc->usbh_clk);
}
/**
* bcm63xx_init_udc_hw - Initialize the controller hardware and data structures.
* @udc: Reference to the device controller.
*/
static int bcm63xx_init_udc_hw(struct bcm63xx_udc *udc)
{
int i, rc = 0;
u32 val;
udc->ep0_ctrl_buf = devm_kzalloc(udc->dev, BCM63XX_MAX_CTRL_PKT,
GFP_KERNEL);
if (!udc->ep0_ctrl_buf)
return -ENOMEM;
INIT_LIST_HEAD(&udc->gadget.ep_list);
for (i = 0; i < BCM63XX_NUM_EP; i++) {
struct bcm63xx_ep *bep = &udc->bep[i];
bep->ep.name = bcm63xx_ep_name[i];
bep->ep_num = i;
bep->ep.ops = &bcm63xx_udc_ep_ops;
list_add_tail(&bep->ep.ep_list, &udc->gadget.ep_list);
bep->halted = 0;
bep->ep.maxpacket = BCM63XX_MAX_CTRL_PKT;
bep->udc = udc;
bep->ep.desc = NULL;
INIT_LIST_HEAD(&bep->queue);
}
udc->gadget.ep0 = &udc->bep[0].ep;
list_del(&udc->bep[0].ep.ep_list);
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->ep0state = EP0_SHUTDOWN;
udc->usbh_clk = clk_get(udc->dev, "usbh");
if (IS_ERR(udc->usbh_clk))
return -EIO;
udc->usbd_clk = clk_get(udc->dev, "usbd");
if (IS_ERR(udc->usbd_clk)) {
clk_put(udc->usbh_clk);
return -EIO;
}
set_clocks(udc, true);
val = USBD_CONTROL_AUTO_CSRS_MASK |
USBD_CONTROL_DONE_CSRS_MASK |
(irq_coalesce ? USBD_CONTROL_RXZSCFG_MASK : 0);
usbd_writel(udc, val, USBD_CONTROL_REG);
val = USBD_STRAPS_APP_SELF_PWR_MASK |
USBD_STRAPS_APP_RAM_IF_MASK |
USBD_STRAPS_APP_CSRPRGSUP_MASK |
USBD_STRAPS_APP_8BITPHY_MASK |
USBD_STRAPS_APP_RMTWKUP_MASK;
if (udc->gadget.max_speed == USB_SPEED_HIGH)
val |= (BCM63XX_SPD_HIGH << USBD_STRAPS_SPEED_SHIFT);
else
val |= (BCM63XX_SPD_FULL << USBD_STRAPS_SPEED_SHIFT);
usbd_writel(udc, val, USBD_STRAPS_REG);
bcm63xx_set_ctrl_irqs(udc, false);
usbd_writel(udc, 0, USBD_EVENT_IRQ_CFG_LO_REG);
val = USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_ENUM_ON) |
USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_SET_CSRS);
usbd_writel(udc, val, USBD_EVENT_IRQ_CFG_HI_REG);
rc = iudma_init(udc);
set_clocks(udc, false);
if (rc)
bcm63xx_uninit_udc_hw(udc);
return 0;
}
/***********************************************************************
* Standard EP gadget operations
***********************************************************************/
/**
* bcm63xx_ep_enable - Enable one endpoint.
* @ep: Endpoint to enable.
* @desc: Contains max packet, direction, etc.
*
* Most of the endpoint parameters are fixed in this controller, so there
* isn't much for this function to do.
*/
static int bcm63xx_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct bcm63xx_ep *bep = our_ep(ep);
struct bcm63xx_udc *udc = bep->udc;
struct iudma_ch *iudma = bep->iudma;
unsigned long flags;
if (!ep || !desc || ep->name == bcm63xx_ep0name)
return -EINVAL;
if (!udc->driver)
return -ESHUTDOWN;
spin_lock_irqsave(&udc->lock, flags);
if (iudma->enabled) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EINVAL;
}
iudma->enabled = true;
BUG_ON(!list_empty(&bep->queue));
iudma_reset_channel(udc, iudma);
bep->halted = 0;
bcm63xx_set_stall(udc, bep, false);
clear_bit(bep->ep_num, &udc->wedgemap);
ep->desc = desc;
ep->maxpacket = usb_endpoint_maxp(desc);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/**
* bcm63xx_ep_disable - Disable one endpoint.
* @ep: Endpoint to disable.
*/
static int bcm63xx_ep_disable(struct usb_ep *ep)
{
struct bcm63xx_ep *bep = our_ep(ep);
struct bcm63xx_udc *udc = bep->udc;
struct iudma_ch *iudma = bep->iudma;
struct list_head *pos, *n;
unsigned long flags;
if (!ep || !ep->desc)
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
if (!iudma->enabled) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EINVAL;
}
iudma->enabled = false;
iudma_reset_channel(udc, iudma);
if (!list_empty(&bep->queue)) {
list_for_each_safe(pos, n, &bep->queue) {
struct bcm63xx_req *breq =
list_entry(pos, struct bcm63xx_req, queue);
usb_gadget_unmap_request(&udc->gadget, &breq->req,
iudma->is_tx);
list_del(&breq->queue);
breq->req.status = -ESHUTDOWN;
spin_unlock_irqrestore(&udc->lock, flags);
breq->req.complete(&iudma->bep->ep, &breq->req);
spin_lock_irqsave(&udc->lock, flags);
}
}
ep->desc = NULL;
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/**
* bcm63xx_udc_alloc_request - Allocate a new request.
* @ep: Endpoint associated with the request.
* @mem_flags: Flags to pass to kzalloc().
*/
static struct usb_request *bcm63xx_udc_alloc_request(struct usb_ep *ep,
gfp_t mem_flags)
{
struct bcm63xx_req *breq;
breq = kzalloc(sizeof(*breq), mem_flags);
if (!breq)
return NULL;
return &breq->req;
}
/**
* bcm63xx_udc_free_request - Free a request.
* @ep: Endpoint associated with the request.
* @req: Request to free.
*/
static void bcm63xx_udc_free_request(struct usb_ep *ep,
struct usb_request *req)
{
struct bcm63xx_req *breq = our_req(req);
kfree(breq);
}
/**
* bcm63xx_udc_queue - Queue up a new request.
* @ep: Endpoint associated with the request.
* @req: Request to add.
* @mem_flags: Unused.
*
* If the queue is empty, start this request immediately. Otherwise, add
* it to the list.
*
* ep0 replies are sent through this function from the gadget driver, but
* they are treated differently because they need to be handled by the ep0
* state machine. (Sometimes they are replies to control requests that
* were spoofed by this driver, and so they shouldn't be transmitted at all.)
*/
static int bcm63xx_udc_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t mem_flags)
{
struct bcm63xx_ep *bep = our_ep(ep);
struct bcm63xx_udc *udc = bep->udc;
struct bcm63xx_req *breq = our_req(req);
unsigned long flags;
int rc = 0;
if (unlikely(!req || !req->complete || !req->buf || !ep))
return -EINVAL;
req->actual = 0;
req->status = 0;
breq->offset = 0;
if (bep == &udc->bep[0]) {
/* only one reply per request, please */
if (udc->ep0_reply)
return -EINVAL;
udc->ep0_reply = req;
schedule_work(&udc->ep0_wq);
return 0;
}
spin_lock_irqsave(&udc->lock, flags);
if (!bep->iudma->enabled) {
rc = -ESHUTDOWN;
goto out;
}
rc = usb_gadget_map_request(&udc->gadget, req, bep->iudma->is_tx);
if (rc == 0) {
list_add_tail(&breq->queue, &bep->queue);
if (list_is_singular(&bep->queue))
iudma_write(udc, bep->iudma, breq);
}
out:
spin_unlock_irqrestore(&udc->lock, flags);
return rc;
}
/**
* bcm63xx_udc_dequeue - Remove a pending request from the queue.
* @ep: Endpoint associated with the request.
* @req: Request to remove.
*
* If the request is not at the head of the queue, this is easy - just nuke
* it. If the request is at the head of the queue, we'll need to stop the
* DMA transaction and then queue up the successor.
*/
static int bcm63xx_udc_dequeue(struct usb_ep *ep, struct usb_request *req)
{
struct bcm63xx_ep *bep = our_ep(ep);
struct bcm63xx_udc *udc = bep->udc;
struct bcm63xx_req *breq = our_req(req), *cur;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&udc->lock, flags);
if (list_empty(&bep->queue)) {
rc = -EINVAL;
goto out;
}
cur = list_first_entry(&bep->queue, struct bcm63xx_req, queue);
usb_gadget_unmap_request(&udc->gadget, &breq->req, bep->iudma->is_tx);
if (breq == cur) {
iudma_reset_channel(udc, bep->iudma);
list_del(&breq->queue);
if (!list_empty(&bep->queue)) {
struct bcm63xx_req *next;
next = list_first_entry(&bep->queue,
struct bcm63xx_req, queue);
iudma_write(udc, bep->iudma, next);
}
} else {
list_del(&breq->queue);
}
out:
spin_unlock_irqrestore(&udc->lock, flags);
req->status = -ESHUTDOWN;
req->complete(ep, req);
return rc;
}
/**
* bcm63xx_udc_set_halt - Enable/disable STALL flag in the hardware.
* @ep: Endpoint to halt.
* @value: Zero to clear halt; nonzero to set halt.
*
* See comments in bcm63xx_update_wedge().
*/
static int bcm63xx_udc_set_halt(struct usb_ep *ep, int value)
{
struct bcm63xx_ep *bep = our_ep(ep);
struct bcm63xx_udc *udc = bep->udc;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
bcm63xx_set_stall(udc, bep, !!value);
bep->halted = value;
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/**
* bcm63xx_udc_set_wedge - Stall the endpoint until the next reset.
* @ep: Endpoint to wedge.
*
* See comments in bcm63xx_update_wedge().
*/
static int bcm63xx_udc_set_wedge(struct usb_ep *ep)
{
struct bcm63xx_ep *bep = our_ep(ep);
struct bcm63xx_udc *udc = bep->udc;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
set_bit(bep->ep_num, &udc->wedgemap);
bcm63xx_set_stall(udc, bep, true);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static const struct usb_ep_ops bcm63xx_udc_ep_ops = {
.enable = bcm63xx_ep_enable,
.disable = bcm63xx_ep_disable,
.alloc_request = bcm63xx_udc_alloc_request,
.free_request = bcm63xx_udc_free_request,
.queue = bcm63xx_udc_queue,
.dequeue = bcm63xx_udc_dequeue,
.set_halt = bcm63xx_udc_set_halt,
.set_wedge = bcm63xx_udc_set_wedge,
};
/***********************************************************************
* EP0 handling
***********************************************************************/
/**
* bcm63xx_ep0_setup_callback - Drop spinlock to invoke ->setup callback.
* @udc: Reference to the device controller.
* @ctrl: 8-byte SETUP request.
*/
static int bcm63xx_ep0_setup_callback(struct bcm63xx_udc *udc,
struct usb_ctrlrequest *ctrl)
{
int rc;
spin_unlock_irq(&udc->lock);
rc = udc->driver->setup(&udc->gadget, ctrl);
spin_lock_irq(&udc->lock);
return rc;
}
/**
* bcm63xx_ep0_spoof_set_cfg - Synthesize a SET_CONFIGURATION request.
* @udc: Reference to the device controller.
*
* Many standard requests are handled automatically in the hardware, but
* we still need to pass them to the gadget driver so that it can
* reconfigure the interfaces/endpoints if necessary.
*
* Unfortunately we are not able to send a STALL response if the host
* requests an invalid configuration. If this happens, we'll have to be
* content with printing a warning.
*/
static int bcm63xx_ep0_spoof_set_cfg(struct bcm63xx_udc *udc)
{
struct usb_ctrlrequest ctrl;
int rc;
ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_DEVICE;
ctrl.bRequest = USB_REQ_SET_CONFIGURATION;
ctrl.wValue = cpu_to_le16(udc->cfg);
ctrl.wIndex = 0;
ctrl.wLength = 0;
rc = bcm63xx_ep0_setup_callback(udc, &ctrl);
if (rc < 0) {
dev_warn_ratelimited(udc->dev,
"hardware auto-acked bad SET_CONFIGURATION(%d) request\n",
udc->cfg);
}
return rc;
}
/**
* bcm63xx_ep0_spoof_set_iface - Synthesize a SET_INTERFACE request.
* @udc: Reference to the device controller.
*/
static int bcm63xx_ep0_spoof_set_iface(struct bcm63xx_udc *udc)
{
struct usb_ctrlrequest ctrl;
int rc;
ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_INTERFACE;
ctrl.bRequest = USB_REQ_SET_INTERFACE;
ctrl.wValue = cpu_to_le16(udc->alt_iface);
ctrl.wIndex = cpu_to_le16(udc->iface);
ctrl.wLength = 0;
rc = bcm63xx_ep0_setup_callback(udc, &ctrl);
if (rc < 0) {
dev_warn_ratelimited(udc->dev,
"hardware auto-acked bad SET_INTERFACE(%d,%d) request\n",
udc->iface, udc->alt_iface);
}
return rc;
}
/**
* bcm63xx_ep0_map_write - dma_map and iudma_write a single request.
* @udc: Reference to the device controller.
* @ch_idx: IUDMA channel number.
* @req: USB gadget layer representation of the request.
*/
static void bcm63xx_ep0_map_write(struct bcm63xx_udc *udc, int ch_idx,
struct usb_request *req)
{
struct bcm63xx_req *breq = our_req(req);
struct iudma_ch *iudma = &udc->iudma[ch_idx];
BUG_ON(udc->ep0_request);
udc->ep0_request = req;
req->actual = 0;
breq->offset = 0;
usb_gadget_map_request(&udc->gadget, req, iudma->is_tx);
iudma_write(udc, iudma, breq);
}
/**
* bcm63xx_ep0_complete - Set completion status and "stage" the callback.
* @udc: Reference to the device controller.
* @req: USB gadget layer representation of the request.
* @status: Status to return to the gadget driver.
*/
static void bcm63xx_ep0_complete(struct bcm63xx_udc *udc,
struct usb_request *req, int status)
{
req->status = status;
if (status)
req->actual = 0;
if (req->complete) {
spin_unlock_irq(&udc->lock);
req->complete(&udc->bep[0].ep, req);
spin_lock_irq(&udc->lock);
}
}
/**
* bcm63xx_ep0_nuke_reply - Abort request from the gadget driver due to
* reset/shutdown.
* @udc: Reference to the device controller.
* @is_tx: Nonzero for TX (IN), zero for RX (OUT).
*/
static void bcm63xx_ep0_nuke_reply(struct bcm63xx_udc *udc, int is_tx)
{
struct usb_request *req = udc->ep0_reply;
udc->ep0_reply = NULL;
usb_gadget_unmap_request(&udc->gadget, req, is_tx);
if (udc->ep0_request == req) {
udc->ep0_req_completed = 0;
udc->ep0_request = NULL;
}
bcm63xx_ep0_complete(udc, req, -ESHUTDOWN);
}
/**
* bcm63xx_ep0_read_complete - Close out the pending ep0 request; return
* transfer len.
* @udc: Reference to the device controller.
*/
static int bcm63xx_ep0_read_complete(struct bcm63xx_udc *udc)
{
struct usb_request *req = udc->ep0_request;
udc->ep0_req_completed = 0;
udc->ep0_request = NULL;
return req->actual;
}
/**
* bcm63xx_ep0_internal_request - Helper function to submit an ep0 request.
* @udc: Reference to the device controller.
* @ch_idx: IUDMA channel number.
* @length: Number of bytes to TX/RX.
*
* Used for simple transfers performed by the ep0 worker. This will always
* use ep0_ctrl_req / ep0_ctrl_buf.
*/
static void bcm63xx_ep0_internal_request(struct bcm63xx_udc *udc, int ch_idx,
int length)
{
struct usb_request *req = &udc->ep0_ctrl_req.req;
req->buf = udc->ep0_ctrl_buf;
req->length = length;
req->complete = NULL;
bcm63xx_ep0_map_write(udc, ch_idx, req);
}
/**
* bcm63xx_ep0_do_setup - Parse new SETUP packet and decide how to handle it.
* @udc: Reference to the device controller.
*
* EP0_IDLE probably shouldn't ever happen. EP0_REQUEUE means we're ready
* for the next packet. Anything else means the transaction requires multiple
* stages of handling.
*/
static enum bcm63xx_ep0_state bcm63xx_ep0_do_setup(struct bcm63xx_udc *udc)
{
int rc;
struct usb_ctrlrequest *ctrl = (void *)udc->ep0_ctrl_buf;
rc = bcm63xx_ep0_read_complete(udc);
if (rc < 0) {
dev_err(udc->dev, "missing SETUP packet\n");
return EP0_IDLE;
}
/*
* Handle 0-byte IN STATUS acknowledgement. The hardware doesn't
* ALWAYS deliver these 100% of the time, so if we happen to see one,
* just throw it away.
*/
if (rc == 0)
return EP0_REQUEUE;
/* Drop malformed SETUP packets */
if (rc != sizeof(*ctrl)) {
dev_warn_ratelimited(udc->dev,
"malformed SETUP packet (%d bytes)\n", rc);
return EP0_REQUEUE;
}
/* Process new SETUP packet arriving on ep0 */
rc = bcm63xx_ep0_setup_callback(udc, ctrl);
if (rc < 0) {
bcm63xx_set_stall(udc, &udc->bep[0], true);
return EP0_REQUEUE;
}
if (!ctrl->wLength)
return EP0_REQUEUE;
else if (ctrl->bRequestType & USB_DIR_IN)
return EP0_IN_DATA_PHASE_SETUP;
else
return EP0_OUT_DATA_PHASE_SETUP;
}
/**
* bcm63xx_ep0_do_idle - Check for outstanding requests if ep0 is idle.
* @udc: Reference to the device controller.
*
* In state EP0_IDLE, the RX descriptor is either pending, or has been
* filled with a SETUP packet from the host. This function handles new
* SETUP packets, control IRQ events (which can generate fake SETUP packets),
* and reset/shutdown events.
*
* Returns 0 if work was done; -EAGAIN if nothing to do.
*/
static int bcm63xx_ep0_do_idle(struct bcm63xx_udc *udc)
{
if (udc->ep0_req_reset) {
udc->ep0_req_reset = 0;
} else if (udc->ep0_req_set_cfg) {
udc->ep0_req_set_cfg = 0;
if (bcm63xx_ep0_spoof_set_cfg(udc) >= 0)
udc->ep0state = EP0_IN_FAKE_STATUS_PHASE;
} else if (udc->ep0_req_set_iface) {
udc->ep0_req_set_iface = 0;
if (bcm63xx_ep0_spoof_set_iface(udc) >= 0)
udc->ep0state = EP0_IN_FAKE_STATUS_PHASE;
} else if (udc->ep0_req_completed) {
udc->ep0state = bcm63xx_ep0_do_setup(udc);
return udc->ep0state == EP0_IDLE ? -EAGAIN : 0;
} else if (udc->ep0_req_shutdown) {
udc->ep0_req_shutdown = 0;
udc->ep0_req_completed = 0;
udc->ep0_request = NULL;
iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]);
usb_gadget_unmap_request(&udc->gadget,
&udc->ep0_ctrl_req.req, 0);
/* bcm63xx_udc_pullup() is waiting for this */
mb();
udc->ep0state = EP0_SHUTDOWN;
} else if (udc->ep0_reply) {
/*
* This could happen if a USB RESET shows up during an ep0
* transaction (especially if a laggy driver like gadgetfs
* is in use).
*/
dev_warn(udc->dev, "nuking unexpected reply\n");
bcm63xx_ep0_nuke_reply(udc, 0);
} else {
return -EAGAIN;
}
return 0;
}
/**
* bcm63xx_ep0_one_round - Handle the current ep0 state.
* @udc: Reference to the device controller.
*
* Returns 0 if work was done; -EAGAIN if nothing to do.
*/
static int bcm63xx_ep0_one_round(struct bcm63xx_udc *udc)
{
enum bcm63xx_ep0_state ep0state = udc->ep0state;
bool shutdown = udc->ep0_req_reset || udc->ep0_req_shutdown;
switch (udc->ep0state) {
case EP0_REQUEUE:
/* set up descriptor to receive SETUP packet */
bcm63xx_ep0_internal_request(udc, IUDMA_EP0_RXCHAN,
BCM63XX_MAX_CTRL_PKT);
ep0state = EP0_IDLE;
break;
case EP0_IDLE:
return bcm63xx_ep0_do_idle(udc);
case EP0_IN_DATA_PHASE_SETUP:
/*
* Normal case: TX request is in ep0_reply (queued by the
* callback), or will be queued shortly. When it's here,
* send it to the HW and go to EP0_IN_DATA_PHASE_COMPLETE.
*
* Shutdown case: Stop waiting for the reply. Just
* REQUEUE->IDLE. The gadget driver is NOT expected to
* queue anything else now.
*/
if (udc->ep0_reply) {
bcm63xx_ep0_map_write(udc, IUDMA_EP0_TXCHAN,
udc->ep0_reply);
ep0state = EP0_IN_DATA_PHASE_COMPLETE;
} else if (shutdown) {
ep0state = EP0_REQUEUE;
}
break;
case EP0_IN_DATA_PHASE_COMPLETE: {
/*
* Normal case: TX packet (ep0_reply) is in flight; wait for
* it to finish, then go back to REQUEUE->IDLE.
*
* Shutdown case: Reset the TX channel, send -ESHUTDOWN
* completion to the gadget driver, then REQUEUE->IDLE.
*/
if (udc->ep0_req_completed) {
udc->ep0_reply = NULL;
bcm63xx_ep0_read_complete(udc);
/*
* the "ack" sometimes gets eaten (see
* bcm63xx_ep0_do_idle)
*/
ep0state = EP0_REQUEUE;
} else if (shutdown) {
iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]);
bcm63xx_ep0_nuke_reply(udc, 1);
ep0state = EP0_REQUEUE;
}
break;
}
case EP0_OUT_DATA_PHASE_SETUP:
/* Similar behavior to EP0_IN_DATA_PHASE_SETUP */
if (udc->ep0_reply) {
bcm63xx_ep0_map_write(udc, IUDMA_EP0_RXCHAN,
udc->ep0_reply);
ep0state = EP0_OUT_DATA_PHASE_COMPLETE;
} else if (shutdown) {
ep0state = EP0_REQUEUE;
}
break;
case EP0_OUT_DATA_PHASE_COMPLETE: {
/* Similar behavior to EP0_IN_DATA_PHASE_COMPLETE */
if (udc->ep0_req_completed) {
udc->ep0_reply = NULL;
bcm63xx_ep0_read_complete(udc);
/* send 0-byte ack to host */
bcm63xx_ep0_internal_request(udc, IUDMA_EP0_TXCHAN, 0);
ep0state = EP0_OUT_STATUS_PHASE;
} else if (shutdown) {
iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]);
bcm63xx_ep0_nuke_reply(udc, 0);
ep0state = EP0_REQUEUE;
}
break;
}
case EP0_OUT_STATUS_PHASE:
/*
* Normal case: 0-byte OUT ack packet is in flight; wait
* for it to finish, then go back to REQUEUE->IDLE.
*
* Shutdown case: just cancel the transmission. Don't bother
* calling the completion, because it originated from this
* function anyway. Then go back to REQUEUE->IDLE.
*/
if (udc->ep0_req_completed) {
bcm63xx_ep0_read_complete(udc);
ep0state = EP0_REQUEUE;
} else if (shutdown) {
iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]);
udc->ep0_request = NULL;
ep0state = EP0_REQUEUE;
}
break;
case EP0_IN_FAKE_STATUS_PHASE: {
/*
* Normal case: we spoofed a SETUP packet and are now
* waiting for the gadget driver to send a 0-byte reply.
* This doesn't actually get sent to the HW because the
* HW has already sent its own reply. Once we get the
* response, return to IDLE.
*
* Shutdown case: return to IDLE immediately.
*
* Note that the ep0 RX descriptor has remained queued
* (and possibly unfilled) during this entire transaction.
* The HW datapath (IUDMA) never even sees SET_CONFIGURATION
* or SET_INTERFACE transactions.
*/
struct usb_request *r = udc->ep0_reply;
if (!r) {
if (shutdown)
ep0state = EP0_IDLE;
break;
}
bcm63xx_ep0_complete(udc, r, 0);
udc->ep0_reply = NULL;
ep0state = EP0_IDLE;
break;
}
case EP0_SHUTDOWN:
break;
}
if (udc->ep0state == ep0state)
return -EAGAIN;
udc->ep0state = ep0state;
return 0;
}
/**
* bcm63xx_ep0_process - ep0 worker thread / state machine.
* @w: Workqueue struct.
*
* bcm63xx_ep0_process is triggered any time an event occurs on ep0. It
* is used to synchronize ep0 events and ensure that both HW and SW events
* occur in a well-defined order. When the ep0 IUDMA queues are idle, it may
* synthesize SET_CONFIGURATION / SET_INTERFACE requests that were consumed
* by the USBD hardware.
*
* The worker function will continue iterating around the state machine
* until there is nothing left to do. Usually "nothing left to do" means
* that we're waiting for a new event from the hardware.
*/
static void bcm63xx_ep0_process(struct work_struct *w)
{
struct bcm63xx_udc *udc = container_of(w, struct bcm63xx_udc, ep0_wq);
spin_lock_irq(&udc->lock);
while (bcm63xx_ep0_one_round(udc) == 0)
;
spin_unlock_irq(&udc->lock);
}
/***********************************************************************
* Standard UDC gadget operations
***********************************************************************/
/**
* bcm63xx_udc_get_frame - Read current SOF frame number from the HW.
* @gadget: USB slave device.
*/
static int bcm63xx_udc_get_frame(struct usb_gadget *gadget)
{
struct bcm63xx_udc *udc = gadget_to_udc(gadget);
return (usbd_readl(udc, USBD_STATUS_REG) &
USBD_STATUS_SOF_MASK) >> USBD_STATUS_SOF_SHIFT;
}
/**
* bcm63xx_udc_pullup - Enable/disable pullup on D+ line.
* @gadget: USB slave device.
* @is_on: 0 to disable pullup, 1 to enable.
*
* See notes in bcm63xx_select_pullup().
*/
static int bcm63xx_udc_pullup(struct usb_gadget *gadget, int is_on)
{
struct bcm63xx_udc *udc = gadget_to_udc(gadget);
unsigned long flags;
int i, rc = -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
if (is_on && udc->ep0state == EP0_SHUTDOWN) {
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->ep0state = EP0_REQUEUE;
bcm63xx_fifo_setup(udc);
bcm63xx_fifo_reset(udc);
bcm63xx_ep_setup(udc);
bitmap_zero(&udc->wedgemap, BCM63XX_NUM_EP);
for (i = 0; i < BCM63XX_NUM_EP; i++)
bcm63xx_set_stall(udc, &udc->bep[i], false);
bcm63xx_set_ctrl_irqs(udc, true);
bcm63xx_select_pullup(gadget_to_udc(gadget), true);
rc = 0;
} else if (!is_on && udc->ep0state != EP0_SHUTDOWN) {
bcm63xx_select_pullup(gadget_to_udc(gadget), false);
udc->ep0_req_shutdown = 1;
spin_unlock_irqrestore(&udc->lock, flags);
while (1) {
schedule_work(&udc->ep0_wq);
if (udc->ep0state == EP0_SHUTDOWN)
break;
msleep(50);
}
bcm63xx_set_ctrl_irqs(udc, false);
cancel_work_sync(&udc->ep0_wq);
return 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return rc;
}
/**
* bcm63xx_udc_start - Start the controller.
* @gadget: USB slave device.
* @driver: Driver for USB slave devices.
*/
static int bcm63xx_udc_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct bcm63xx_udc *udc = gadget_to_udc(gadget);
unsigned long flags;
if (!driver || driver->max_speed < USB_SPEED_HIGH ||
!driver->setup)
return -EINVAL;
if (!udc)
return -ENODEV;
if (udc->driver)
return -EBUSY;
spin_lock_irqsave(&udc->lock, flags);
set_clocks(udc, true);
bcm63xx_fifo_setup(udc);
bcm63xx_ep_init(udc);
bcm63xx_ep_setup(udc);
bcm63xx_fifo_reset(udc);
bcm63xx_select_phy_mode(udc, true);
udc->driver = driver;
driver->driver.bus = NULL;
udc->gadget.dev.driver = &driver->driver;
udc->gadget.dev.of_node = udc->dev->of_node;
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/**
* bcm63xx_udc_stop - Shut down the controller.
* @gadget: USB slave device.
* @driver: Driver for USB slave devices.
*/
static int bcm63xx_udc_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct bcm63xx_udc *udc = gadget_to_udc(gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->driver = NULL;
udc->gadget.dev.driver = NULL;
/*
* If we switch the PHY too abruptly after dropping D+, the host
* will often complain:
*
* hub 1-0:1.0: port 1 disabled by hub (EMI?), re-enabling...
*/
msleep(100);
bcm63xx_select_phy_mode(udc, false);
set_clocks(udc, false);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static const struct usb_gadget_ops bcm63xx_udc_ops = {
.get_frame = bcm63xx_udc_get_frame,
.pullup = bcm63xx_udc_pullup,
.udc_start = bcm63xx_udc_start,
.udc_stop = bcm63xx_udc_stop,
};
/***********************************************************************
* IRQ handling
***********************************************************************/
/**
* bcm63xx_update_cfg_iface - Read current configuration/interface settings.
* @udc: Reference to the device controller.
*
* This controller intercepts SET_CONFIGURATION and SET_INTERFACE messages.
* The driver never sees the raw control packets coming in on the ep0
* IUDMA channel, but at least we get an interrupt event to tell us that
* new values are waiting in the USBD_STATUS register.
*/
static void bcm63xx_update_cfg_iface(struct bcm63xx_udc *udc)
{
u32 reg = usbd_readl(udc, USBD_STATUS_REG);
udc->cfg = (reg & USBD_STATUS_CFG_MASK) >> USBD_STATUS_CFG_SHIFT;
udc->iface = (reg & USBD_STATUS_INTF_MASK) >> USBD_STATUS_INTF_SHIFT;
udc->alt_iface = (reg & USBD_STATUS_ALTINTF_MASK) >>
USBD_STATUS_ALTINTF_SHIFT;
bcm63xx_ep_setup(udc);
}
/**
* bcm63xx_update_link_speed - Check to see if the link speed has changed.
* @udc: Reference to the device controller.
*
* The link speed update coincides with a SETUP IRQ. Returns 1 if the
* speed has changed, so that the caller can update the endpoint settings.
*/
static int bcm63xx_update_link_speed(struct bcm63xx_udc *udc)
{
u32 reg = usbd_readl(udc, USBD_STATUS_REG);
enum usb_device_speed oldspeed = udc->gadget.speed;
switch ((reg & USBD_STATUS_SPD_MASK) >> USBD_STATUS_SPD_SHIFT) {
case BCM63XX_SPD_HIGH:
udc->gadget.speed = USB_SPEED_HIGH;
break;
case BCM63XX_SPD_FULL:
udc->gadget.speed = USB_SPEED_FULL;
break;
default:
/* this should never happen */
udc->gadget.speed = USB_SPEED_UNKNOWN;
dev_err(udc->dev,
"received SETUP packet with invalid link speed\n");
return 0;
}
if (udc->gadget.speed != oldspeed) {
dev_info(udc->dev, "link up, %s-speed mode\n",
udc->gadget.speed == USB_SPEED_HIGH ? "high" : "full");
return 1;
} else {
return 0;
}
}
/**
* bcm63xx_update_wedge - Iterate through wedged endpoints.
* @udc: Reference to the device controller.
* @new_status: true to "refresh" wedge status; false to clear it.
*
* On a SETUP interrupt, we need to manually "refresh" the wedge status
* because the controller hardware is designed to automatically clear
* stalls in response to a CLEAR_FEATURE request from the host.
*
* On a RESET interrupt, we do want to restore all wedged endpoints.
*/
static void bcm63xx_update_wedge(struct bcm63xx_udc *udc, bool new_status)
{
int i;
for_each_set_bit(i, &udc->wedgemap, BCM63XX_NUM_EP) {
bcm63xx_set_stall(udc, &udc->bep[i], new_status);
if (!new_status)
clear_bit(i, &udc->wedgemap);
}
}
/**
* bcm63xx_udc_ctrl_isr - ISR for control path events (USBD).
* @irq: IRQ number (unused).
* @dev_id: Reference to the device controller.
*
* This is where we handle link (VBUS) down, USB reset, speed changes,
* SET_CONFIGURATION, and SET_INTERFACE events.
*/
static irqreturn_t bcm63xx_udc_ctrl_isr(int irq, void *dev_id)
{
struct bcm63xx_udc *udc = dev_id;
u32 stat;
bool disconnected = false;
stat = usbd_readl(udc, USBD_EVENT_IRQ_STATUS_REG) &
usbd_readl(udc, USBD_EVENT_IRQ_MASK_REG);
usbd_writel(udc, stat, USBD_EVENT_IRQ_STATUS_REG);
spin_lock(&udc->lock);
if (stat & BIT(USBD_EVENT_IRQ_USB_LINK)) {
/* VBUS toggled */
if (!(usbd_readl(udc, USBD_EVENTS_REG) &
USBD_EVENTS_USB_LINK_MASK) &&
udc->gadget.speed != USB_SPEED_UNKNOWN)
dev_info(udc->dev, "link down\n");
udc->gadget.speed = USB_SPEED_UNKNOWN;
disconnected = true;
}
if (stat & BIT(USBD_EVENT_IRQ_USB_RESET)) {
bcm63xx_fifo_setup(udc);
bcm63xx_fifo_reset(udc);
bcm63xx_ep_setup(udc);
bcm63xx_update_wedge(udc, false);
udc->ep0_req_reset = 1;
schedule_work(&udc->ep0_wq);
disconnected = true;
}
if (stat & BIT(USBD_EVENT_IRQ_SETUP)) {
if (bcm63xx_update_link_speed(udc)) {
bcm63xx_fifo_setup(udc);
bcm63xx_ep_setup(udc);
}
bcm63xx_update_wedge(udc, true);
}
if (stat & BIT(USBD_EVENT_IRQ_SETCFG)) {
bcm63xx_update_cfg_iface(udc);
udc->ep0_req_set_cfg = 1;
schedule_work(&udc->ep0_wq);
}
if (stat & BIT(USBD_EVENT_IRQ_SETINTF)) {
bcm63xx_update_cfg_iface(udc);
udc->ep0_req_set_iface = 1;
schedule_work(&udc->ep0_wq);
}
spin_unlock(&udc->lock);
if (disconnected && udc->driver)
udc->driver->disconnect(&udc->gadget);
return IRQ_HANDLED;
}
/**
* bcm63xx_udc_data_isr - ISR for data path events (IUDMA).
* @irq: IRQ number (unused).
* @dev_id: Reference to the IUDMA channel that generated the interrupt.
*
* For the two ep0 channels, we have special handling that triggers the
* ep0 worker thread. For normal bulk/intr channels, either queue up
* the next buffer descriptor for the transaction (incomplete transaction),
* or invoke the completion callback (complete transactions).
*/
static irqreturn_t bcm63xx_udc_data_isr(int irq, void *dev_id)
{
struct iudma_ch *iudma = dev_id;
struct bcm63xx_udc *udc = iudma->udc;
struct bcm63xx_ep *bep;
struct usb_request *req = NULL;
struct bcm63xx_req *breq = NULL;
int rc;
bool is_done = false;
spin_lock(&udc->lock);
usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK,
ENETDMAC_IR_REG(iudma->ch_idx));
bep = iudma->bep;
rc = iudma_read(udc, iudma);
/* special handling for EP0 RX (0) and TX (1) */
if (iudma->ch_idx == IUDMA_EP0_RXCHAN ||
iudma->ch_idx == IUDMA_EP0_TXCHAN) {
req = udc->ep0_request;
breq = our_req(req);
/* a single request could require multiple submissions */
if (rc >= 0) {
req->actual += rc;
if (req->actual >= req->length || breq->bd_bytes > rc) {
udc->ep0_req_completed = 1;
is_done = true;
schedule_work(&udc->ep0_wq);
/* "actual" on a ZLP is 1 byte */
req->actual = min(req->actual, req->length);
} else {
/* queue up the next BD (same request) */
iudma_write(udc, iudma, breq);
}
}
} else if (!list_empty(&bep->queue)) {
breq = list_first_entry(&bep->queue, struct bcm63xx_req, queue);
req = &breq->req;
if (rc >= 0) {
req->actual += rc;
if (req->actual >= req->length || breq->bd_bytes > rc) {
is_done = true;
list_del(&breq->queue);
req->actual = min(req->actual, req->length);
if (!list_empty(&bep->queue)) {
struct bcm63xx_req *next;
next = list_first_entry(&bep->queue,
struct bcm63xx_req, queue);
iudma_write(udc, iudma, next);
}
} else {
iudma_write(udc, iudma, breq);
}
}
}
spin_unlock(&udc->lock);
if (is_done) {
usb_gadget_unmap_request(&udc->gadget, req, iudma->is_tx);
if (req->complete)
req->complete(&bep->ep, req);
}
return IRQ_HANDLED;
}
/***********************************************************************
* Debug filesystem
***********************************************************************/
/*
* bcm63xx_usbd_dbg_show - Show USBD controller state.
* @s: seq_file to which the information will be written.
* @p: Unused.
*
* This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/usbd
*/
static int bcm63xx_usbd_dbg_show(struct seq_file *s, void *p)
{
struct bcm63xx_udc *udc = s->private;
if (!udc->driver)
return -ENODEV;
seq_printf(s, "ep0 state: %s\n",
bcm63xx_ep0_state_names[udc->ep0state]);
seq_printf(s, " pending requests: %s%s%s%s%s%s%s\n",
udc->ep0_req_reset ? "reset " : "",
udc->ep0_req_set_cfg ? "set_cfg " : "",
udc->ep0_req_set_iface ? "set_iface " : "",
udc->ep0_req_shutdown ? "shutdown " : "",
udc->ep0_request ? "pending " : "",
udc->ep0_req_completed ? "completed " : "",
udc->ep0_reply ? "reply " : "");
seq_printf(s, "cfg: %d; iface: %d; alt_iface: %d\n",
udc->cfg, udc->iface, udc->alt_iface);
seq_printf(s, "regs:\n");
seq_printf(s, " control: %08x; straps: %08x; status: %08x\n",
usbd_readl(udc, USBD_CONTROL_REG),
usbd_readl(udc, USBD_STRAPS_REG),
usbd_readl(udc, USBD_STATUS_REG));
seq_printf(s, " events: %08x; stall: %08x\n",
usbd_readl(udc, USBD_EVENTS_REG),
usbd_readl(udc, USBD_STALL_REG));
return 0;
}
/*
* bcm63xx_iudma_dbg_show - Show IUDMA status and descriptors.
* @s: seq_file to which the information will be written.
* @p: Unused.
*
* This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/iudma
*/
static int bcm63xx_iudma_dbg_show(struct seq_file *s, void *p)
{
struct bcm63xx_udc *udc = s->private;
int ch_idx, i;
u32 sram2, sram3;
if (!udc->driver)
return -ENODEV;
for (ch_idx = 0; ch_idx < BCM63XX_NUM_IUDMA; ch_idx++) {
struct iudma_ch *iudma = &udc->iudma[ch_idx];
struct list_head *pos;
seq_printf(s, "IUDMA channel %d -- ", ch_idx);
switch (iudma_defaults[ch_idx].ep_type) {
case BCMEP_CTRL:
seq_printf(s, "control");
break;
case BCMEP_BULK:
seq_printf(s, "bulk");
break;
case BCMEP_INTR:
seq_printf(s, "interrupt");
break;
}
seq_printf(s, ch_idx & 0x01 ? " tx" : " rx");
seq_printf(s, " [ep%d]:\n",
max_t(int, iudma_defaults[ch_idx].ep_num, 0));
seq_printf(s, " cfg: %08x; irqstat: %08x; irqmask: %08x; maxburst: %08x\n",
usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG(ch_idx)),
usb_dmac_readl(udc, ENETDMAC_IR_REG(ch_idx)),
usb_dmac_readl(udc, ENETDMAC_IRMASK_REG(ch_idx)),
usb_dmac_readl(udc, ENETDMAC_MAXBURST_REG(ch_idx)));
sram2 = usb_dmas_readl(udc, ENETDMAS_SRAM2_REG(ch_idx));
sram3 = usb_dmas_readl(udc, ENETDMAS_SRAM3_REG(ch_idx));
seq_printf(s, " base: %08x; index: %04x_%04x; desc: %04x_%04x %08x\n",
usb_dmas_readl(udc, ENETDMAS_RSTART_REG(ch_idx)),
sram2 >> 16, sram2 & 0xffff,
sram3 >> 16, sram3 & 0xffff,
usb_dmas_readl(udc, ENETDMAS_SRAM4_REG(ch_idx)));
seq_printf(s, " desc: %d/%d used", iudma->n_bds_used,
iudma->n_bds);
if (iudma->bep) {
i = 0;
list_for_each(pos, &iudma->bep->queue)
i++;
seq_printf(s, "; %d queued\n", i);
} else {
seq_printf(s, "\n");
}
for (i = 0; i < iudma->n_bds; i++) {
struct bcm_enet_desc *d = &iudma->bd_ring[i];
seq_printf(s, " %03x (%02x): len_stat: %04x_%04x; pa %08x",
i * sizeof(*d), i,
d->len_stat >> 16, d->len_stat & 0xffff,
d->address);
if (d == iudma->read_bd)
seq_printf(s, " <<RD");
if (d == iudma->write_bd)
seq_printf(s, " <<WR");
seq_printf(s, "\n");
}
seq_printf(s, "\n");
}
return 0;
}
static int bcm63xx_usbd_dbg_open(struct inode *inode, struct file *file)
{
return single_open(file, bcm63xx_usbd_dbg_show, inode->i_private);
}
static int bcm63xx_iudma_dbg_open(struct inode *inode, struct file *file)
{
return single_open(file, bcm63xx_iudma_dbg_show, inode->i_private);
}
static const struct file_operations usbd_dbg_fops = {
.owner = THIS_MODULE,
.open = bcm63xx_usbd_dbg_open,
.llseek = seq_lseek,
.read = seq_read,
.release = single_release,
};
static const struct file_operations iudma_dbg_fops = {
.owner = THIS_MODULE,
.open = bcm63xx_iudma_dbg_open,
.llseek = seq_lseek,
.read = seq_read,
.release = single_release,
};
/**
* bcm63xx_udc_init_debugfs - Create debugfs entries.
* @udc: Reference to the device controller.
*/
static void bcm63xx_udc_init_debugfs(struct bcm63xx_udc *udc)
{
struct dentry *root, *usbd, *iudma;
if (!IS_ENABLED(CONFIG_USB_GADGET_DEBUG_FS))
return;
root = debugfs_create_dir(udc->gadget.name, NULL);
if (IS_ERR(root) || !root)
goto err_root;
usbd = debugfs_create_file("usbd", 0400, root, udc,
&usbd_dbg_fops);
if (!usbd)
goto err_usbd;
iudma = debugfs_create_file("iudma", 0400, root, udc,
&iudma_dbg_fops);
if (!iudma)
goto err_iudma;
udc->debugfs_root = root;
udc->debugfs_usbd = usbd;
udc->debugfs_iudma = iudma;
return;
err_iudma:
debugfs_remove(usbd);
err_usbd:
debugfs_remove(root);
err_root:
dev_err(udc->dev, "debugfs is not available\n");
}
/**
* bcm63xx_udc_cleanup_debugfs - Remove debugfs entries.
* @udc: Reference to the device controller.
*
* debugfs_remove() is safe to call with a NULL argument.
*/
static void bcm63xx_udc_cleanup_debugfs(struct bcm63xx_udc *udc)
{
debugfs_remove(udc->debugfs_iudma);
debugfs_remove(udc->debugfs_usbd);
debugfs_remove(udc->debugfs_root);
udc->debugfs_iudma = NULL;
udc->debugfs_usbd = NULL;
udc->debugfs_root = NULL;
}
/***********************************************************************
* Driver init/exit
***********************************************************************/
/**
* bcm63xx_udc_gadget_release - Called from device_release().
* @dev: Unused.
*
* We get a warning if this function doesn't exist, but it's empty because
* we don't have to free any of the memory allocated with the devm_* APIs.
*/
static void bcm63xx_udc_gadget_release(struct device *dev)
{
}
/**
* bcm63xx_udc_probe - Initialize a new instance of the UDC.
* @pdev: Platform device struct from the bcm63xx BSP code.
*
* Note that platform data is required, because pd.port_no varies from chip
* to chip and is used to switch the correct USB port to device mode.
*/
static int bcm63xx_udc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct bcm63xx_usbd_platform_data *pd = dev->platform_data;
struct bcm63xx_udc *udc;
struct resource *res;
int rc = -ENOMEM, i, irq;
udc = devm_kzalloc(dev, sizeof(*udc), GFP_KERNEL);
if (!udc) {
dev_err(dev, "cannot allocate memory\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, udc);
udc->dev = dev;
udc->pd = pd;
if (!pd) {
dev_err(dev, "missing platform data\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "error finding USBD resource\n");
return -ENXIO;
}
udc->usbd_regs = devm_ioremap_resource(dev, res);
if (IS_ERR(udc->usbd_regs))
return PTR_ERR(udc->usbd_regs);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {
dev_err(dev, "error finding IUDMA resource\n");
return -ENXIO;
}
udc->iudma_regs = devm_ioremap_resource(dev, res);
if (IS_ERR(udc->iudma_regs))
return PTR_ERR(udc->iudma_regs);
spin_lock_init(&udc->lock);
INIT_WORK(&udc->ep0_wq, bcm63xx_ep0_process);
dev_set_name(&udc->gadget.dev, "gadget");
udc->gadget.ops = &bcm63xx_udc_ops;
udc->gadget.name = dev_name(dev);
udc->gadget.dev.parent = dev;
udc->gadget.dev.release = bcm63xx_udc_gadget_release;
udc->gadget.dev.dma_mask = dev->dma_mask;
if (!pd->use_fullspeed && !use_fullspeed)
udc->gadget.max_speed = USB_SPEED_HIGH;
else
udc->gadget.max_speed = USB_SPEED_FULL;
/* request clocks, allocate buffers, and clear any pending IRQs */
rc = bcm63xx_init_udc_hw(udc);
if (rc)
return rc;
rc = -ENXIO;
/* IRQ resource #0: control interrupt (VBUS, speed, etc.) */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "missing IRQ resource #0\n");
goto out_uninit;
}
if (devm_request_irq(dev, irq, &bcm63xx_udc_ctrl_isr, 0,
dev_name(dev), udc) < 0) {
dev_err(dev, "error requesting IRQ #%d\n", irq);
goto out_uninit;
}
/* IRQ resources #1-6: data interrupts for IUDMA channels 0-5 */
for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
irq = platform_get_irq(pdev, i + 1);
if (irq < 0) {
dev_err(dev, "missing IRQ resource #%d\n", i + 1);
goto out_uninit;
}
if (devm_request_irq(dev, irq, &bcm63xx_udc_data_isr, 0,
dev_name(dev), &udc->iudma[i]) < 0) {
dev_err(dev, "error requesting IRQ #%d\n", irq);
goto out_uninit;
}
}
rc = device_register(&udc->gadget.dev);
if (rc)
goto out_uninit;
bcm63xx_udc_init_debugfs(udc);
rc = usb_add_gadget_udc(dev, &udc->gadget);
if (!rc)
return 0;
bcm63xx_udc_cleanup_debugfs(udc);
device_unregister(&udc->gadget.dev);
out_uninit:
bcm63xx_uninit_udc_hw(udc);
return rc;
}
/**
* bcm63xx_udc_remove - Remove the device from the system.
* @pdev: Platform device struct from the bcm63xx BSP code.
*/
static int bcm63xx_udc_remove(struct platform_device *pdev)
{
struct bcm63xx_udc *udc = platform_get_drvdata(pdev);
bcm63xx_udc_cleanup_debugfs(udc);
usb_del_gadget_udc(&udc->gadget);
device_unregister(&udc->gadget.dev);
BUG_ON(udc->driver);
platform_set_drvdata(pdev, NULL);
bcm63xx_uninit_udc_hw(udc);
return 0;
}
static struct platform_driver bcm63xx_udc_driver = {
.probe = bcm63xx_udc_probe,
.remove = bcm63xx_udc_remove,
.driver = {
.name = DRV_MODULE_NAME,
.owner = THIS_MODULE,
},
};
module_platform_driver(bcm63xx_udc_driver);
MODULE_DESCRIPTION("BCM63xx USB Peripheral Controller");
MODULE_AUTHOR("Kevin Cernekee <cernekee@gmail.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRV_MODULE_NAME);