| /* |
| * SGI UltraViolet TLB flush routines. |
| * |
| * (c) 2008-2012 Cliff Wickman <cpw@sgi.com>, SGI. |
| * |
| * This code is released under the GNU General Public License version 2 or |
| * later. |
| */ |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/debugfs.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| |
| #include <asm/mmu_context.h> |
| #include <asm/uv/uv.h> |
| #include <asm/uv/uv_mmrs.h> |
| #include <asm/uv/uv_hub.h> |
| #include <asm/uv/uv_bau.h> |
| #include <asm/apic.h> |
| #include <asm/idle.h> |
| #include <asm/tsc.h> |
| #include <asm/irq_vectors.h> |
| #include <asm/timer.h> |
| |
| /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */ |
| static int timeout_base_ns[] = { |
| 20, |
| 160, |
| 1280, |
| 10240, |
| 81920, |
| 655360, |
| 5242880, |
| 167772160 |
| }; |
| |
| static int timeout_us; |
| static int nobau; |
| static int nobau_perm; |
| static cycles_t congested_cycles; |
| |
| /* tunables: */ |
| static int max_concurr = MAX_BAU_CONCURRENT; |
| static int max_concurr_const = MAX_BAU_CONCURRENT; |
| static int plugged_delay = PLUGGED_DELAY; |
| static int plugsb4reset = PLUGSB4RESET; |
| static int giveup_limit = GIVEUP_LIMIT; |
| static int timeoutsb4reset = TIMEOUTSB4RESET; |
| static int ipi_reset_limit = IPI_RESET_LIMIT; |
| static int complete_threshold = COMPLETE_THRESHOLD; |
| static int congested_respns_us = CONGESTED_RESPONSE_US; |
| static int congested_reps = CONGESTED_REPS; |
| static int disabled_period = DISABLED_PERIOD; |
| |
| static struct tunables tunables[] = { |
| {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */ |
| {&plugged_delay, PLUGGED_DELAY}, |
| {&plugsb4reset, PLUGSB4RESET}, |
| {&timeoutsb4reset, TIMEOUTSB4RESET}, |
| {&ipi_reset_limit, IPI_RESET_LIMIT}, |
| {&complete_threshold, COMPLETE_THRESHOLD}, |
| {&congested_respns_us, CONGESTED_RESPONSE_US}, |
| {&congested_reps, CONGESTED_REPS}, |
| {&disabled_period, DISABLED_PERIOD}, |
| {&giveup_limit, GIVEUP_LIMIT} |
| }; |
| |
| static struct dentry *tunables_dir; |
| static struct dentry *tunables_file; |
| |
| /* these correspond to the statistics printed by ptc_seq_show() */ |
| static char *stat_description[] = { |
| "sent: number of shootdown messages sent", |
| "stime: time spent sending messages", |
| "numuvhubs: number of hubs targeted with shootdown", |
| "numuvhubs16: number times 16 or more hubs targeted", |
| "numuvhubs8: number times 8 or more hubs targeted", |
| "numuvhubs4: number times 4 or more hubs targeted", |
| "numuvhubs2: number times 2 or more hubs targeted", |
| "numuvhubs1: number times 1 hub targeted", |
| "numcpus: number of cpus targeted with shootdown", |
| "dto: number of destination timeouts", |
| "retries: destination timeout retries sent", |
| "rok: : destination timeouts successfully retried", |
| "resetp: ipi-style resource resets for plugs", |
| "resett: ipi-style resource resets for timeouts", |
| "giveup: fall-backs to ipi-style shootdowns", |
| "sto: number of source timeouts", |
| "bz: number of stay-busy's", |
| "throt: number times spun in throttle", |
| "swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE", |
| "recv: shootdown messages received", |
| "rtime: time spent processing messages", |
| "all: shootdown all-tlb messages", |
| "one: shootdown one-tlb messages", |
| "mult: interrupts that found multiple messages", |
| "none: interrupts that found no messages", |
| "retry: number of retry messages processed", |
| "canc: number messages canceled by retries", |
| "nocan: number retries that found nothing to cancel", |
| "reset: number of ipi-style reset requests processed", |
| "rcan: number messages canceled by reset requests", |
| "disable: number times use of the BAU was disabled", |
| "enable: number times use of the BAU was re-enabled" |
| }; |
| |
| static int __init |
| setup_nobau(char *arg) |
| { |
| nobau = 1; |
| return 0; |
| } |
| early_param("nobau", setup_nobau); |
| |
| /* base pnode in this partition */ |
| static int uv_base_pnode __read_mostly; |
| |
| static DEFINE_PER_CPU(struct ptc_stats, ptcstats); |
| static DEFINE_PER_CPU(struct bau_control, bau_control); |
| static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); |
| |
| static void |
| set_bau_on(void) |
| { |
| int cpu; |
| struct bau_control *bcp; |
| |
| if (nobau_perm) { |
| pr_info("BAU not initialized; cannot be turned on\n"); |
| return; |
| } |
| nobau = 0; |
| for_each_present_cpu(cpu) { |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->nobau = 0; |
| } |
| pr_info("BAU turned on\n"); |
| return; |
| } |
| |
| static void |
| set_bau_off(void) |
| { |
| int cpu; |
| struct bau_control *bcp; |
| |
| nobau = 1; |
| for_each_present_cpu(cpu) { |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->nobau = 1; |
| } |
| pr_info("BAU turned off\n"); |
| return; |
| } |
| |
| /* |
| * Determine the first node on a uvhub. 'Nodes' are used for kernel |
| * memory allocation. |
| */ |
| static int __init uvhub_to_first_node(int uvhub) |
| { |
| int node, b; |
| |
| for_each_online_node(node) { |
| b = uv_node_to_blade_id(node); |
| if (uvhub == b) |
| return node; |
| } |
| return -1; |
| } |
| |
| /* |
| * Determine the apicid of the first cpu on a uvhub. |
| */ |
| static int __init uvhub_to_first_apicid(int uvhub) |
| { |
| int cpu; |
| |
| for_each_present_cpu(cpu) |
| if (uvhub == uv_cpu_to_blade_id(cpu)) |
| return per_cpu(x86_cpu_to_apicid, cpu); |
| return -1; |
| } |
| |
| /* |
| * Free a software acknowledge hardware resource by clearing its Pending |
| * bit. This will return a reply to the sender. |
| * If the message has timed out, a reply has already been sent by the |
| * hardware but the resource has not been released. In that case our |
| * clear of the Timeout bit (as well) will free the resource. No reply will |
| * be sent (the hardware will only do one reply per message). |
| */ |
| static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp, |
| int do_acknowledge) |
| { |
| unsigned long dw; |
| struct bau_pq_entry *msg; |
| |
| msg = mdp->msg; |
| if (!msg->canceled && do_acknowledge) { |
| dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec; |
| write_mmr_sw_ack(dw); |
| } |
| msg->replied_to = 1; |
| msg->swack_vec = 0; |
| } |
| |
| /* |
| * Process the receipt of a RETRY message |
| */ |
| static void bau_process_retry_msg(struct msg_desc *mdp, |
| struct bau_control *bcp) |
| { |
| int i; |
| int cancel_count = 0; |
| unsigned long msg_res; |
| unsigned long mmr = 0; |
| struct bau_pq_entry *msg = mdp->msg; |
| struct bau_pq_entry *msg2; |
| struct ptc_stats *stat = bcp->statp; |
| |
| stat->d_retries++; |
| /* |
| * cancel any message from msg+1 to the retry itself |
| */ |
| for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { |
| if (msg2 > mdp->queue_last) |
| msg2 = mdp->queue_first; |
| if (msg2 == msg) |
| break; |
| |
| /* same conditions for cancellation as do_reset */ |
| if ((msg2->replied_to == 0) && (msg2->canceled == 0) && |
| (msg2->swack_vec) && ((msg2->swack_vec & |
| msg->swack_vec) == 0) && |
| (msg2->sending_cpu == msg->sending_cpu) && |
| (msg2->msg_type != MSG_NOOP)) { |
| mmr = read_mmr_sw_ack(); |
| msg_res = msg2->swack_vec; |
| /* |
| * This is a message retry; clear the resources held |
| * by the previous message only if they timed out. |
| * If it has not timed out we have an unexpected |
| * situation to report. |
| */ |
| if (mmr & (msg_res << UV_SW_ACK_NPENDING)) { |
| unsigned long mr; |
| /* |
| * Is the resource timed out? |
| * Make everyone ignore the cancelled message. |
| */ |
| msg2->canceled = 1; |
| stat->d_canceled++; |
| cancel_count++; |
| mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res; |
| write_mmr_sw_ack(mr); |
| } |
| } |
| } |
| if (!cancel_count) |
| stat->d_nocanceled++; |
| } |
| |
| /* |
| * Do all the things a cpu should do for a TLB shootdown message. |
| * Other cpu's may come here at the same time for this message. |
| */ |
| static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp, |
| int do_acknowledge) |
| { |
| short socket_ack_count = 0; |
| short *sp; |
| struct atomic_short *asp; |
| struct ptc_stats *stat = bcp->statp; |
| struct bau_pq_entry *msg = mdp->msg; |
| struct bau_control *smaster = bcp->socket_master; |
| |
| /* |
| * This must be a normal message, or retry of a normal message |
| */ |
| if (msg->address == TLB_FLUSH_ALL) { |
| local_flush_tlb(); |
| stat->d_alltlb++; |
| } else { |
| __flush_tlb_one(msg->address); |
| stat->d_onetlb++; |
| } |
| stat->d_requestee++; |
| |
| /* |
| * One cpu on each uvhub has the additional job on a RETRY |
| * of releasing the resource held by the message that is |
| * being retried. That message is identified by sending |
| * cpu number. |
| */ |
| if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) |
| bau_process_retry_msg(mdp, bcp); |
| |
| /* |
| * This is a swack message, so we have to reply to it. |
| * Count each responding cpu on the socket. This avoids |
| * pinging the count's cache line back and forth between |
| * the sockets. |
| */ |
| sp = &smaster->socket_acknowledge_count[mdp->msg_slot]; |
| asp = (struct atomic_short *)sp; |
| socket_ack_count = atom_asr(1, asp); |
| if (socket_ack_count == bcp->cpus_in_socket) { |
| int msg_ack_count; |
| /* |
| * Both sockets dump their completed count total into |
| * the message's count. |
| */ |
| *sp = 0; |
| asp = (struct atomic_short *)&msg->acknowledge_count; |
| msg_ack_count = atom_asr(socket_ack_count, asp); |
| |
| if (msg_ack_count == bcp->cpus_in_uvhub) { |
| /* |
| * All cpus in uvhub saw it; reply |
| * (unless we are in the UV2 workaround) |
| */ |
| reply_to_message(mdp, bcp, do_acknowledge); |
| } |
| } |
| |
| return; |
| } |
| |
| /* |
| * Determine the first cpu on a pnode. |
| */ |
| static int pnode_to_first_cpu(int pnode, struct bau_control *smaster) |
| { |
| int cpu; |
| struct hub_and_pnode *hpp; |
| |
| for_each_present_cpu(cpu) { |
| hpp = &smaster->thp[cpu]; |
| if (pnode == hpp->pnode) |
| return cpu; |
| } |
| return -1; |
| } |
| |
| /* |
| * Last resort when we get a large number of destination timeouts is |
| * to clear resources held by a given cpu. |
| * Do this with IPI so that all messages in the BAU message queue |
| * can be identified by their nonzero swack_vec field. |
| * |
| * This is entered for a single cpu on the uvhub. |
| * The sender want's this uvhub to free a specific message's |
| * swack resources. |
| */ |
| static void do_reset(void *ptr) |
| { |
| int i; |
| struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id()); |
| struct reset_args *rap = (struct reset_args *)ptr; |
| struct bau_pq_entry *msg; |
| struct ptc_stats *stat = bcp->statp; |
| |
| stat->d_resets++; |
| /* |
| * We're looking for the given sender, and |
| * will free its swack resource. |
| * If all cpu's finally responded after the timeout, its |
| * message 'replied_to' was set. |
| */ |
| for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { |
| unsigned long msg_res; |
| /* do_reset: same conditions for cancellation as |
| bau_process_retry_msg() */ |
| if ((msg->replied_to == 0) && |
| (msg->canceled == 0) && |
| (msg->sending_cpu == rap->sender) && |
| (msg->swack_vec) && |
| (msg->msg_type != MSG_NOOP)) { |
| unsigned long mmr; |
| unsigned long mr; |
| /* |
| * make everyone else ignore this message |
| */ |
| msg->canceled = 1; |
| /* |
| * only reset the resource if it is still pending |
| */ |
| mmr = read_mmr_sw_ack(); |
| msg_res = msg->swack_vec; |
| mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res; |
| if (mmr & msg_res) { |
| stat->d_rcanceled++; |
| write_mmr_sw_ack(mr); |
| } |
| } |
| } |
| return; |
| } |
| |
| /* |
| * Use IPI to get all target uvhubs to release resources held by |
| * a given sending cpu number. |
| */ |
| static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp) |
| { |
| int pnode; |
| int apnode; |
| int maskbits; |
| int sender = bcp->cpu; |
| cpumask_t *mask = bcp->uvhub_master->cpumask; |
| struct bau_control *smaster = bcp->socket_master; |
| struct reset_args reset_args; |
| |
| reset_args.sender = sender; |
| cpus_clear(*mask); |
| /* find a single cpu for each uvhub in this distribution mask */ |
| maskbits = sizeof(struct pnmask) * BITSPERBYTE; |
| /* each bit is a pnode relative to the partition base pnode */ |
| for (pnode = 0; pnode < maskbits; pnode++) { |
| int cpu; |
| if (!bau_uvhub_isset(pnode, distribution)) |
| continue; |
| apnode = pnode + bcp->partition_base_pnode; |
| cpu = pnode_to_first_cpu(apnode, smaster); |
| cpu_set(cpu, *mask); |
| } |
| |
| /* IPI all cpus; preemption is already disabled */ |
| smp_call_function_many(mask, do_reset, (void *)&reset_args, 1); |
| return; |
| } |
| |
| /* |
| * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative |
| * number, not an absolute. It converts a duration in cycles to a duration in |
| * ns. |
| */ |
| static inline unsigned long long cycles_2_ns(unsigned long long cyc) |
| { |
| struct cyc2ns_data *data = cyc2ns_read_begin(); |
| unsigned long long ns; |
| |
| ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); |
| |
| cyc2ns_read_end(data); |
| return ns; |
| } |
| |
| /* |
| * The reverse of the above; converts a duration in ns to a duration in cycles. |
| */ |
| static inline unsigned long long ns_2_cycles(unsigned long long ns) |
| { |
| struct cyc2ns_data *data = cyc2ns_read_begin(); |
| unsigned long long cyc; |
| |
| cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul; |
| |
| cyc2ns_read_end(data); |
| return cyc; |
| } |
| |
| static inline unsigned long cycles_2_us(unsigned long long cyc) |
| { |
| return cycles_2_ns(cyc) / NSEC_PER_USEC; |
| } |
| |
| static inline cycles_t sec_2_cycles(unsigned long sec) |
| { |
| return ns_2_cycles(sec * NSEC_PER_SEC); |
| } |
| |
| static inline unsigned long long usec_2_cycles(unsigned long usec) |
| { |
| return ns_2_cycles(usec * NSEC_PER_USEC); |
| } |
| |
| /* |
| * wait for all cpus on this hub to finish their sends and go quiet |
| * leaves uvhub_quiesce set so that no new broadcasts are started by |
| * bau_flush_send_and_wait() |
| */ |
| static inline void quiesce_local_uvhub(struct bau_control *hmaster) |
| { |
| atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce); |
| } |
| |
| /* |
| * mark this quiet-requestor as done |
| */ |
| static inline void end_uvhub_quiesce(struct bau_control *hmaster) |
| { |
| atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce); |
| } |
| |
| static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift) |
| { |
| unsigned long descriptor_status; |
| |
| descriptor_status = uv_read_local_mmr(mmr_offset); |
| descriptor_status >>= right_shift; |
| descriptor_status &= UV_ACT_STATUS_MASK; |
| return descriptor_status; |
| } |
| |
| /* |
| * Wait for completion of a broadcast software ack message |
| * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP |
| */ |
| static int uv1_wait_completion(struct bau_desc *bau_desc, |
| unsigned long mmr_offset, int right_shift, |
| struct bau_control *bcp, long try) |
| { |
| unsigned long descriptor_status; |
| cycles_t ttm; |
| struct ptc_stats *stat = bcp->statp; |
| |
| descriptor_status = uv1_read_status(mmr_offset, right_shift); |
| /* spin on the status MMR, waiting for it to go idle */ |
| while ((descriptor_status != DS_IDLE)) { |
| /* |
| * Our software ack messages may be blocked because |
| * there are no swack resources available. As long |
| * as none of them has timed out hardware will NACK |
| * our message and its state will stay IDLE. |
| */ |
| if (descriptor_status == DS_SOURCE_TIMEOUT) { |
| stat->s_stimeout++; |
| return FLUSH_GIVEUP; |
| } else if (descriptor_status == DS_DESTINATION_TIMEOUT) { |
| stat->s_dtimeout++; |
| ttm = get_cycles(); |
| |
| /* |
| * Our retries may be blocked by all destination |
| * swack resources being consumed, and a timeout |
| * pending. In that case hardware returns the |
| * ERROR that looks like a destination timeout. |
| */ |
| if (cycles_2_us(ttm - bcp->send_message) < timeout_us) { |
| bcp->conseccompletes = 0; |
| return FLUSH_RETRY_PLUGGED; |
| } |
| |
| bcp->conseccompletes = 0; |
| return FLUSH_RETRY_TIMEOUT; |
| } else { |
| /* |
| * descriptor_status is still BUSY |
| */ |
| cpu_relax(); |
| } |
| descriptor_status = uv1_read_status(mmr_offset, right_shift); |
| } |
| bcp->conseccompletes++; |
| return FLUSH_COMPLETE; |
| } |
| |
| /* |
| * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register. |
| * But not currently used. |
| */ |
| static unsigned long uv2_read_status(unsigned long offset, int rshft, int desc) |
| { |
| unsigned long descriptor_status; |
| |
| descriptor_status = |
| ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1; |
| return descriptor_status; |
| } |
| |
| /* |
| * Return whether the status of the descriptor that is normally used for this |
| * cpu (the one indexed by its hub-relative cpu number) is busy. |
| * The status of the original 32 descriptors is always reflected in the 64 |
| * bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0. |
| * The bit provided by the activation_status_2 register is irrelevant to |
| * the status if it is only being tested for busy or not busy. |
| */ |
| int normal_busy(struct bau_control *bcp) |
| { |
| int cpu = bcp->uvhub_cpu; |
| int mmr_offset; |
| int right_shift; |
| |
| mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; |
| right_shift = cpu * UV_ACT_STATUS_SIZE; |
| return (((((read_lmmr(mmr_offset) >> right_shift) & |
| UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY); |
| } |
| |
| /* |
| * Entered when a bau descriptor has gone into a permanent busy wait because |
| * of a hardware bug. |
| * Workaround the bug. |
| */ |
| int handle_uv2_busy(struct bau_control *bcp) |
| { |
| struct ptc_stats *stat = bcp->statp; |
| |
| stat->s_uv2_wars++; |
| bcp->busy = 1; |
| return FLUSH_GIVEUP; |
| } |
| |
| static int uv2_wait_completion(struct bau_desc *bau_desc, |
| unsigned long mmr_offset, int right_shift, |
| struct bau_control *bcp, long try) |
| { |
| unsigned long descriptor_stat; |
| cycles_t ttm; |
| int desc = bcp->uvhub_cpu; |
| long busy_reps = 0; |
| struct ptc_stats *stat = bcp->statp; |
| |
| descriptor_stat = uv2_read_status(mmr_offset, right_shift, desc); |
| |
| /* spin on the status MMR, waiting for it to go idle */ |
| while (descriptor_stat != UV2H_DESC_IDLE) { |
| if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) { |
| /* |
| * A h/w bug on the destination side may |
| * have prevented the message being marked |
| * pending, thus it doesn't get replied to |
| * and gets continually nacked until it times |
| * out with a SOURCE_TIMEOUT. |
| */ |
| stat->s_stimeout++; |
| return FLUSH_GIVEUP; |
| } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) { |
| ttm = get_cycles(); |
| |
| /* |
| * Our retries may be blocked by all destination |
| * swack resources being consumed, and a timeout |
| * pending. In that case hardware returns the |
| * ERROR that looks like a destination timeout. |
| * Without using the extended status we have to |
| * deduce from the short time that this was a |
| * strong nack. |
| */ |
| if (cycles_2_us(ttm - bcp->send_message) < timeout_us) { |
| bcp->conseccompletes = 0; |
| stat->s_plugged++; |
| /* FLUSH_RETRY_PLUGGED causes hang on boot */ |
| return FLUSH_GIVEUP; |
| } |
| stat->s_dtimeout++; |
| bcp->conseccompletes = 0; |
| /* FLUSH_RETRY_TIMEOUT causes hang on boot */ |
| return FLUSH_GIVEUP; |
| } else { |
| busy_reps++; |
| if (busy_reps > 1000000) { |
| /* not to hammer on the clock */ |
| busy_reps = 0; |
| ttm = get_cycles(); |
| if ((ttm - bcp->send_message) > |
| bcp->timeout_interval) |
| return handle_uv2_busy(bcp); |
| } |
| /* |
| * descriptor_stat is still BUSY |
| */ |
| cpu_relax(); |
| } |
| descriptor_stat = uv2_read_status(mmr_offset, right_shift, |
| desc); |
| } |
| bcp->conseccompletes++; |
| return FLUSH_COMPLETE; |
| } |
| |
| /* |
| * There are 2 status registers; each and array[32] of 2 bits. Set up for |
| * which register to read and position in that register based on cpu in |
| * current hub. |
| */ |
| static int wait_completion(struct bau_desc *bau_desc, |
| struct bau_control *bcp, long try) |
| { |
| int right_shift; |
| unsigned long mmr_offset; |
| int desc = bcp->uvhub_cpu; |
| |
| if (desc < UV_CPUS_PER_AS) { |
| mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; |
| right_shift = desc * UV_ACT_STATUS_SIZE; |
| } else { |
| mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; |
| right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE); |
| } |
| |
| if (bcp->uvhub_version == 1) |
| return uv1_wait_completion(bau_desc, mmr_offset, right_shift, |
| bcp, try); |
| else |
| return uv2_wait_completion(bau_desc, mmr_offset, right_shift, |
| bcp, try); |
| } |
| |
| /* |
| * Our retries are blocked by all destination sw ack resources being |
| * in use, and a timeout is pending. In that case hardware immediately |
| * returns the ERROR that looks like a destination timeout. |
| */ |
| static void destination_plugged(struct bau_desc *bau_desc, |
| struct bau_control *bcp, |
| struct bau_control *hmaster, struct ptc_stats *stat) |
| { |
| udelay(bcp->plugged_delay); |
| bcp->plugged_tries++; |
| |
| if (bcp->plugged_tries >= bcp->plugsb4reset) { |
| bcp->plugged_tries = 0; |
| |
| quiesce_local_uvhub(hmaster); |
| |
| spin_lock(&hmaster->queue_lock); |
| reset_with_ipi(&bau_desc->distribution, bcp); |
| spin_unlock(&hmaster->queue_lock); |
| |
| end_uvhub_quiesce(hmaster); |
| |
| bcp->ipi_attempts++; |
| stat->s_resets_plug++; |
| } |
| } |
| |
| static void destination_timeout(struct bau_desc *bau_desc, |
| struct bau_control *bcp, struct bau_control *hmaster, |
| struct ptc_stats *stat) |
| { |
| hmaster->max_concurr = 1; |
| bcp->timeout_tries++; |
| if (bcp->timeout_tries >= bcp->timeoutsb4reset) { |
| bcp->timeout_tries = 0; |
| |
| quiesce_local_uvhub(hmaster); |
| |
| spin_lock(&hmaster->queue_lock); |
| reset_with_ipi(&bau_desc->distribution, bcp); |
| spin_unlock(&hmaster->queue_lock); |
| |
| end_uvhub_quiesce(hmaster); |
| |
| bcp->ipi_attempts++; |
| stat->s_resets_timeout++; |
| } |
| } |
| |
| /* |
| * Stop all cpus on a uvhub from using the BAU for a period of time. |
| * This is reversed by check_enable. |
| */ |
| static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat) |
| { |
| int tcpu; |
| struct bau_control *tbcp; |
| struct bau_control *hmaster; |
| cycles_t tm1; |
| |
| hmaster = bcp->uvhub_master; |
| spin_lock(&hmaster->disable_lock); |
| if (!bcp->baudisabled) { |
| stat->s_bau_disabled++; |
| tm1 = get_cycles(); |
| for_each_present_cpu(tcpu) { |
| tbcp = &per_cpu(bau_control, tcpu); |
| if (tbcp->uvhub_master == hmaster) { |
| tbcp->baudisabled = 1; |
| tbcp->set_bau_on_time = |
| tm1 + bcp->disabled_period; |
| } |
| } |
| } |
| spin_unlock(&hmaster->disable_lock); |
| } |
| |
| static void count_max_concurr(int stat, struct bau_control *bcp, |
| struct bau_control *hmaster) |
| { |
| bcp->plugged_tries = 0; |
| bcp->timeout_tries = 0; |
| if (stat != FLUSH_COMPLETE) |
| return; |
| if (bcp->conseccompletes <= bcp->complete_threshold) |
| return; |
| if (hmaster->max_concurr >= hmaster->max_concurr_const) |
| return; |
| hmaster->max_concurr++; |
| } |
| |
| static void record_send_stats(cycles_t time1, cycles_t time2, |
| struct bau_control *bcp, struct ptc_stats *stat, |
| int completion_status, int try) |
| { |
| cycles_t elapsed; |
| |
| if (time2 > time1) { |
| elapsed = time2 - time1; |
| stat->s_time += elapsed; |
| |
| if ((completion_status == FLUSH_COMPLETE) && (try == 1)) { |
| bcp->period_requests++; |
| bcp->period_time += elapsed; |
| if ((elapsed > congested_cycles) && |
| (bcp->period_requests > bcp->cong_reps) && |
| ((bcp->period_time / bcp->period_requests) > |
| congested_cycles)) { |
| stat->s_congested++; |
| disable_for_period(bcp, stat); |
| } |
| } |
| } else |
| stat->s_requestor--; |
| |
| if (completion_status == FLUSH_COMPLETE && try > 1) |
| stat->s_retriesok++; |
| else if (completion_status == FLUSH_GIVEUP) { |
| stat->s_giveup++; |
| if (get_cycles() > bcp->period_end) |
| bcp->period_giveups = 0; |
| bcp->period_giveups++; |
| if (bcp->period_giveups == 1) |
| bcp->period_end = get_cycles() + bcp->disabled_period; |
| if (bcp->period_giveups > bcp->giveup_limit) { |
| disable_for_period(bcp, stat); |
| stat->s_giveuplimit++; |
| } |
| } |
| } |
| |
| /* |
| * Because of a uv1 hardware bug only a limited number of concurrent |
| * requests can be made. |
| */ |
| static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat) |
| { |
| spinlock_t *lock = &hmaster->uvhub_lock; |
| atomic_t *v; |
| |
| v = &hmaster->active_descriptor_count; |
| if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) { |
| stat->s_throttles++; |
| do { |
| cpu_relax(); |
| } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)); |
| } |
| } |
| |
| /* |
| * Handle the completion status of a message send. |
| */ |
| static void handle_cmplt(int completion_status, struct bau_desc *bau_desc, |
| struct bau_control *bcp, struct bau_control *hmaster, |
| struct ptc_stats *stat) |
| { |
| if (completion_status == FLUSH_RETRY_PLUGGED) |
| destination_plugged(bau_desc, bcp, hmaster, stat); |
| else if (completion_status == FLUSH_RETRY_TIMEOUT) |
| destination_timeout(bau_desc, bcp, hmaster, stat); |
| } |
| |
| /* |
| * Send a broadcast and wait for it to complete. |
| * |
| * The flush_mask contains the cpus the broadcast is to be sent to including |
| * cpus that are on the local uvhub. |
| * |
| * Returns 0 if all flushing represented in the mask was done. |
| * Returns 1 if it gives up entirely and the original cpu mask is to be |
| * returned to the kernel. |
| */ |
| int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp, |
| struct bau_desc *bau_desc) |
| { |
| int seq_number = 0; |
| int completion_stat = 0; |
| int uv1 = 0; |
| long try = 0; |
| unsigned long index; |
| cycles_t time1; |
| cycles_t time2; |
| struct ptc_stats *stat = bcp->statp; |
| struct bau_control *hmaster = bcp->uvhub_master; |
| struct uv1_bau_msg_header *uv1_hdr = NULL; |
| struct uv2_bau_msg_header *uv2_hdr = NULL; |
| |
| if (bcp->uvhub_version == 1) { |
| uv1 = 1; |
| uv1_throttle(hmaster, stat); |
| } |
| |
| while (hmaster->uvhub_quiesce) |
| cpu_relax(); |
| |
| time1 = get_cycles(); |
| if (uv1) |
| uv1_hdr = &bau_desc->header.uv1_hdr; |
| else |
| uv2_hdr = &bau_desc->header.uv2_hdr; |
| |
| do { |
| if (try == 0) { |
| if (uv1) |
| uv1_hdr->msg_type = MSG_REGULAR; |
| else |
| uv2_hdr->msg_type = MSG_REGULAR; |
| seq_number = bcp->message_number++; |
| } else { |
| if (uv1) |
| uv1_hdr->msg_type = MSG_RETRY; |
| else |
| uv2_hdr->msg_type = MSG_RETRY; |
| stat->s_retry_messages++; |
| } |
| |
| if (uv1) |
| uv1_hdr->sequence = seq_number; |
| else |
| uv2_hdr->sequence = seq_number; |
| index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu; |
| bcp->send_message = get_cycles(); |
| |
| write_mmr_activation(index); |
| |
| try++; |
| completion_stat = wait_completion(bau_desc, bcp, try); |
| |
| handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat); |
| |
| if (bcp->ipi_attempts >= bcp->ipi_reset_limit) { |
| bcp->ipi_attempts = 0; |
| stat->s_overipilimit++; |
| completion_stat = FLUSH_GIVEUP; |
| break; |
| } |
| cpu_relax(); |
| } while ((completion_stat == FLUSH_RETRY_PLUGGED) || |
| (completion_stat == FLUSH_RETRY_TIMEOUT)); |
| |
| time2 = get_cycles(); |
| |
| count_max_concurr(completion_stat, bcp, hmaster); |
| |
| while (hmaster->uvhub_quiesce) |
| cpu_relax(); |
| |
| atomic_dec(&hmaster->active_descriptor_count); |
| |
| record_send_stats(time1, time2, bcp, stat, completion_stat, try); |
| |
| if (completion_stat == FLUSH_GIVEUP) |
| /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */ |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * The BAU is disabled for this uvhub. When the disabled time period has |
| * expired re-enable it. |
| * Return 0 if it is re-enabled for all cpus on this uvhub. |
| */ |
| static int check_enable(struct bau_control *bcp, struct ptc_stats *stat) |
| { |
| int tcpu; |
| struct bau_control *tbcp; |
| struct bau_control *hmaster; |
| |
| hmaster = bcp->uvhub_master; |
| spin_lock(&hmaster->disable_lock); |
| if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) { |
| stat->s_bau_reenabled++; |
| for_each_present_cpu(tcpu) { |
| tbcp = &per_cpu(bau_control, tcpu); |
| if (tbcp->uvhub_master == hmaster) { |
| tbcp->baudisabled = 0; |
| tbcp->period_requests = 0; |
| tbcp->period_time = 0; |
| tbcp->period_giveups = 0; |
| } |
| } |
| spin_unlock(&hmaster->disable_lock); |
| return 0; |
| } |
| spin_unlock(&hmaster->disable_lock); |
| return -1; |
| } |
| |
| static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs, |
| int remotes, struct bau_desc *bau_desc) |
| { |
| stat->s_requestor++; |
| stat->s_ntargcpu += remotes + locals; |
| stat->s_ntargremotes += remotes; |
| stat->s_ntarglocals += locals; |
| |
| /* uvhub statistics */ |
| hubs = bau_uvhub_weight(&bau_desc->distribution); |
| if (locals) { |
| stat->s_ntarglocaluvhub++; |
| stat->s_ntargremoteuvhub += (hubs - 1); |
| } else |
| stat->s_ntargremoteuvhub += hubs; |
| |
| stat->s_ntarguvhub += hubs; |
| |
| if (hubs >= 16) |
| stat->s_ntarguvhub16++; |
| else if (hubs >= 8) |
| stat->s_ntarguvhub8++; |
| else if (hubs >= 4) |
| stat->s_ntarguvhub4++; |
| else if (hubs >= 2) |
| stat->s_ntarguvhub2++; |
| else |
| stat->s_ntarguvhub1++; |
| } |
| |
| /* |
| * Translate a cpu mask to the uvhub distribution mask in the BAU |
| * activation descriptor. |
| */ |
| static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp, |
| struct bau_desc *bau_desc, int *localsp, int *remotesp) |
| { |
| int cpu; |
| int pnode; |
| int cnt = 0; |
| struct hub_and_pnode *hpp; |
| |
| for_each_cpu(cpu, flush_mask) { |
| /* |
| * The distribution vector is a bit map of pnodes, relative |
| * to the partition base pnode (and the partition base nasid |
| * in the header). |
| * Translate cpu to pnode and hub using a local memory array. |
| */ |
| hpp = &bcp->socket_master->thp[cpu]; |
| pnode = hpp->pnode - bcp->partition_base_pnode; |
| bau_uvhub_set(pnode, &bau_desc->distribution); |
| cnt++; |
| if (hpp->uvhub == bcp->uvhub) |
| (*localsp)++; |
| else |
| (*remotesp)++; |
| } |
| if (!cnt) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * globally purge translation cache of a virtual address or all TLB's |
| * @cpumask: mask of all cpu's in which the address is to be removed |
| * @mm: mm_struct containing virtual address range |
| * @start: start virtual address to be removed from TLB |
| * @end: end virtual address to be remove from TLB |
| * @cpu: the current cpu |
| * |
| * This is the entry point for initiating any UV global TLB shootdown. |
| * |
| * Purges the translation caches of all specified processors of the given |
| * virtual address, or purges all TLB's on specified processors. |
| * |
| * The caller has derived the cpumask from the mm_struct. This function |
| * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) |
| * |
| * The cpumask is converted into a uvhubmask of the uvhubs containing |
| * those cpus. |
| * |
| * Note that this function should be called with preemption disabled. |
| * |
| * Returns NULL if all remote flushing was done. |
| * Returns pointer to cpumask if some remote flushing remains to be |
| * done. The returned pointer is valid till preemption is re-enabled. |
| */ |
| const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, |
| struct mm_struct *mm, unsigned long start, |
| unsigned long end, unsigned int cpu) |
| { |
| int locals = 0; |
| int remotes = 0; |
| int hubs = 0; |
| struct bau_desc *bau_desc; |
| struct cpumask *flush_mask; |
| struct ptc_stats *stat; |
| struct bau_control *bcp; |
| unsigned long descriptor_status; |
| unsigned long status; |
| |
| bcp = &per_cpu(bau_control, cpu); |
| |
| if (bcp->nobau) |
| return cpumask; |
| |
| stat = bcp->statp; |
| stat->s_enters++; |
| |
| if (bcp->busy) { |
| descriptor_status = |
| read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0); |
| status = ((descriptor_status >> (bcp->uvhub_cpu * |
| UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1; |
| if (status == UV2H_DESC_BUSY) |
| return cpumask; |
| bcp->busy = 0; |
| } |
| |
| /* bau was disabled due to slow response */ |
| if (bcp->baudisabled) { |
| if (check_enable(bcp, stat)) { |
| stat->s_ipifordisabled++; |
| return cpumask; |
| } |
| } |
| |
| /* |
| * Each sending cpu has a per-cpu mask which it fills from the caller's |
| * cpu mask. All cpus are converted to uvhubs and copied to the |
| * activation descriptor. |
| */ |
| flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); |
| /* don't actually do a shootdown of the local cpu */ |
| cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); |
| |
| if (cpu_isset(cpu, *cpumask)) |
| stat->s_ntargself++; |
| |
| bau_desc = bcp->descriptor_base; |
| bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu); |
| bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); |
| if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes)) |
| return NULL; |
| |
| record_send_statistics(stat, locals, hubs, remotes, bau_desc); |
| |
| if (!end || (end - start) <= PAGE_SIZE) |
| bau_desc->payload.address = start; |
| else |
| bau_desc->payload.address = TLB_FLUSH_ALL; |
| bau_desc->payload.sending_cpu = cpu; |
| /* |
| * uv_flush_send_and_wait returns 0 if all cpu's were messaged, |
| * or 1 if it gave up and the original cpumask should be returned. |
| */ |
| if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc)) |
| return NULL; |
| else |
| return cpumask; |
| } |
| |
| /* |
| * Search the message queue for any 'other' unprocessed message with the |
| * same software acknowledge resource bit vector as the 'msg' message. |
| */ |
| struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg, |
| struct bau_control *bcp) |
| { |
| struct bau_pq_entry *msg_next = msg + 1; |
| unsigned char swack_vec = msg->swack_vec; |
| |
| if (msg_next > bcp->queue_last) |
| msg_next = bcp->queue_first; |
| while (msg_next != msg) { |
| if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) && |
| (msg_next->swack_vec == swack_vec)) |
| return msg_next; |
| msg_next++; |
| if (msg_next > bcp->queue_last) |
| msg_next = bcp->queue_first; |
| } |
| return NULL; |
| } |
| |
| /* |
| * UV2 needs to work around a bug in which an arriving message has not |
| * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register. |
| * Such a message must be ignored. |
| */ |
| void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp) |
| { |
| unsigned long mmr_image; |
| unsigned char swack_vec; |
| struct bau_pq_entry *msg = mdp->msg; |
| struct bau_pq_entry *other_msg; |
| |
| mmr_image = read_mmr_sw_ack(); |
| swack_vec = msg->swack_vec; |
| |
| if ((swack_vec & mmr_image) == 0) { |
| /* |
| * This message was assigned a swack resource, but no |
| * reserved acknowlegment is pending. |
| * The bug has prevented this message from setting the MMR. |
| */ |
| /* |
| * Some message has set the MMR 'pending' bit; it might have |
| * been another message. Look for that message. |
| */ |
| other_msg = find_another_by_swack(msg, bcp); |
| if (other_msg) { |
| /* |
| * There is another. Process this one but do not |
| * ack it. |
| */ |
| bau_process_message(mdp, bcp, 0); |
| /* |
| * Let the natural processing of that other message |
| * acknowledge it. Don't get the processing of sw_ack's |
| * out of order. |
| */ |
| return; |
| } |
| } |
| |
| /* |
| * Either the MMR shows this one pending a reply or there is no |
| * other message using this sw_ack, so it is safe to acknowledge it. |
| */ |
| bau_process_message(mdp, bcp, 1); |
| |
| return; |
| } |
| |
| /* |
| * The BAU message interrupt comes here. (registered by set_intr_gate) |
| * See entry_64.S |
| * |
| * We received a broadcast assist message. |
| * |
| * Interrupts are disabled; this interrupt could represent |
| * the receipt of several messages. |
| * |
| * All cores/threads on this hub get this interrupt. |
| * The last one to see it does the software ack. |
| * (the resource will not be freed until noninterruptable cpus see this |
| * interrupt; hardware may timeout the s/w ack and reply ERROR) |
| */ |
| void uv_bau_message_interrupt(struct pt_regs *regs) |
| { |
| int count = 0; |
| cycles_t time_start; |
| struct bau_pq_entry *msg; |
| struct bau_control *bcp; |
| struct ptc_stats *stat; |
| struct msg_desc msgdesc; |
| |
| ack_APIC_irq(); |
| time_start = get_cycles(); |
| |
| bcp = &per_cpu(bau_control, smp_processor_id()); |
| stat = bcp->statp; |
| |
| msgdesc.queue_first = bcp->queue_first; |
| msgdesc.queue_last = bcp->queue_last; |
| |
| msg = bcp->bau_msg_head; |
| while (msg->swack_vec) { |
| count++; |
| |
| msgdesc.msg_slot = msg - msgdesc.queue_first; |
| msgdesc.msg = msg; |
| if (bcp->uvhub_version == 2) |
| process_uv2_message(&msgdesc, bcp); |
| else |
| bau_process_message(&msgdesc, bcp, 1); |
| |
| msg++; |
| if (msg > msgdesc.queue_last) |
| msg = msgdesc.queue_first; |
| bcp->bau_msg_head = msg; |
| } |
| stat->d_time += (get_cycles() - time_start); |
| if (!count) |
| stat->d_nomsg++; |
| else if (count > 1) |
| stat->d_multmsg++; |
| } |
| |
| /* |
| * Each target uvhub (i.e. a uvhub that has cpu's) needs to have |
| * shootdown message timeouts enabled. The timeout does not cause |
| * an interrupt, but causes an error message to be returned to |
| * the sender. |
| */ |
| static void __init enable_timeouts(void) |
| { |
| int uvhub; |
| int nuvhubs; |
| int pnode; |
| unsigned long mmr_image; |
| |
| nuvhubs = uv_num_possible_blades(); |
| |
| for (uvhub = 0; uvhub < nuvhubs; uvhub++) { |
| if (!uv_blade_nr_possible_cpus(uvhub)) |
| continue; |
| |
| pnode = uv_blade_to_pnode(uvhub); |
| mmr_image = read_mmr_misc_control(pnode); |
| /* |
| * Set the timeout period and then lock it in, in three |
| * steps; captures and locks in the period. |
| * |
| * To program the period, the SOFT_ACK_MODE must be off. |
| */ |
| mmr_image &= ~(1L << SOFTACK_MSHIFT); |
| write_mmr_misc_control(pnode, mmr_image); |
| /* |
| * Set the 4-bit period. |
| */ |
| mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT); |
| mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT); |
| write_mmr_misc_control(pnode, mmr_image); |
| /* |
| * UV1: |
| * Subsequent reversals of the timebase bit (3) cause an |
| * immediate timeout of one or all INTD resources as |
| * indicated in bits 2:0 (7 causes all of them to timeout). |
| */ |
| mmr_image |= (1L << SOFTACK_MSHIFT); |
| if (is_uv2_hub()) { |
| /* hw bug workaround; do not use extended status */ |
| mmr_image &= ~(1L << UV2_EXT_SHFT); |
| } |
| write_mmr_misc_control(pnode, mmr_image); |
| } |
| } |
| |
| static void *ptc_seq_start(struct seq_file *file, loff_t *offset) |
| { |
| if (*offset < num_possible_cpus()) |
| return offset; |
| return NULL; |
| } |
| |
| static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) |
| { |
| (*offset)++; |
| if (*offset < num_possible_cpus()) |
| return offset; |
| return NULL; |
| } |
| |
| static void ptc_seq_stop(struct seq_file *file, void *data) |
| { |
| } |
| |
| /* |
| * Display the statistics thru /proc/sgi_uv/ptc_statistics |
| * 'data' points to the cpu number |
| * Note: see the descriptions in stat_description[]. |
| */ |
| static int ptc_seq_show(struct seq_file *file, void *data) |
| { |
| struct ptc_stats *stat; |
| struct bau_control *bcp; |
| int cpu; |
| |
| cpu = *(loff_t *)data; |
| if (!cpu) { |
| seq_printf(file, |
| "# cpu bauoff sent stime self locals remotes ncpus localhub "); |
| seq_printf(file, |
| "remotehub numuvhubs numuvhubs16 numuvhubs8 "); |
| seq_printf(file, |
| "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries "); |
| seq_printf(file, |
| "rok resetp resett giveup sto bz throt disable "); |
| seq_printf(file, |
| "enable wars warshw warwaits enters ipidis plugged "); |
| seq_printf(file, |
| "ipiover glim cong swack recv rtime all one mult "); |
| seq_printf(file, |
| "none retry canc nocan reset rcan\n"); |
| } |
| if (cpu < num_possible_cpus() && cpu_online(cpu)) { |
| bcp = &per_cpu(bau_control, cpu); |
| stat = bcp->statp; |
| /* source side statistics */ |
| seq_printf(file, |
| "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", |
| cpu, bcp->nobau, stat->s_requestor, |
| cycles_2_us(stat->s_time), |
| stat->s_ntargself, stat->s_ntarglocals, |
| stat->s_ntargremotes, stat->s_ntargcpu, |
| stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub, |
| stat->s_ntarguvhub, stat->s_ntarguvhub16); |
| seq_printf(file, "%ld %ld %ld %ld %ld %ld ", |
| stat->s_ntarguvhub8, stat->s_ntarguvhub4, |
| stat->s_ntarguvhub2, stat->s_ntarguvhub1, |
| stat->s_dtimeout, stat->s_strongnacks); |
| seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", |
| stat->s_retry_messages, stat->s_retriesok, |
| stat->s_resets_plug, stat->s_resets_timeout, |
| stat->s_giveup, stat->s_stimeout, |
| stat->s_busy, stat->s_throttles); |
| seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", |
| stat->s_bau_disabled, stat->s_bau_reenabled, |
| stat->s_uv2_wars, stat->s_uv2_wars_hw, |
| stat->s_uv2_war_waits, stat->s_enters, |
| stat->s_ipifordisabled, stat->s_plugged, |
| stat->s_overipilimit, stat->s_giveuplimit, |
| stat->s_congested); |
| |
| /* destination side statistics */ |
| seq_printf(file, |
| "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", |
| read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)), |
| stat->d_requestee, cycles_2_us(stat->d_time), |
| stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, |
| stat->d_nomsg, stat->d_retries, stat->d_canceled, |
| stat->d_nocanceled, stat->d_resets, |
| stat->d_rcanceled); |
| } |
| return 0; |
| } |
| |
| /* |
| * Display the tunables thru debugfs |
| */ |
| static ssize_t tunables_read(struct file *file, char __user *userbuf, |
| size_t count, loff_t *ppos) |
| { |
| char *buf; |
| int ret; |
| |
| buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n", |
| "max_concur plugged_delay plugsb4reset timeoutsb4reset", |
| "ipi_reset_limit complete_threshold congested_response_us", |
| "congested_reps disabled_period giveup_limit", |
| max_concurr, plugged_delay, plugsb4reset, |
| timeoutsb4reset, ipi_reset_limit, complete_threshold, |
| congested_respns_us, congested_reps, disabled_period, |
| giveup_limit); |
| |
| if (!buf) |
| return -ENOMEM; |
| |
| ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); |
| kfree(buf); |
| return ret; |
| } |
| |
| /* |
| * handle a write to /proc/sgi_uv/ptc_statistics |
| * -1: reset the statistics |
| * 0: display meaning of the statistics |
| */ |
| static ssize_t ptc_proc_write(struct file *file, const char __user *user, |
| size_t count, loff_t *data) |
| { |
| int cpu; |
| int i; |
| int elements; |
| long input_arg; |
| char optstr[64]; |
| struct ptc_stats *stat; |
| |
| if (count == 0 || count > sizeof(optstr)) |
| return -EINVAL; |
| if (copy_from_user(optstr, user, count)) |
| return -EFAULT; |
| optstr[count - 1] = '\0'; |
| |
| if (!strcmp(optstr, "on")) { |
| set_bau_on(); |
| return count; |
| } else if (!strcmp(optstr, "off")) { |
| set_bau_off(); |
| return count; |
| } |
| |
| if (strict_strtol(optstr, 10, &input_arg) < 0) { |
| printk(KERN_DEBUG "%s is invalid\n", optstr); |
| return -EINVAL; |
| } |
| |
| if (input_arg == 0) { |
| elements = ARRAY_SIZE(stat_description); |
| printk(KERN_DEBUG "# cpu: cpu number\n"); |
| printk(KERN_DEBUG "Sender statistics:\n"); |
| for (i = 0; i < elements; i++) |
| printk(KERN_DEBUG "%s\n", stat_description[i]); |
| } else if (input_arg == -1) { |
| for_each_present_cpu(cpu) { |
| stat = &per_cpu(ptcstats, cpu); |
| memset(stat, 0, sizeof(struct ptc_stats)); |
| } |
| } |
| |
| return count; |
| } |
| |
| static int local_atoi(const char *name) |
| { |
| int val = 0; |
| |
| for (;; name++) { |
| switch (*name) { |
| case '0' ... '9': |
| val = 10*val+(*name-'0'); |
| break; |
| default: |
| return val; |
| } |
| } |
| } |
| |
| /* |
| * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables. |
| * Zero values reset them to defaults. |
| */ |
| static int parse_tunables_write(struct bau_control *bcp, char *instr, |
| int count) |
| { |
| char *p; |
| char *q; |
| int cnt = 0; |
| int val; |
| int e = ARRAY_SIZE(tunables); |
| |
| p = instr + strspn(instr, WHITESPACE); |
| q = p; |
| for (; *p; p = q + strspn(q, WHITESPACE)) { |
| q = p + strcspn(p, WHITESPACE); |
| cnt++; |
| if (q == p) |
| break; |
| } |
| if (cnt != e) { |
| printk(KERN_INFO "bau tunable error: should be %d values\n", e); |
| return -EINVAL; |
| } |
| |
| p = instr + strspn(instr, WHITESPACE); |
| q = p; |
| for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) { |
| q = p + strcspn(p, WHITESPACE); |
| val = local_atoi(p); |
| switch (cnt) { |
| case 0: |
| if (val == 0) { |
| max_concurr = MAX_BAU_CONCURRENT; |
| max_concurr_const = MAX_BAU_CONCURRENT; |
| continue; |
| } |
| if (val < 1 || val > bcp->cpus_in_uvhub) { |
| printk(KERN_DEBUG |
| "Error: BAU max concurrent %d is invalid\n", |
| val); |
| return -EINVAL; |
| } |
| max_concurr = val; |
| max_concurr_const = val; |
| continue; |
| default: |
| if (val == 0) |
| *tunables[cnt].tunp = tunables[cnt].deflt; |
| else |
| *tunables[cnt].tunp = val; |
| continue; |
| } |
| if (q == p) |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables) |
| */ |
| static ssize_t tunables_write(struct file *file, const char __user *user, |
| size_t count, loff_t *data) |
| { |
| int cpu; |
| int ret; |
| char instr[100]; |
| struct bau_control *bcp; |
| |
| if (count == 0 || count > sizeof(instr)-1) |
| return -EINVAL; |
| if (copy_from_user(instr, user, count)) |
| return -EFAULT; |
| |
| instr[count] = '\0'; |
| |
| cpu = get_cpu(); |
| bcp = &per_cpu(bau_control, cpu); |
| ret = parse_tunables_write(bcp, instr, count); |
| put_cpu(); |
| if (ret) |
| return ret; |
| |
| for_each_present_cpu(cpu) { |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->max_concurr = max_concurr; |
| bcp->max_concurr_const = max_concurr; |
| bcp->plugged_delay = plugged_delay; |
| bcp->plugsb4reset = plugsb4reset; |
| bcp->timeoutsb4reset = timeoutsb4reset; |
| bcp->ipi_reset_limit = ipi_reset_limit; |
| bcp->complete_threshold = complete_threshold; |
| bcp->cong_response_us = congested_respns_us; |
| bcp->cong_reps = congested_reps; |
| bcp->disabled_period = sec_2_cycles(disabled_period); |
| bcp->giveup_limit = giveup_limit; |
| } |
| return count; |
| } |
| |
| static const struct seq_operations uv_ptc_seq_ops = { |
| .start = ptc_seq_start, |
| .next = ptc_seq_next, |
| .stop = ptc_seq_stop, |
| .show = ptc_seq_show |
| }; |
| |
| static int ptc_proc_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &uv_ptc_seq_ops); |
| } |
| |
| static int tunables_open(struct inode *inode, struct file *file) |
| { |
| return 0; |
| } |
| |
| static const struct file_operations proc_uv_ptc_operations = { |
| .open = ptc_proc_open, |
| .read = seq_read, |
| .write = ptc_proc_write, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static const struct file_operations tunables_fops = { |
| .open = tunables_open, |
| .read = tunables_read, |
| .write = tunables_write, |
| .llseek = default_llseek, |
| }; |
| |
| static int __init uv_ptc_init(void) |
| { |
| struct proc_dir_entry *proc_uv_ptc; |
| |
| if (!is_uv_system()) |
| return 0; |
| |
| proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL, |
| &proc_uv_ptc_operations); |
| if (!proc_uv_ptc) { |
| printk(KERN_ERR "unable to create %s proc entry\n", |
| UV_PTC_BASENAME); |
| return -EINVAL; |
| } |
| |
| tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL); |
| if (!tunables_dir) { |
| printk(KERN_ERR "unable to create debugfs directory %s\n", |
| UV_BAU_TUNABLES_DIR); |
| return -EINVAL; |
| } |
| tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, |
| tunables_dir, NULL, &tunables_fops); |
| if (!tunables_file) { |
| printk(KERN_ERR "unable to create debugfs file %s\n", |
| UV_BAU_TUNABLES_FILE); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Initialize the sending side's sending buffers. |
| */ |
| static void activation_descriptor_init(int node, int pnode, int base_pnode) |
| { |
| int i; |
| int cpu; |
| int uv1 = 0; |
| unsigned long gpa; |
| unsigned long m; |
| unsigned long n; |
| size_t dsize; |
| struct bau_desc *bau_desc; |
| struct bau_desc *bd2; |
| struct uv1_bau_msg_header *uv1_hdr; |
| struct uv2_bau_msg_header *uv2_hdr; |
| struct bau_control *bcp; |
| |
| /* |
| * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC) |
| * per cpu; and one per cpu on the uvhub (ADP_SZ) |
| */ |
| dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC; |
| bau_desc = kmalloc_node(dsize, GFP_KERNEL, node); |
| BUG_ON(!bau_desc); |
| |
| gpa = uv_gpa(bau_desc); |
| n = uv_gpa_to_gnode(gpa); |
| m = uv_gpa_to_offset(gpa); |
| if (is_uv1_hub()) |
| uv1 = 1; |
| |
| /* the 14-bit pnode */ |
| write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m)); |
| /* |
| * Initializing all 8 (ITEMS_PER_DESC) descriptors for each |
| * cpu even though we only use the first one; one descriptor can |
| * describe a broadcast to 256 uv hubs. |
| */ |
| for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) { |
| memset(bd2, 0, sizeof(struct bau_desc)); |
| if (uv1) { |
| uv1_hdr = &bd2->header.uv1_hdr; |
| uv1_hdr->swack_flag = 1; |
| /* |
| * The base_dest_nasid set in the message header |
| * is the nasid of the first uvhub in the partition. |
| * The bit map will indicate destination pnode numbers |
| * relative to that base. They may not be consecutive |
| * if nasid striding is being used. |
| */ |
| uv1_hdr->base_dest_nasid = |
| UV_PNODE_TO_NASID(base_pnode); |
| uv1_hdr->dest_subnodeid = UV_LB_SUBNODEID; |
| uv1_hdr->command = UV_NET_ENDPOINT_INTD; |
| uv1_hdr->int_both = 1; |
| /* |
| * all others need to be set to zero: |
| * fairness chaining multilevel count replied_to |
| */ |
| } else { |
| /* |
| * BIOS uses legacy mode, but UV2 hardware always |
| * uses native mode for selective broadcasts. |
| */ |
| uv2_hdr = &bd2->header.uv2_hdr; |
| uv2_hdr->swack_flag = 1; |
| uv2_hdr->base_dest_nasid = |
| UV_PNODE_TO_NASID(base_pnode); |
| uv2_hdr->dest_subnodeid = UV_LB_SUBNODEID; |
| uv2_hdr->command = UV_NET_ENDPOINT_INTD; |
| } |
| } |
| for_each_present_cpu(cpu) { |
| if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) |
| continue; |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->descriptor_base = bau_desc; |
| } |
| } |
| |
| /* |
| * initialize the destination side's receiving buffers |
| * entered for each uvhub in the partition |
| * - node is first node (kernel memory notion) on the uvhub |
| * - pnode is the uvhub's physical identifier |
| */ |
| static void pq_init(int node, int pnode) |
| { |
| int cpu; |
| size_t plsize; |
| char *cp; |
| void *vp; |
| unsigned long pn; |
| unsigned long first; |
| unsigned long pn_first; |
| unsigned long last; |
| struct bau_pq_entry *pqp; |
| struct bau_control *bcp; |
| |
| plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry); |
| vp = kmalloc_node(plsize, GFP_KERNEL, node); |
| pqp = (struct bau_pq_entry *)vp; |
| BUG_ON(!pqp); |
| |
| cp = (char *)pqp + 31; |
| pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5); |
| |
| for_each_present_cpu(cpu) { |
| if (pnode != uv_cpu_to_pnode(cpu)) |
| continue; |
| /* for every cpu on this pnode: */ |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->queue_first = pqp; |
| bcp->bau_msg_head = pqp; |
| bcp->queue_last = pqp + (DEST_Q_SIZE - 1); |
| } |
| /* |
| * need the gnode of where the memory was really allocated |
| */ |
| pn = uv_gpa_to_gnode(uv_gpa(pqp)); |
| first = uv_physnodeaddr(pqp); |
| pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first; |
| last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)); |
| write_mmr_payload_first(pnode, pn_first); |
| write_mmr_payload_tail(pnode, first); |
| write_mmr_payload_last(pnode, last); |
| write_gmmr_sw_ack(pnode, 0xffffUL); |
| |
| /* in effect, all msg_type's are set to MSG_NOOP */ |
| memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE); |
| } |
| |
| /* |
| * Initialization of each UV hub's structures |
| */ |
| static void __init init_uvhub(int uvhub, int vector, int base_pnode) |
| { |
| int node; |
| int pnode; |
| unsigned long apicid; |
| |
| node = uvhub_to_first_node(uvhub); |
| pnode = uv_blade_to_pnode(uvhub); |
| |
| activation_descriptor_init(node, pnode, base_pnode); |
| |
| pq_init(node, pnode); |
| /* |
| * The below initialization can't be in firmware because the |
| * messaging IRQ will be determined by the OS. |
| */ |
| apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits; |
| write_mmr_data_config(pnode, ((apicid << 32) | vector)); |
| } |
| |
| /* |
| * We will set BAU_MISC_CONTROL with a timeout period. |
| * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT. |
| * So the destination timeout period has to be calculated from them. |
| */ |
| static int calculate_destination_timeout(void) |
| { |
| unsigned long mmr_image; |
| int mult1; |
| int mult2; |
| int index; |
| int base; |
| int ret; |
| unsigned long ts_ns; |
| |
| if (is_uv1_hub()) { |
| mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK; |
| mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL); |
| index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK; |
| mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT); |
| mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK; |
| ts_ns = timeout_base_ns[index]; |
| ts_ns *= (mult1 * mult2); |
| ret = ts_ns / 1000; |
| } else { |
| /* 4 bits 0/1 for 10/80us base, 3 bits of multiplier */ |
| mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL); |
| mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT; |
| if (mmr_image & (1L << UV2_ACK_UNITS_SHFT)) |
| base = 80; |
| else |
| base = 10; |
| mult1 = mmr_image & UV2_ACK_MASK; |
| ret = mult1 * base; |
| } |
| return ret; |
| } |
| |
| static void __init init_per_cpu_tunables(void) |
| { |
| int cpu; |
| struct bau_control *bcp; |
| |
| for_each_present_cpu(cpu) { |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->baudisabled = 0; |
| if (nobau) |
| bcp->nobau = 1; |
| bcp->statp = &per_cpu(ptcstats, cpu); |
| /* time interval to catch a hardware stay-busy bug */ |
| bcp->timeout_interval = usec_2_cycles(2*timeout_us); |
| bcp->max_concurr = max_concurr; |
| bcp->max_concurr_const = max_concurr; |
| bcp->plugged_delay = plugged_delay; |
| bcp->plugsb4reset = plugsb4reset; |
| bcp->timeoutsb4reset = timeoutsb4reset; |
| bcp->ipi_reset_limit = ipi_reset_limit; |
| bcp->complete_threshold = complete_threshold; |
| bcp->cong_response_us = congested_respns_us; |
| bcp->cong_reps = congested_reps; |
| bcp->disabled_period = sec_2_cycles(disabled_period); |
| bcp->giveup_limit = giveup_limit; |
| spin_lock_init(&bcp->queue_lock); |
| spin_lock_init(&bcp->uvhub_lock); |
| spin_lock_init(&bcp->disable_lock); |
| } |
| } |
| |
| /* |
| * Scan all cpus to collect blade and socket summaries. |
| */ |
| static int __init get_cpu_topology(int base_pnode, |
| struct uvhub_desc *uvhub_descs, |
| unsigned char *uvhub_mask) |
| { |
| int cpu; |
| int pnode; |
| int uvhub; |
| int socket; |
| struct bau_control *bcp; |
| struct uvhub_desc *bdp; |
| struct socket_desc *sdp; |
| |
| for_each_present_cpu(cpu) { |
| bcp = &per_cpu(bau_control, cpu); |
| |
| memset(bcp, 0, sizeof(struct bau_control)); |
| |
| pnode = uv_cpu_hub_info(cpu)->pnode; |
| if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) { |
| printk(KERN_EMERG |
| "cpu %d pnode %d-%d beyond %d; BAU disabled\n", |
| cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE); |
| return 1; |
| } |
| |
| bcp->osnode = cpu_to_node(cpu); |
| bcp->partition_base_pnode = base_pnode; |
| |
| uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; |
| *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8)); |
| bdp = &uvhub_descs[uvhub]; |
| |
| bdp->num_cpus++; |
| bdp->uvhub = uvhub; |
| bdp->pnode = pnode; |
| |
| /* kludge: 'assuming' one node per socket, and assuming that |
| disabling a socket just leaves a gap in node numbers */ |
| socket = bcp->osnode & 1; |
| bdp->socket_mask |= (1 << socket); |
| sdp = &bdp->socket[socket]; |
| sdp->cpu_number[sdp->num_cpus] = cpu; |
| sdp->num_cpus++; |
| if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) { |
| printk(KERN_EMERG "%d cpus per socket invalid\n", |
| sdp->num_cpus); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Each socket is to get a local array of pnodes/hubs. |
| */ |
| static void make_per_cpu_thp(struct bau_control *smaster) |
| { |
| int cpu; |
| size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus(); |
| |
| smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode); |
| memset(smaster->thp, 0, hpsz); |
| for_each_present_cpu(cpu) { |
| smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode; |
| smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; |
| } |
| } |
| |
| /* |
| * Each uvhub is to get a local cpumask. |
| */ |
| static void make_per_hub_cpumask(struct bau_control *hmaster) |
| { |
| int sz = sizeof(cpumask_t); |
| |
| hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode); |
| } |
| |
| /* |
| * Initialize all the per_cpu information for the cpu's on a given socket, |
| * given what has been gathered into the socket_desc struct. |
| * And reports the chosen hub and socket masters back to the caller. |
| */ |
| static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp, |
| struct bau_control **smasterp, |
| struct bau_control **hmasterp) |
| { |
| int i; |
| int cpu; |
| struct bau_control *bcp; |
| |
| for (i = 0; i < sdp->num_cpus; i++) { |
| cpu = sdp->cpu_number[i]; |
| bcp = &per_cpu(bau_control, cpu); |
| bcp->cpu = cpu; |
| if (i == 0) { |
| *smasterp = bcp; |
| if (!(*hmasterp)) |
| *hmasterp = bcp; |
| } |
| bcp->cpus_in_uvhub = bdp->num_cpus; |
| bcp->cpus_in_socket = sdp->num_cpus; |
| bcp->socket_master = *smasterp; |
| bcp->uvhub = bdp->uvhub; |
| if (is_uv1_hub()) |
| bcp->uvhub_version = 1; |
| else if (is_uv2_hub()) |
| bcp->uvhub_version = 2; |
| else { |
| printk(KERN_EMERG "uvhub version not 1 or 2\n"); |
| return 1; |
| } |
| bcp->uvhub_master = *hmasterp; |
| bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id; |
| if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) { |
| printk(KERN_EMERG "%d cpus per uvhub invalid\n", |
| bcp->uvhub_cpu); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Summarize the blade and socket topology into the per_cpu structures. |
| */ |
| static int __init summarize_uvhub_sockets(int nuvhubs, |
| struct uvhub_desc *uvhub_descs, |
| unsigned char *uvhub_mask) |
| { |
| int socket; |
| int uvhub; |
| unsigned short socket_mask; |
| |
| for (uvhub = 0; uvhub < nuvhubs; uvhub++) { |
| struct uvhub_desc *bdp; |
| struct bau_control *smaster = NULL; |
| struct bau_control *hmaster = NULL; |
| |
| if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8)))) |
| continue; |
| |
| bdp = &uvhub_descs[uvhub]; |
| socket_mask = bdp->socket_mask; |
| socket = 0; |
| while (socket_mask) { |
| struct socket_desc *sdp; |
| if ((socket_mask & 1)) { |
| sdp = &bdp->socket[socket]; |
| if (scan_sock(sdp, bdp, &smaster, &hmaster)) |
| return 1; |
| make_per_cpu_thp(smaster); |
| } |
| socket++; |
| socket_mask = (socket_mask >> 1); |
| } |
| make_per_hub_cpumask(hmaster); |
| } |
| return 0; |
| } |
| |
| /* |
| * initialize the bau_control structure for each cpu |
| */ |
| static int __init init_per_cpu(int nuvhubs, int base_part_pnode) |
| { |
| unsigned char *uvhub_mask; |
| void *vp; |
| struct uvhub_desc *uvhub_descs; |
| |
| timeout_us = calculate_destination_timeout(); |
| |
| vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); |
| uvhub_descs = (struct uvhub_desc *)vp; |
| memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); |
| uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL); |
| |
| if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask)) |
| goto fail; |
| |
| if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask)) |
| goto fail; |
| |
| kfree(uvhub_descs); |
| kfree(uvhub_mask); |
| init_per_cpu_tunables(); |
| return 0; |
| |
| fail: |
| kfree(uvhub_descs); |
| kfree(uvhub_mask); |
| return 1; |
| } |
| |
| /* |
| * Initialization of BAU-related structures |
| */ |
| static int __init uv_bau_init(void) |
| { |
| int uvhub; |
| int pnode; |
| int nuvhubs; |
| int cur_cpu; |
| int cpus; |
| int vector; |
| cpumask_var_t *mask; |
| |
| if (!is_uv_system()) |
| return 0; |
| |
| for_each_possible_cpu(cur_cpu) { |
| mask = &per_cpu(uv_flush_tlb_mask, cur_cpu); |
| zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu)); |
| } |
| |
| nuvhubs = uv_num_possible_blades(); |
| congested_cycles = usec_2_cycles(congested_respns_us); |
| |
| uv_base_pnode = 0x7fffffff; |
| for (uvhub = 0; uvhub < nuvhubs; uvhub++) { |
| cpus = uv_blade_nr_possible_cpus(uvhub); |
| if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode)) |
| uv_base_pnode = uv_blade_to_pnode(uvhub); |
| } |
| |
| enable_timeouts(); |
| |
| if (init_per_cpu(nuvhubs, uv_base_pnode)) { |
| set_bau_off(); |
| nobau_perm = 1; |
| return 0; |
| } |
| |
| vector = UV_BAU_MESSAGE; |
| for_each_possible_blade(uvhub) |
| if (uv_blade_nr_possible_cpus(uvhub)) |
| init_uvhub(uvhub, vector, uv_base_pnode); |
| |
| alloc_intr_gate(vector, uv_bau_message_intr1); |
| |
| for_each_possible_blade(uvhub) { |
| if (uv_blade_nr_possible_cpus(uvhub)) { |
| unsigned long val; |
| unsigned long mmr; |
| pnode = uv_blade_to_pnode(uvhub); |
| /* INIT the bau */ |
| val = 1L << 63; |
| write_gmmr_activation(pnode, val); |
| mmr = 1; /* should be 1 to broadcast to both sockets */ |
| if (!is_uv1_hub()) |
| write_mmr_data_broadcast(pnode, mmr); |
| } |
| } |
| |
| return 0; |
| } |
| core_initcall(uv_bau_init); |
| fs_initcall(uv_ptc_init); |